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1 Motivation

Two reasons:

� Many works clari�ed the structure of the asymp-
totic analysis but given a problem, we still cannot

carry out the asymptotic analysis in the same way

we can for the standard case.

� Common structure needs to be clari�ed further to
obtain systematic results on smoothing parameter

choice problem.



2 Model

� E fg (z; �;  (�; �))g = 0

if and only if � = �0 and  (�; �) = 0 (�; �0).

�  (�; �) is estimated by ̂ (�; �).

� Notations: z 2 Rk, � 2 Rp, for each �,  is a

functions into Rd with norm k�k�.

� Write � instead of  (�; �) and gi (�; �) instead
of g (zi; �;  (�; �)).

� Often gi (�; �) = g (zi; �; h1 (h2 (zi; �) ; �)) for

an unknown function h1 into R
` and a known

function h2 so that g can be regarded as a func-

tion from Z ���R` into Rm.



� The added generality is useful to handle applica-
tions where � is a conditional expectation of an

unknown variable which needs to be estimated,

for example. The generality is also useful in ap-

plications where individuals' decisions depend on

the entire distribution of a variable, which in turn

is estimated. This is the case for individual de-

cisions in auction models, for example, or more

generally any decision under explicitly stated ex-

pectation which is to be estimated.

� Let

Gn (�; �) =
1

n

nX
i=1

gi (�; �) :

We study the generalized method of moment es-

timator which is de�ned as a solution to the fol-

lowing problem:

inf
�2�

Gn (�; ̂�)
T ÂGn (�; ̂�)



where ̂� is an estimator of � and Â is an m�m
symmetric matrix which converges in probability

to a symmetric positive de�nite matrix A.



3 Overview of results

� Our approach is a direct application of the stan-
dard analysis of the two-step GMM estimators.

Like the standard analysis, the basic result ap-

peals to the Taylor's series expansion with respect

to function  (�; �) at 0 (�; �).

� Let F be a mapping from B into RK and let F be

de�ned over an open subset O of B. The Taylor

series expansion of F is available when the rth

Fr�echet derivative F (r) (x) exists for any x 2 O

and is uniformly continuous:

F (x+ h) = F (x) + F 0 (x) (h) +
1

2!
F 00 (x) (h; h)

+ � � �+ 1

r!
F (r) (x) (h; :::; h) + ! (x; h)

where k! (x; h)kB = o (khkrB). If the rth deriva-
tive satis�es the Lipschitz condition with expo-

nent � > 0, then k! (x; h)kB = O
�
khkr+�B

�
:



� Let n denote a sample size. We consider an esti-
mator ̂�0 of an element �0 in � and assume it is

asymptotically linear: there exist a stochastic se-

quence f nigni=1 with  ni 2 � and E ( ni) = 0

(when the function is evaluated at each point)

and a deterministic sequence fbng with bn 2 �

such that̂�0 � �0 � n�1
nX
i=1

 ni � bn


�

= op
�
n�1=2

�
:

� The norm used for � needs to be stronger that the
norm used to de�ne the Fr�echet di�erentiability.

� Three di�erences compared to the standard case:

1. Importance of the norm used and the speci�-

cation of �.

2. Presence of bias.

3. U-statistics CLT rather than the standard CLT.



4 Main results

� Let rG = E frg (z; �0; 0 (�; �0))g where

rg (z; �;  (�; �))
= @g (z; �;  (�; �)) =@�

+@g (z; �;  (�; �)) =@ � @ (�; �) =@�;

H = (rG)T A (rG), and denote the expectation
conditional on zi by E f�jzig. Let


n = V ar[g (z1; �0; 0)

+E
n
@g (z1; �0; 0) =@

0 n2jz1
o

+E
n
@g (z2; �0; 0) =@

0 n1jz1
o
]



� The main result is the following:

Suppose �̂ is consistent to �0. Under the conditions

below n1=2
�
�̂ � �0

�
converges in distribution to a nor-

mal random vector with mean

plim
n!1

n�1=2
nX
i=1

@gi (�0; 0) =@
0bn

and variance-covariance matrix

lim
n!1H�1 (rG)T A
nArGH�1:



� Here are the conditions:

1. fzigni=1 are independent and identically distributed.

2. (�0; 0 (�; �0)) is an interior point of

f(�;  (�; �))g�2�.

3. plimn!1Â = A where A is symmetric and posi-
tive de�nite.

4. g (z; �; ) is Fr�echet di�erentiable with respect to
(�; ) in ��� and the Fr�echet derivatives satis�es
the Lipschitz continuity conditions: for Cj (z) >
0 E

n
Cj (z)

o
<1 (j = 1; 2; 3; 4)@g (z; �; ) =@� � @g

�
z; �0; 0

�
=@�


Rmp

� C1 (z)
� � �0


Rp
+ C2 (z)

 � 0

�@g (z; �; ) =@ � @g

�
z; �0; 0

�
=@

L
� C3 (z)

� � �0

Rp
+ C4 (z)

 � 0

�



5.

k@g (z; �;  (�; �)) =@kL
+ k@g (z; �;  (�; �)) =@�kRmp

� C0 (z)

and E fC0 (z)g <1.

6. E frg (z; �0; 0 (�; �0))g � rG is �nite and has

full rank.

7. � 7�! 0 (�; �) as a mapping from � into � is

continuous at �0.

8. sup�2N (�0;") k̂ (�; �)� 0 (�; �)k� = op
�
n�1=4

�
and that ̂ (�; �0) is asymptotically linear for 0 (�; �0)
in � with rate n�1=2.

9. plimn!1n�3=2
Pn
i=1 @gi (�0; 0) =@

0 ni = 0.



10. plimn!1n�1=2
Pn
i=1 @gi (�0; 0) =@

0bn exists.

Typically we will �nd conditions under which the

limit is 0.

Under the condition on @gi (�0; 0) =@
0, the term

can be bounded:n�1=2
nX
i=1

@gi (�0; 0) =@
0bn


Rm

� 1

n

nX
i=1

C0 (zi)n
1=2 kbnk� :

Thus if n1=2 kbnk� = o (1), then the limit is 0.

11. ̂ (�; �) is continuously di�erentiable and

sup
�2N (�0;")

k@̂ (�; �) =@� � @0 (�; �) @�k� = op (1) :



5 Applications

� To carry out these computations, we need to �nd
out the relevant Fr�echet derivatives and know

what the asymptotic linear expressions are for the

nonparametric estimators used in the estimation.

� For the kernel density estimators the following are
the terms in the asymptotic linear expressions:

 ni =
1

hd
K

�
zi � z

h

�
�E

�
1

hd
K

�
zi � z

h

��
and

bn = E

�
1

hd
K

�
zi � z

h

��
� f (z) :

� For kernel regression estimators of

g (x) = E (Y jX = x) ;



denoting " = Y � g (X), the asymptotic linear

approximation of (ĝ � g) I
�
f̂ > b

�
takes the fol-

lowing form:

 ni =
"ih

�dK ((xi � x) =h)

f (x)
I (f (x) > b) and

bn = E[I (f (x) > b)

�(g (xi)� g (x))

hd
K

�
xi � x

h

�
=f (x)]:

� To control the bias a certain type of kernel func-
tion needs to be used. The following \higher or-

der kernel" by Bartlett (1963) is a standard device

in the literature. Let �j0 = 1 if j = 0 and 0 for

any other integer value j.

� K`, ` � 1 is the class of symmetric functions

k : R! R around zero such thatZ 1
�1

tjk (t) dt = �j0 for j = 0; 1; :::; `� 1



and for some " > 0

lim
jtj!1

k (t) =
�
1 + jtj`+1+"

�
<1:

� Dimension d kernel function K of order ` is con-

structed by K (t1; :::; td) = k (t1) � � � k (td) for
k 2 K`.

� In order to improve the order of bias by the higher
order kernel, the underlying density is required to

be smooth accordingly. The following notion of

smoothness is used by Robinson (1988). Let [�]

denote the largest integer not equal or larger than

�.

� G�� , � > 0, � > 0, is the class of functions g :

Rd ! R satisfying:

g is [�]-times partially di�erentiable for all z 2
Rd;



for some � > 0,

sup

y2
n
ky�zk

Rd
<�
o jg (y)� g (z)�Q (y; z)j

ky � zk�
Rd

� h (z)

for all z; Q = 0 when [�] = 0;

Q is a [�]-th degree homogeneous polynomial in

(y � z) with coe�cients the partial derivatives of

g at z of orders 1 through [�] when [�] � 1; and

g (z), its partial derivatives of order [�] and less,

and h (z) have �nite �th moments.

� Bounded functions are denoted by G1� . Let K
be a higher order kernel constructed as above.

Robinson (1988) has shown the following results:

E

�h
E
�
h�dK ((z2 � z1) =h) jz1

�
� f (z1)

i2�
= O

�
h2�

�

when f 2 G1� for some � > 0 and k 2 K[�]+1.



and

E
n���(g (z2)� g (z1))h

�dK ((z2 � z1) =h)
����o

= O
�
h�min(�;�+1;�+�)

�

when f 2 G1� , g 2 G
�
� , and k 2 K[�]+[�]+1.

� The following estimator �̂ of E ffg is examined by
Schweder (1975), Ahmad (1978) and Hasminskii

and Ibragimov (1979):

0 = n�1
nX
i=1

h
� � f̂ (zi)

i
:

In this application g (z; �; f) = � � f (z).

Note that @g (z; �; f) =@� = 1 and that

@g (z; �; f) =@f = Iz

where Iz evaluates a given function at point z.

Since neither derivative depends on � or f , con-

dition 4 holds trivially.



Condition 5 would require � to be restricted to a

continuous and bounded class of functions.

rg (z; �; f) = 1 so that rG = 1.

@g (z1; �0; f0)

@f 0
 n2 = �

1

hd
K

�
z2 � z1
h

�
+ E

�
1

hd
K

�
z2 � z1
h

�
jz1
�

@g (z2; �0; f0)

@f 0
 n1 = �

1

hd
K

�
z1 � z2
h

�
+ E

�
1

hd
K

�
z1 � z2
h

�
jz2
�
:

Thus E
�
@g (z1; �0; f0) =@f

0 n2jz1
	
= 0 and

E

(
@g (z2; �0; f0)

@f 0
 n1jz1

)

= �E
�
1

hd
K

�
z1 � z2
h

�
jz1
�
+E

�
1

hd
K

�
z1 � z2
h

��



Therefore


n = V ar[�0 � f0 (z1)

�E
�
1

hd
K

�
z1 � z2
h

�
jz1
�
+E

�
1

hd
K

�
z1 � z2
h

��
]

! 4E
n
[�0 � 0 (z1)]

2
o
:

� Also, Robinson's result allows us to �nd condi-
tions under which the asymptotic bias is 0.

� Another example is the partial linear regression
model of Cosslett (1984), Schiller (1984) and Wahba

(1984).

For x 2 RK, y 2 R, w 2 Rd the model is

y = xT�0 + � (w) + "

where E ("jw; x) = 0.



� Consider an estimator which solves the following
equations:

0 = n�1
nX
i=1

h
yi � x0i�̂ � Ê (yjwi) + Ê

�
x0jwi

�
�̂
i
Îixi

where Îi = I
�
f̂ (wi) > b

�
and I is the indicator

function.

� The following lemma allows us to consider

0 = n�1
nX
i=1

[yi�x0i�̂�Ê (yjwi)+Ê
�
x0jwi

�
�̂]Iixi

instead of the feasible GMM.

� Let Ii = I (f (wi) > b).

Pr
�
at least one of Îi � Ii 6= 0

�
! 0 when f 2 G1� ,

for some � > 0, k 2 K[�]+1, jK (0)j <1, b is positive
and bounded, nhdb2= logn ! 1, b=h� ! 1, and
when there is no positive probability that f (wi) = b.



� Let z = (w; x; y). In this example,

g (z; �; )

=
h
y � xT� � 1 (w)� 2 (w)

T �
i
� I � x

so that

rg (z; �; ) = �I � x [x� 2 (w)]
T :

Since rg (z; �; ) is linear in  and  does not
depend on �, the veri�cation of the conditions

are easy.

� One can verify when b! 0 and

E
nx [x� E (xjw)]T


RK

2

o
<1

the following holds:

rG = �E
n
I � x [x� E (xjw)]T

o
! �E

n
x [x� E (xjw)]T

o

� To examine the asymptotic distribution note that
the Fr�echet derivative of g with respect to  is



@g=@ (h) = �
�
h1 (w)� h2 (w)

T �0
�
x so that

writing u = y � E (yjw) and v = x � E (xjw)
and " = y � xT�0 � � (w)

@g (z1; �0; 0)

@0
 n2

= �

�
u2 � vT2 �0

�
h�dK ((w2 � w1) =h)

f (w1)
�I (f (w1) > b)x1
@g (z2; �0; 0)

@0
 n1

= �

�
u1 � vT1 �0

�
h�dK ((w1 � w2) =h)

f (w2)
�I (f (w2) > b)x2:

Thus noting that

u = y � E (xjw)T �0 � � (w)

= "+ vT�0

E

(
@g (z1; �0; 0)

@0
 n2jz1

)
= 0



E

(
@g (z2; �0; 0)

@0
 n1jz1

)

= �"1E[
h�dK ((w1 � w2) =h)

f (w2)
I (f (w2) > b)x2jw1]

so that


n = V ar["1[x1I1

�E[h
�dK ((w1 � w2) =h)

f (w2)
I (f (w2) > b)x2jw1]]]

! V ar ["1 [x1 � E (x1jw1)]] as b! 0:

6 Conclusion

� More examples need to be worked out.

� Analogous results for series estimators should be
established.



� First stage expansion result can be obtained in-
cluding parameters so that conditions can be sim-

pli�ed.

� general M-estimator is considered in the joint work
with Simon Lee (UCL) without assuming smooth-

ness.


