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INTRODUCTION

e Paper is about nonparametric estimation of the function g in
model

Y=g(X)+U
e Assume that E(U | X)#0.
e Instrument I is available and satisfies E(U |W)=0.

e X and W may be vectors.

e Some components of X may be exogenous, in which case
they are included in W' .

e Talk deals only with case of scalar X and W

e [f g is known up to finite-dimensional parameter €, then € can
be estimated by GMM.

e GMM estimator has n~ "2

asymptotically normal.

rate of convergence and is

e Situation more complicated when g nonparametric.



BACKGROUND

e Newey, Powell, and Vella (1999) considered triangular-array
version of model.

¢ In triangular array,
X=EX|W)+V
e JVand U relatedby E(U | X, V)=EU|V).

e This generates additive nonparametric mean-regression
model

EY|X,V)=g(X)+h(V).

e Newey and Powell (2002) developed series estimator of g for
Y = g(X)+ U without triangular-array restrictions.

e Darolles, Florens, and Renault (2002) developed kernel
estimator of g for special case in which there are no exogenous

components of X .

e Hall and Horowitz (2004) developed kernel estimator that
applies with or without exogenous components of X .

e Estimator converges at fastest possible rate under
assumptions of Hall and Horowitz.



CONTRIBUTION OF TALK

e Nonparametric IV estimation is difficult because of ill-posed
inverse problem.

e Results to date give conditions for consistency and, in some
cases, rate of convergence of estimator of unknown function g

inY=g(X)+U

e No results so far on asymptotic distribution of estimator of
g

e Darolles, et al. (2002)give conditions under which certain
integrals of g are asymptotically normal.

e So far, no NPIV estimator has known pointwise asymptotic
distribution.

e This talk gives conditions under which Studentized estimator of
Hall and Horowitz is asymptotically standard normal.

e This enables estimator to be used for inference in large samples.



ORGANIZATION

Identification (population version of estimation problem)
[ll-posed inverse problem

Review kernel estimator of Hall and Horowitz (2004)
Give conditions for asymptotic normality.

No Monte Carlo results yet



IDENTIFICATION

Assume that X and W are scalars.
e Support of (X,W) i1s [0,1]2.

e This can always be achieved by (if necessary) carrying out
monotone transformations of X and W' .

Let fy; denote joint density of (X,W) and f; denote
marginal density of W

Define

(.2 = [ Fo (o) o (2o )

Define T as the integral operator on L,[0,1]such that

(Ty)2) = [ 12y ().



IDENTIFICATION (cont.)

fXW(xoW) dx

E(Y|W =w)=E[g(X)|W =w]= [ g(x) Y

Therefore,

Ey[ECY [W) fyy (201 = [ EQCLIV =) fiy () fi (2, w)dw

= [ &) frap (5.) fo (2. )

=(Tg)(2).

Assume that 7 is invertible (its eigenvalues are all strictly
positive).

Then
g(z)= Ey[EY|WYT ™ fyp )2 W)]
e This relation identifies g

The expectations, fy, and T can be estimated
nonparametrically using standard methods (e.g., kernels).

Estimation consists of replacing these population quantities with
sample analogs



ILL-POSED INVERSE PROBLEM

e Relation
(T2)(2) = Ey[EY | W) fxw (2,W)]
is Fredholm integral equation of first kind.

e Generates “ill-posed inverse problem” if, as is usually case, 0 1s
a limit point of eigenvalues of 7.

e Problem is that 7! is unbounded and discontinuous.

e Therefore, T _1(1//1 —,) 1s not necessarily close to 0 even
if y; —y, 1s close to 0.

e Implication: Replacing Eu [EY |W)fyw(z,W)] with
consistent estimator does not necessarily give consistent
estimator of Ey, [E(Y |W)T ™" fyw Nz, W)].

e Solution: Replace T with T +a, I, where

e [ isidentity operator

e {a,} 1s sequence of strictly positive numbers that
converges to 0 as n — .

e Identifying relation becomes
gn(2) = Ey[EY |[WXT +a,0)"" fay (2.0)].
e g, is estimated population quantity

® g, >gasn—>wo



HALL-HOROWITZ KERNEL ESTIMATOR

Estimation consists of replacing unknown population quantities
with sample analogs

Data are independent random sample {Y,, X, , W, : i =1,...,n}

Let f v and T be estimators of fy; and T.

e Define 7+ =(T +a,l)”

Estimate g(z) by
8@ =n"" V(T frw )z )
i=1

We need two estimators of fy;, a “regular” estimator and a
leave-one-out estimator.

Let K be kernel function

e Define K, (v)=K(v/h), where & is bandwidth parameter.

e In general, K 1s “boundary kernel” to deal with possibility
that fyy, does not go smoothly to 0 on boundaries of its

support

e Here, for simplicity, assume that K 1is symmetrical
probability density function on [-1,1].



ESTIMATION (cont.)

e Kernel estimators

fXW<x,w>=#2Kh<x—Xi>Kh<w—W,~>
i=1

f;&;?(x,w)=#2Kh<x—xj>Kh<w—Wj>

=
J#I

e Estimator of 7':

e Define
(6,2)= [ o () Fo (2, W)l

e Estimator of 7" is operator T on L,[0,1] that is defined by
(Tw)(2) = [i(xr, 2w (x)dx

o Set T =T +a,l)".

e Estimator of g is

g@)=n""Y KT fG) W)
i=1



ASSUMPTIONS (1)

e Because of ill-posed-inverse issue, rate of convergence of g
depends on rate at which eigenvalues of 7' converge to 0.

e Rate of ¢ is slower if eigenvalues converge rapidly.

e Regularity conditions reflect importance of rate of
convergence of eigenvalues.

o Let {4,,¢;:/=12,..} denote eigenvalues and orthonormalized
eigenvectors of 7' ordered so that 4, > 4, >...> 0.

* Assume that {¢;} forms orthonormal basis for [0,1].

* Define sequences of Fourier coefficients {d ; } and {b,} by

Fxw (W)= d g () (w),

k=1
g(x)=) bp;(x),
j=1
d i = | Fraw (r, W) () (W)dxaw,
b; = [ 2(0g;(x)dx.
e Then

H(x,2) =D A;;(x)$;(2)
Jj=1



ASSUMPTIONS

The data {Y,,X;,W;: i=1,...,n} are iid. The support of (X,W)
is [0,1], and E[Y — g(X)|W =w]=0.

The density fyy is r times differentiable on [0,1]2 . There is a
finite constant C' such that |fXW (x,w)| <C, E(Y2 |\ W =w)<C,
and E(Y? | X =x,W =w)<C.

There are constants ¢ and £ with a>1 and a < f/3+1/2
such that |b; | < ci P, o< CA;, and Zk:1| dy|< Ci'? for
all j>1.

—a/2f+a)

The parameters a, and & satisfy a, o« n and hocn™”

for all sufficiently large n, where

1 2a+2p5 -1 .| 12-a 4 —a+1
— <y <ming— , .
2r 2B+« 220 +a S5 +a)

The kernel function K 1s bounded, supported on [-1,1],
symmetrical about 0, and satisfies

L 1ifj=0
[ vE@av={ "
-1 0if1<j<r-1

Comment: Third assumption imposes smoothness conditions in
terms of the Fourier expansions of g and fyy in addition to

controlling the rate of convergence of the eigenvalues {4,}.



RATE OF CONVERGENCE OF ESTIMATOR

Let G denote the set of distributions that satisfies the regularity
conditions for fixed values of the constants C', &, and £.

Theorem 1: Under the regularity conditions

1 . —(28-
sup || Eg[8(x) — g(0F dy = Ofn /12741
Geg

Comments:

e Rate of convergence increases as f increases (g becomes
smoother).

e Rate of convergence decreases as « increases (faster
converging eigenvalues).

Rate of convergence is fastest possible under the assumptions
that are made.

e Let g be any estimator of g.
e Foreach z<[0,1]7,

liminf n?#~D/@5+) inf sup j E [2(x)- g(x)]dz > 0.
n—»0 g Geg

Estimator remains mean-square consistent even if restrictions on
eigenvalues and Fourier coefficients do not hold.



ASYMPTOTIC NORMALITY
e Model: Y=g(X)+U; EU|W)=0
e Estimator: g(z)zn—lig(ﬁ 15z w)
i=1

e Write

8(2)=n""Y U (T fo) @) +07 Y (T £ )z W) g (X))
i=1 i=1

| (Z) + SnZ(Z)
e S,,(z) 1s asymptotic bias term caused by regularization.

o Asn— o,

$12(2) > [ £7(6.2) fo (2.) fr (5, w) g (x)

=(T+a,) 'Tg(z)

* Sp(2)-g2)>-a,(T+a,)" g(2)
e [f there were no regularization, S,,(z)— g(z) would be zero.

e §,,(z) can be made negligible at almost every z (at cost of
higher variance) by choosing a, to converge to 0 at faster
than optimal rate (under-regularizing).

e [t suffices to consider asymptotic normality of S,,(z)



ASYMPTOTIC NORMALITY (cont.)

e Now consider “random” term

Su(2)=n""Y UL fi))(z W)
i=1

n
=Y UAT™ [ )2 ;)
i=1
ln S+ (=i
0 Y U ) =T fouw Nz W))
i=1

= Rnl (Z) + Rn2 (Z)

e Under the regularity conditions, (R, , (z)||2 / Var[R,(z)]=0,(1),

where || || is L,[0,1] norm.

o So S, (2)/\Var[R,(2)] > R, (2)//Var[R, (z)] for almost
every z €[0,1].

e R, (z) 1s triangular array of mean-zero, iid random variables

e By central limit theorem for triangular arrays, get

S, (2)/Var[R,;(z)] =% N(0,1)

e Main result: For almost every z €[0,1],

[8(2)— g(2) +a,(T +a,)" g(2)]/Var[R,1 ()] > N(0,1)



ESTIMATION OF VARIANCE

e Var[R,(z)] can be replaced by estimator by
V(z)=nY UNT fo W)Y
i=1

where U, =Y, — §(X,)

e This estimator may be imprecise due to slow rate of
convergence of g.

e May be useful to explore resampling methods for estimating
asymptotic distribution of g —g.



ADDITIONAL REGULARITY CONDITIONS
FOR ASYMPTOTIC NORMALITY

e E(UY|W =w)<w for almost all we[0,1] and an even integer

v satisfying

2,8+a}
2(p-1)

V> max{2,

e Asymptotic bias is negligible if
o a,ocn PP for some p satisfying 1< p<1.5 (under-
regularization).

e Bandwith % is in a range that is narrower than the one
specified in previous regularity conditions.



CONCLUSIONS

Paper gives conditions for pointwise asymptotic normality of
Hall-Horowitz nonparametric IV estimator

This is first pointwise asymptotic distributional result for a
nonparametric I'V estimator.

Topics for further research:

e Use of resampling methods to estimate asymptotic
distribution

e Data-based choices of smoothing parameters

e Extension to multivariate setting in which some components
of X may be exogenous.



