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1 Model and Motivation

We characterize asymptotic distribution of 2 step M-

estimators of �0 where �0 minimizes E[m(Z; �; f0(�; �))].
The �rst step is an estimator of an unknown function

f0.



Assume that for each �, a nonparametric estimator

f̂n(�; �) of f0(�; �) is available.

The observed data fZi : i = 1; : : : ; ng are a random
sample of Z.

We study an M-estimator of �0 that minimizes

Ŝn(�) � n�1
nX
i=1

m(Zi; �; f̂n(�; �)):



Examples: Partially Linear, Single Index, Klein-Spady,

Semiparametric Likelihood, Average Derivative, Aver-

age Density.



Four Motivations:

� Works by Andrews (1994), Newey (1994), Chen
and Shen (1998), Ai and Chen (2003), Chen, Lin-
ton, and Van Keilegom (2003) clari�ed the struc-
ture of the asymptotic analysis but given a prob-
lem, we still cannot carry out the asymptotic anal-
ysis in the same way we can for the regular 2 step
case.

� The asymptotic variance has been characterized
by Newey (1994) when nonparametric component
does not have any restriction but from empirical
standpoint we want to allow for some restrictions
on the nonparametric component perhaps for the
dimension reduction purpose.

� Even for the case Newey's result applies, the con-
tribution of the �rst stage estimator to the overall
asymptotic distribution is captured by the term
expressed as the solution to an integral equation
and not immediately clear what it is.



� Common structure needs to be clari�ed further to
obtain systematic results on smoothing parameter

choice problem.



� We provide a simple formula for semiparametric
M-estimators under regularity conditions that are

relatively straightforward to verify and also weaker

than those available in the literature.

� We illustrate the use of the formula by applying
it to

{ pro�led estimation of a single index quantile

regression model and

{ semiparametric least squares estimator under

model misspeci�cation.



2 Overview

� Our approach is analogous to the standard anal-
ysis of the 2-step estimators when the objective

function is not smooth.

� The basic result appeals to the Taylor's series ex-
pansion of the expectation of the objective func-

tion.

� Since the objective function is a functional we
need to use the Taylor's series expansion based

on the Fr�echet di�erentiability.

� Since the �rst stage estimator is an estimator of a
function, we need to suitably modify the concept

of asymptotic linearity.



� We identify two cases to be distinguished:

{ When f does not depend on �.

{ When DfE [m (Z; �0; f0 (�; �0))] (h) = 0 for

any h.

� When f does not depend on �, we can allow less
smoothness in function m with respect to f .

� When DfE [m (Z; �0; f0 (�; �))] (h) = 0 for any

h, we can allow less smoothness in the estimator

of f0.



3 An illustration of our approach

When f does not depend on �:

� �1i (�0; f) denote the L2 partial derivative ofmi(�; f)

with respect to � evaluated at � = �0

� De�ne

Ri(�; f) = mi(�; f)�mi(�0; f)��1i (�0; f) (���0):
and

Sn(�; f)

= n�1
nX
i=1

[mi(�; f)�mi(�0; f)]

= n�1
nX
i=1

fRi(�; f)� E [Ri(�; f)]g

+n�1
nX
i=1

f�1i (�0; f)� E [�1i (�0; f)]g (� � �0)

+E fmi(�; f)�mi(�0; f)g :



� Also

n�1
nX
i=1

f�1i (�0; f)� E [�1i (�0; f)]g

= n�1
nX
i=1

f�1i (�0; f0)� E [�1i (�0; f0)]g

+

24n�1 nX
i=1

f�1i (�0; f)� E [�1i (�0; f)]g

� n�1
nX
i=1

f�1i (�0; f0)� E [�1i (�0; f0)]g

35



E fmi(�; f)�mi(�0; f)g
= D�E fmi(�0; f)g (� � �0)

+
1

2
(� � �0)

T D��E fmi(�0; f0)g (� � �0)

+o
�
k� � �0k2

�
= D�E fmi(�0; f0)g (� � �0)

+D�fE fmi(�0; f0)g (f � f0) (� � �0)

+
h
D�fE

n
mi(�0; �f)

o
�D�fE fmi(�0; f0)g (f � f0) (� � �0)

i
+
1

2
(� � �0)

T D��E fmi(�0; f0)g (� � �0)

+o
�
k� � �0k2

�
:



Assume that f̂ has the asymptotic linear form:





f̂ (�)� f0 (�)� n�1
nX
i=1

 ni (�)







 = op
�
n�1=2

�
:

Then

D�fE fmi(�0; f0)g
�
f̂ � f0

�
(� � �0)

= D�fE fmi(�0; f0)g

0@n�1 nX
i=1

 ni (�)

1A (� � �0)

+op
�
n�1=2 k� � �0k

�
= n�1

nX
i=1

D�fE fmi(�0; f0)g ( ni (�)) (� � �0)

+op
�
n�1=2 k� � �0k

�



Putting these calculations together, we have

Sn(�; f)

= n�1
nX
i=1

[f�1i (�0; f)� E [�1i (�0; f)]g

+D�fE fmi(�0; f0)g ( ni (�))] (� � �0)

+
1

2
(� � �0)

T D��E fmi(�0; f0)g (� � �0)

+op
�
n�1

�
:



When f depends on �:

� The centering used earlier is no longer appropri-
ate.

� �2i (�0; f0 (�; �0)) denote the L2 partial derivative
of mi(�; f) with respect to f evaluated at � = �0
and f = f0 (�; �0).

� We need additional smoothness of functionm not

needed when f did not depend on �.

� De�ne

Ri(�; f) = mi(�; f (�; �))�mi(�0; f0 (�; �0))
��1i (�; f0 (�; �0)) (� � �0)

��2i (�0; f0 (�; �0)) (f (�; �)� f0 (�; �0)):



Sn(�; f)

= n�1
nX
i=1

[mi(�; f (�; �))�mi(�0; f0 (�; �0))]

= n�1
nX
i=1

fRi(�; f)� E [Ri(�; f)]g

+n�1
nX
i=1

f�1i (�0; f0 (�; �0))

�E [�1i (�0; f0 (�; �0))]g(� � �0)

+n�1
nX
i=1

f�2i (�0; f0 (�; �0))

�E [�2i (�0; f0 (�; �0))]g(f (�; �)� f0 (�; �0))
+E fmi(�; f (�; �))�mi(�0; f0 (�; �0))g :



� We assume

kf (�; �)� f (�; �0)� @f0 (�; �0) =@� (� � �0)k
= o (k� � �0k) :

n�1
nX
i=1

f�2i (�0; f0 (�; �0))

�E [�2i (�0; f0 (�; �0)g)]g(f (�; �)� f0 (�; �0))

= n�1
nX
i=1

f�2i (�0; f0 (�; �0))

�E [�2i (�0; f0 (�; �0)g)]g@f0 (�; �0) =@� (� � �0)

+n�1
nX
i=1

f�2i (�0; f0 (�; �0))

�E [�2i (�0; f0 (�; �0)g)]g(f (�; �0)� f0 (�; �0))

+n�1
nX
i=1

f�2i (�0; f0 (�; �0))

�E [�2i (�0; f0 (�; �0)g)]gop (k� � �0k) :



E fmi(�; f (�; �))�mi(�0; f0 (�; �0))g
= E fmi(�0; f (�; �))�mi(�0; f0 (�; �0))g

+D�E fmi(�0; f (�; �))g (� � �0)

+
1

2
(� � �0)

T D��E fmi(�0; f (�; �))g (� � �0)

+o
�
k� � �0k2

�



E fmi(�0; f (�; �))�mi(�0; f0 (�; �0))g
= E fmi(�0; f (�; �0))�mi(�0; f0 (�; �0))g

+DfE fmi(�0; f (�; �0))g (f (�; �)� f (�; �0))

+
1

2
DffE

n
mi(�0; �f (�; �))

o
(f (�; �)� f (�; �0) ; f (�; �)� f (�; �0)) :

Note that

f (�; �)� f (�; �0)
= @f0 (�; �0) =@� (� � �0) + o (k� � �0k) :

Thus

1

2
DffE

n
mi(�0; �f (�; �))

o
(f (�; �)� f (�; �0) ; f (�; �)� f (�; �0))

=
1

2
DffE fmi(�0; f0 (�; �0))g
(@f0 (�; �0) =@� (� � �0) ; @f0 (�; �0) =@� (� � �0))

+o
�
k� � �0k2

�



Also

DfE fmi(�0; f (�; �0))g (f (�; �)� f (�; �0))
= DfE fmi(�0; f0 (�; �0))g (f (�; �)� f (�; �0))

+DffE
n
mi(�0; �f (�; �0))

o
(f (�; �)� f (�; �0) ; f (�; �)� f0 (�; �0))

= DfE fmi(�0; f0 (�; �0))g
(@f (�; �0)� @f0 (�; �0)) (� � �0)

+DfE fmi(�0; f0 (�; �0))g @f0 (�; �0) (� � �0)

+DfE fmi(�0; f0 (�; �0))g @2f0 (�; �0) (� � �0; � � �0)

+o
�
k� � �0k2

�
+DffE

n
mi(�0; �f (�; �0))

o
(@f0 (�; �0) =@� (� � �0) + o (k� � �0k)
; f (�; �0)� f0 (�; �0) + o (k� � �0k))



To recap,

Sn(�; f)

= terms not depending on �

+terms smaller than n�1

++ n�1
nX
i=1

f�1i (�0; f0 (�; �0))

�E [�1i (�0; f0 (�; �0))]g(� � �0)

+n�1
nX
i=1

f�2i (�0; f0 (�; �0))

�E [�2i (�0; f0 (�; �0)g)]g@f0 (�; �0) =@� (� � �0)

+D�E fmi(�0; f (�; �))g (� � �0)

+
1

2
(� � �0)

T TD��E fmi(�0; f0 (�; �0))g (� � �0)

+DfE fmi(�0; f0 (�; �0))g
(@f (�; �0)� @f0 (�; �0)) (� � �0)

+DffE
n
mi(�0; �f (�; �0))

o
(@f0 (�; �0) =@� (� � �0) ; f (�; �0)� f0 (�; �0))



� The last two terms are the additional contribution
when f depends on �. In most cases the �rst of

the two terms are zero becauseDfE fmi(�0; f0 (�; �0))g
is identically 0.

4 Conclusion

� Main �ndings so far are:

1. Asymptotic Variance calculation is reduced to

knowing the linear term for the nonparamet-

ric estimators used and the �rst two Frechet

derivatives.

2. When f does not depend on �, smoothness of

m can be relaxed considerably.

3. In most casesDfE fmi(�0; f0 (�; �0))g is a zero
or the estimator does not depend on � so that



the derivative of the estimator with respect to

� does not contribute to the overall asymp-

totic variance.

4. Semiparametric estimators under misspeci�-

cation is an example whereDfE fmi(�0; f0 (�; �0))g
is not zero.

5. This can be used to construct a speci�cation

test. This is in contrast to the standard tests

where Pitman's drift is the source of the power

of the tests. The test will gain power from a

random `drift'.


