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INTRODUCTION 

• Paper is about nonparametric estimation of the function  in 
model 

g

( )Y g X U= +  

• Assume that ( | )U X 0≠E . 

• Instrument W  is available and satisfies ( | )U W = 0E . 

•  and W  may be vectors. X

• Some components of  may be exogenous, in which case 
they are included in W . 

X

• Talk deals only with case of scalar  and W   X

• If  is known up to finite-dimensional parameter g θ , then θ  can 
be estimated by GMM. 

• GMM estimator has  rate of convergence and is 
asymptotically normal. 

1/ 2n−

• Situation more complicated when  nonparametric. g



BACKGROUND 

• Newey, Powell, and Vella (1999) considered triangular-array 
version of model. 

• In triangular array,  

( | )X X W= +VE  

• and U  related by V ( | , ) ( |U X V U V )=E E . 

• This generates additive nonparametric mean-regression 
model 

( | , ) ( ) (Y X V g X h V= + )E . 

• Newey and Powell (2002) developed series estimator of  for 
 without triangular-array restrictions. 

g
( )Y g X U= +

g
X

X

• Darolles, Florens, and Renault (2002) developed kernel 
estimator of  for special case in which there are no exogenous 
components of . 

• Hall and Horowitz (2004) developed kernel estimator that 
applies with or without exogenous components of . 

• Estimator converges at fastest possible rate under 
assumptions of Hall and Horowitz. 



CONTRIBUTION OF TALK 

• Nonparametric IV estimation is difficult because of ill-posed 
inverse problem. 

• Results to date give conditions for consistency and, in some 
cases, rate of convergence of estimator of unknown function  
in Y g  

g
( )X U= +

g
• No results so far on asymptotic distribution of estimator of 

 

• Darolles, et al. (2002)give conditions under which certain 
integrals of  are asymptotically normal. g

• So far, no NPIV estimator has known pointwise asymptotic 
distribution. 

• This talk gives conditions under which Studentized estimator of 
Hall and Horowitz is asymptotically standard normal. 

• This enables estimator to be used for inference in large samples. 

 



ORGANIZATION 

• Identification (population version of estimation problem) 

• Ill-posed inverse problem 

• Review kernel estimator of Hall and Horowitz (2004)  

• Give conditions for asymptotic normality. 

• No Monte Carlo results yet 



IDENTIFICATION 

• Assume that  and W  are scalars. X

• Support of  is [0 . ( ,X W ) 2,1]

• This can always be achieved by (if necessary) carrying out 
monotone transformations of  and W . X

• Let XWf  denote joint density of  and ( ,X W ) Wf  denote 
marginal density of W  

• Define 

1

0
( , ) ( , ) ( , )XW XWt x z f x w f z w dw= ∫  

• Define T  as the integral operator on such that 2[0,1]L

1

0
( )( ) ( , ) ( )T z t x z x dψ ψ= ∫ x . 



IDENTIFICATION (cont.) 

• 
( , )( | ) [ ( ) | ] ( )
( )

XW

W

f x wY W w g X W w g x dx
f w

= = = = ∫E E . 

• Therefore, 

[ ( | ) ( , )] ( | ) ( ) ( , )

( ) ( , ) ( , )

( )( ).

W XW W XW

XW xw

Y W f z W Y W w f w f z w d

g x f x w f z w dxdw

Tg z

= =

=

=

∫

∫

E E E w

 

• Assume that T  is invertible (its eigenvalues are all strictly 
positive). 

• Then 

1( ) [ ( | )( )( , )]W XWg z Y W T f z W−= E E  

• This relation identifies  g

• The expectations, XWf , and T  can be estimated 
nonparametrically using standard methods (e.g., kernels). 

Estimation consists of replacing these population quantities with 
sample analogs 

• 



ILL-POSED INVERSE PROBLEM 

• 

]

• 

Relation  

( )( ) [ ( | ) ( , )W XWTg z Y W f z W= E E  

is Fredholm integral equation of first kind. 

Generates “ill-posed inverse problem” if, as is usually case, 0 is 
a limit point of eigenvalues of T . 

• Problem is that T 1−  is unbounded and discontinuous. 

• Therefore, T 1
1 2( )ψ ψ− −

2

 is not necessarily close to 0 even 
if 1ψ ψ−  is close to 0. 

• Implication:  Replacing  with 
consistent estimator does not necessarily give consistent 
estimator of . 

[ ( | ) ( , )W XWY W f z WE E

1( )( , )]W XWT f z W−

]

I

[ ( | )Y WE E

• Solution:  Replace T  with T an+ , where  

• I  is identity operator 

•  is sequence of strictly positive numbers that 
converges to 0 as . 
{ na }

n→ ∞

• Identifying relation becomes 

1( ) [ ( | )( ) ( , )]n W n XWg z Y W T a I f z W−= +E E . 

•  is estimated population quantity ng

•  as  ng g→ n→ ∞



HALL-HOROWITZ KERNEL ESTIMATOR 

• Estimation consists of replacing unknown population quantities 
with sample analogs 

• Data are independent random sample {  , , : 1,..., }i i iY X W i n=

• Let ˆ
XWf  and T  be estimators of ˆ

XWf  and T .   

• Define T T  1ˆ ˆ( )na I
+ −= +

• Estimate  by ( )g z

1

1

ˆˆˆ ( ) ( )( , )
n

i XW
i

g z n Y T f z W− +

=

= ∑ i  

• We need two estimators of XWf , a “regular” estimator and a 
leave-one-out estimator. 

• Let K  be kernel function 

• Define ( ) ( / )hK v K v h= , where  is bandwidth parameter. h

• In general, K  is “boundary kernel” to deal with possibility 
that XWf  does not go smoothly to 0 on boundaries of its 
support 

• Here, for simplicity, assume that K  is symmetrical 
probability density function on [-1,1]. 



ESTIMATION (cont.) 

• Kernel estimators 

2
1

1ˆ ( , ) ( ) ( )
n

XW h i h i
i

f x w K x X K w W
nh =

= −∑ −  

( )
2

1

1ˆ ( , ) ( ) ( )
n

i
h j hXW

j
j i

jf x w K x X K w W
nh

−

=
≠

= −∑ −

x

 

• Estimator of T : 

• Define 

ˆ ˆˆ( , ) ( , ) ( , )XW XWt x z f x w f z w dw= ∫  

• Estimator of T  is operator T  on  that is defined by ˆ
2[0,1]L

ˆ ˆ( )( ) ( , ) ( )T z t x z x dψ ψ= ∫  

• Set T T . 1ˆ ˆ( )na I
+ −= +

• Estimator of  is  g

( )1

1

ˆˆˆ ( ) ( )( , )
n

i
i iXW

i
g z n Y T f z W−− +

=

= ∑  



ASSUMPTIONS (1) 

• Because of ill-posed-inverse issue, rate of convergence of  
depends on rate at which eigenvalues of T  converge to 0. 

ĝ

• Rate of  is slower if eigenvalues converge rapidly. ĝ

• Regularity conditions reflect importance of rate of 
convergence of eigenvalues. 

• Let { , : 1,2,...}j j jλ φ =  denote eigenvalues and orthonormalized 
eigenvectors of T  ordered so that 1 2 .  

φ

... 0λ λ≥ ≥ >

}• Assume that { j  forms orthonormal basis for [0,1]. 

• Define sequences of Fourier coefficients { }jkd  and { }jb  by 

, 1
( , ) ( ) ( )XW jk j k

j k
f x w d x wφ φ

∞

=

= ∑ , 

1
( ) ( )j j

j
g x b xφ

∞

=

= ∑ , 

( , ) ( ) ( )jk XW j kd f x w x w dxdwφ φ= ∫ , 

( ) ( )j jb g x xφ= ∫ dx . 

• Then 

1
( , ) ( ) ( )j j j

j
t x z x zλ φ φ

∞

=

= ∑  



ASSUMPTIONS 

• The data { , , : 1,..., }i i iY X W i n=  are iid.  The support of ( ,  
is [0 , and 

)
2,1] ] 0w =

X W
[ ( ) |Y g X W− =E . 

• The density XWf  is  times differentiable on [0 .  There is a 
finite constant C  such that 

r 2,1]
( , )XW , , 

and . 

2( |Y W )w C= ≤E
2( | , )Y X x wE W= = C≤

f x w C≤

• There are constants α  and β  with 1α >  and /3 1/ 2α β≤ +  

such that | |jb Cj≤ , jj Cα λ− ≤ , and / 2| |d Cj
1 jkk

α∞ −≤
=∑  for 

all . 

β−

1j ≥

• The parameters  and  satisfy na h /(2 )
na n α β α− +∝  and h n γ−∝  

for all sufficiently large , where  n

1 2 2 1 1 2 4 1min ,
2 2 2 2 5(2 )r

α β β α β αγ
β α β α β α

 + − − − +
≤ ≤  + + +

. 

• The kernel function K  is bounded, supported on [-1,1], 
symmetrical about 0, and satisfies 

1

1

1 if 0
( )

0 if 1 1
j j
v K v dv

j r−

=
=  ≤ ≤ −∫  

• Comment:  Third assumption imposes smoothness conditions in 
terms of the Fourier expansions of  and g XWf  in addition to 
controlling the rate of convergence of the eigenvalues { }jλ . 



RATE OF CONVERGENCE OF ESTIMATOR 

• Let  denote the set of distributions that satisfies the regularity 
conditions for fixed values of the constants C , 

G
α , and β . 

• Theorem 1:  Under the regularity conditions 

1 2 (2 1) /(2
0

ˆsup [ ( ) ( )] [ ]G
G

g x g x dx O n )β β α− − +

∈
− =∫ E

G
 

• Comments: 

• Rate of convergence increases as β  increases (  becomes 
smoother). 

g

• Rate of convergence decreases as α  increases (faster 
converging eigenvalues). 

• Rate of convergence is fastest possible under the assumptions 
that are made. 

• Let g  be any estimator of . g

• For each , [0,1]qz∈

(2 1) /(2 ) 2liminf inf sup [ ( ) ( )] 0.G
n g G

n g x gβ β α− +

→∞ ∈
x dz− >∫E

G
 

• Estimator remains mean-square consistent even if restrictions on 
eigenvalues and Fourier coefficients do not hold. 

 



ASYMPTOTIC NORMALITY 

• Model:  Y g( ) ; ( | ) 0X U U W= + =E  

• Estimator:  ( )1

1

ˆˆˆ ( ) ( )( , )
n

i
i iXW

i
g z n Y T f z W−− +

=

= ∑  

• Write 

( ) ( )1 1

1 1

1 2

ˆ ˆˆ ˆˆ ( ) ( )( , ) ( )( , ) ( )

( ) ( )

n n
i i

i i iXW XW
i i

n n

g z n U T f z W n T f z W g X

S z S z

− −− + − +

= =

= +

≡ +

∑ ∑ i

x

 

•  is asymptotic bias term caused by regularization.   2 ( )nS z

• As ,  n→ ∞

2

1

( ) ( , ) ( , ) ( , ) ( )

( ) ( )

n XW XW

n

S z t x z f z w f x w g x d

T a Tg z

+

−

→

= +

∫
 

•  1
2 ( ) ( ) ( ) ( )n n nS z g z a T a g z−− → − +

• If there were no regularization, 2 ( ) ( )nS z g z−  would be zero. 

•  can be made negligible at almost every  (at cost of 
higher variance) by choosing a  to converge to 0 at faster 
than optimal rate (under-regularizing). 

2 ( )nS z z
n

• It suffices to consider asymptotic normality of  1( )nS z



ASYMPTOTIC NORMALITY (cont.) 

• Now consider “random” term 

( )1
1

1

1

1

( )1

1

1 2

ˆˆ( ) ( )( , )

( )( , )

ˆˆ( )

( ) ( ).

n
i

n i iXW
i

n

i XW i
i

n
i

i XWXW
i

n n

S z n U T f z W

n U T f z W

n U T f T f z W

R z R z

−− +

=

− +

=

−− + +

=

=

=

+ −

≡ +

∑

∑

∑ ( , )i

 

• Under the regularity conditions, 2
2 1( ) [ ( )] (1)n nR z Var R z o= p , 

where  is  norm. 2[0,1]L

• So 1 1 1( ) / [ ( )] ( ) / [ ( )]d
n n nS z Var R z R z Var R z→

[0,1]z∈
1n  for almost 

every . 

•  is triangular array of mean-zero, iid random variables 1( )nR z

• By central limit theorem for triangular arrays, get 

1 1( ) / [ ( )] (0,1)d
n nS z Var R z N→  

• Main result:  For almost every [0,1]z∈ , 

1
1ˆ[ ( ) ( ) ( ) ( )] [ ( )] (0,1)d

n n ng z g z a T a g z Var R z N−− + + →  



ESTIMATION OF VARIANCE 

•  can be replaced by estimator by 1[ ( )nVar R z ]

2( )2 2

1

ˆˆ ˆ ˆ( ) [( )( , )]
n

i
i iXW

i
V z n U T f z W−− +

=

= ∑  

where U Y  ˆ ˆ ( )i i ig X= −

• This estimator may be imprecise due to slow rate of 
convergence of . ĝ

ĝ g
• May be useful to explore resampling methods for estimating 

asymptotic distribution of − . 



ADDITIONAL REGULARITY CONDITIONS 
FOR ASYMPTOTIC NORMALITY 

•  for almost all ( | )U W wν = <E ∞ [0,1]w∈  and an even integer 
ν  satisfying 

2max 2,
2( 1)

β αν
β

 +
>  − 

 

• Asymptotic bias is negligible if 

• /(2 )
na n ρα β α−∝ +  for some ρ  satisfying 1 1.5ρ< <  (under-

regularization). 

• Bandwith  is in a range that is narrower than the one 
specified in previous regularity conditions. 

h

 



CONCLUSIONS 

• Paper gives conditions for pointwise asymptotic normality of 
Hall-Horowitz nonparametric IV estimator 

• This is first pointwise asymptotic distributional result for a 
nonparametric IV estimator. 

• Topics for further research: 

• Use of resampling methods to estimate asymptotic 
distribution 

• Data-based choices of smoothing parameters 

• Extension to multivariate setting in which some components 
of  may be exogenous. X

 


