# STRUCTURAL MODELS <br> CONTAINING A DUMMY ENDOGENOUS VARIABLE 

## Arthur Lewbel <br> Boston College

$y$ endogenous vector,
$w$ covariates, unobservables, parameters
Structural model: $y=H(y, w)$.
A model is defined to be coherent if, for each $w \in \Omega$ there exists a corresponding unique value for $y$ that satisfies the model.

Denote the unique $y$ that corresponds to each $w$ by the reduced form equation $y=G(w)$, which must satisfy $G(w)=H[G(w), w]$.

Example $y=\left(y_{1}, y_{2}\right), w=\left(\alpha, e_{1}, e_{2}\right)$

$$
\begin{aligned}
& y_{1}=I\left(y_{2}+e_{1} \geq 0\right) \\
& y_{2}=\alpha y_{1}+e_{2}
\end{aligned}
$$

Then

$$
y_{1}=I\left(\alpha y_{1}+e_{1}+e_{2} \geq 0\right)
$$

So $y_{1}=0, y_{2}=e_{2}$ if

$$
0=I\left(e_{1}+e_{2} \geq 0\right), \text { so } e_{1}+e_{2}<0
$$

and $y_{1}=1, y_{2}=a+e_{2}$ if
$1=I\left(\alpha+e_{1}+e_{2} \geq 0\right), \quad$ so $\alpha+e_{1}+e_{2} \geq 0$
Both $y_{1}=0$ and $y_{1}=1$ are solutions if
$-a \leq e_{1}+e_{2}<0$.
Neither $y_{1}=0$ nor $y_{1}=1$ will satisfy this model if $0 \leq e_{1}+e_{2}<-a$.
This model is incoherent unless $e_{1}+e_{2}$ is constrained not to lie between zero and $-a$.

Heckman (1978)
Gourieroux, Laffont, and Monfort (1980)
Blundell and Smith (1994)
Dagenais (1997)
Bresnahan and Reiss (1991)
Tamer (2003)
Aradillas-Lopez (2005)

Let $y=\left(y_{1}, y_{2}\right)$,
$y_{1}$ is a dummy endogenous
Provide necessary and sufficient conditions for coherence of

$$
\begin{array}{ll}
\text { (1) } & y_{1}=H_{1}\left(y_{1}, y_{2}, w\right) \\
\text { (2) } & y_{2}=H_{2}\left(y_{1}, y_{2}, w\right)
\end{array}
$$

for arbitrary functions $H_{1}$ and $H_{2}$, where $H_{1}$ can only equal zero or one.

Examples:
discrete endogenous regressor models, regime shift models, treatment response models, sample selection models, joint continuous-discrete demands, simultaneous discrete choice models

$$
\begin{array}{ll}
\text { (1) } & y_{1}=H_{1}\left(y_{1}, y_{2}, w\right) \\
\text { (2) } & y_{2}=H_{2}\left(y_{1}, y_{2}, w\right)
\end{array}
$$

Theorem 1: Assume $y_{1} \in\{0,1\}$. The system of equations (1) and (2) is coherent iff for some $g$
(3) $\quad H_{1}[1, g(1, w), w]=H_{1}[0, g(0, w), w]$
(4)

$$
y_{2}=g\left(y_{1}, w\right)
$$

To prove, solve (2) to get (4), substitute (4) into (1), and show incoherent whenever $H_{1}\left[y_{1}, g\left(y_{1}, w\right), w\right]$ is not the same for both values of $y_{1}$. Required nondependence of this expression on $y_{1}$ shows severity of coherence with a dummy endogenous variable.

Corollary 1: The general endogenous selection model, in which $y_{1}$ indexes whether $y_{2}$ is observed,

$$
\begin{aligned}
& y_{1}=R\left(y_{2}, w\right) \\
& y_{2}=r(w) y_{1}
\end{aligned}
$$

is coherent iff $R$ is independent of $y_{2}$.
Proof: By (3) coherency requires
$R[r(w), w]=R(0, w)$, so $R\left(y_{2}, w\right)=R(0, w)$.
No cohorent selection model can be endogenous, where endogeneity is defined as having the selection criterion $y_{1}$ depend on the observed outcome $y_{2}$.
Coherence is possible using some other notion of endogeneity, such as having $y_{1}$ depend on the latent outcome $r(w)$.

Replace (1) and (2) with
(5) $\quad y_{1}=I\left[h\left(y_{1}, y_{2}, w\right)+e_{1} \geq 0\right]$
(2) $y_{2}=H_{2}\left(y_{1}, y_{2}, w\right)$
for some function $h$, where $e_{1} \in w$.
Define $s_{y}(w)=h[y, g(y, w), w]$.
Theorem 2. The system (5) and (2) is coherent iff $y_{2}=g\left(y_{1}, w\right)$ and either $s_{0}(w)=$ $s_{1}(w)$, or $e_{1} \notin$ interval $\left[-s_{0}(w),-s_{1}(w)\right]$.
$s_{0}(w)=s_{1}(w)$ holds iff for some $f$
(6) $y_{1}=I\left[f\left[y_{2}+[g(0, w)-g(1, w)] y_{1}, w\right]+e_{1} \geq\right.$ $y_{2}=g\left(y_{1}, w\right)$
$s_{0}(w)=s_{1}(w)$ holds iff for some $\phi$ and some binary $d(w)$
(7) $\quad y_{1}=I\left[\phi\left[(1-d(w)) y_{2}, w\right]+e_{1} \geq 0\right]$
(8) $y_{2}=g\left[d(w) y_{1}, w\right]$

Applying Theorem 1, coherency requires $I\left[s_{0}(w)+e_{1} \geq 0\right]=I\left[s_{1}(w)+e_{1} \geq 0\right]$, which holds if $s_{0}(w)=s_{1}(w)$ (triangular), or by limiting $e_{1}$.

Theorem 2 shows that, with a binary choice equation, must either restrict error support (Dagenais 1997), or make system triangular.

Two representation of triangular:
Generalize Blundell and Smith (1994):
(6) $y_{1}=I\left[f\left[y_{2}+[g(0, w)-g(1, w)] y_{1}, w\right]+e_{1} \geq\right.$
(4) $y_{2}=g\left(y_{1}, w\right)$
or generalize Heckman (1978):
(7)
$y_{1}=I\left[\phi\left[(1-d(w)) y_{2}, w\right]+e_{1} \geq 0\right]$
(8) $\quad y_{2}=g\left[d(w) y_{1}, w\right]$

EXAMPLES:
Nonparam Dummy Endogenous Regressor

$$
\begin{aligned}
& y_{1}=G_{1}\left(y_{2}, x, e_{1}\right) \\
& y_{2}=G_{2}\left(y_{1}, x\right)+e_{2}
\end{aligned}
$$

For $y_{1}$ discrete, Das (2001) estimates $G_{2}$, implicitly assuming coherency.
$G_{2}$ can be conditional average outcome of endogenous treatment $y_{1}$.
By Theorem 1, coherency requires $G_{1}\left[G_{2}\left(y_{1}, x\right)+\right.$ $\left.e_{2}, x, e_{1}\right]$ independent of $y_{1}$.
By (6), a coherent model is
$y_{1}=G_{1}\left[y_{2}+\left[G_{2}(0, x)-G_{2}(1, x)\right] y_{1}, x, e_{1}\right)$
$y_{2}=G_{2}\left(y_{1}, x\right)+e_{2}$
permits Das estimator for $G_{2}$.
Another coherent is

$$
\begin{aligned}
& y_{1}=G_{1}\left[(1-d) y_{2}, x, e_{1}\right) \\
& y_{2}=G_{2}\left(d y_{1}, x\right)+e_{2}
\end{aligned}
$$

## Linear Dummy Endogenous Regressor

$$
\begin{aligned}
& y_{1}=I\left[x^{\prime} \beta_{1}+y_{2} \alpha_{1}+e_{1} \geq 0\right] \\
& y_{2}=x^{\prime} \beta_{2}+y_{1} \alpha_{2}+e_{2}
\end{aligned}
$$

Heckman (1978): Coherent if $\alpha_{1}=0$ or $\alpha_{2}=0$, triangular systems.

Blundell and Smith (1994) is

$$
\begin{aligned}
& y_{1}=I\left[x^{\prime} \beta_{3}+y_{2} \alpha_{1}+y_{1} \gamma_{1}+e_{3} \geq 0\right] \\
& y_{2}=x^{\prime} \beta_{2}+y_{1} \alpha_{2}+e_{2}
\end{aligned}
$$

coherent if $\gamma_{1}=-\alpha_{1} \alpha_{2}$. This is (4) and (6) with $f$ and $g$ are linear.

Can let $\phi$ and $g$ in (7) and (8) be linear. Then get coherent

$$
\begin{aligned}
& y_{1}=I\left[x^{\prime} \beta_{1}+(1-d) y_{2} \alpha_{1}+e_{1} \geq 0\right] \\
& y_{2}=x^{\prime} \beta_{2}+d y_{1} \alpha_{2}+e_{2}
\end{aligned}
$$

Endogenous Regime Switching

$$
\begin{aligned}
& y_{1}=I\left[x^{\prime} \beta_{1}+y_{2} \alpha_{1}+e_{1} \geq 0\right] \\
& y_{2}=x^{\prime} \beta_{2}+e_{2}+\left(x^{\prime} \beta_{3}+e_{3}\right) y_{1}
\end{aligned}
$$

not coherent except under
severe restrictions such as $\alpha_{1}=0$.
Theorem 2 suggests two coherent alternatives:

$$
\begin{aligned}
& y_{1}=I\left[\left(x^{\prime} \beta_{1}+y_{2} \alpha_{1}+y_{1} x^{\prime} \beta_{4}+e_{1} \geq 0\right]\right. \\
& y_{2}=x^{\prime} \beta_{2}+e_{2}+\left(x^{\prime} \beta_{3}+e_{3}\right) y_{1}
\end{aligned}
$$

is coherent if $\beta_{4}=-\alpha_{1} \beta_{3}$, and

$$
\begin{aligned}
& y_{1}=I\left[x^{\prime} \beta_{1}+(1-d) y_{2} \alpha_{1}+e_{1} \geq 0\right] \\
& y_{2}=x^{\prime} \beta_{2}+e_{2}+\left(x^{\prime} \beta_{3}+e_{3}\right) d y_{1}
\end{aligned}
$$

is coherent.

Simultaneous Binary Choices

$$
\begin{aligned}
& y_{1}=I\left[h_{1}\left(y_{1}, y_{2}, w\right)+e_{1} \geq 0\right] \\
& y_{2}=I\left[h_{2}\left(y_{1}, y_{2}, w\right)+e_{2} \geq 0\right]
\end{aligned}
$$

Are interrelated choices substitutes or complements?
Dagenais (1997) coherence by imposing linearity and restricting the support of $\left(e_{1}, e_{2}\right)$.
By Theorem 2, coherent is

$$
\begin{aligned}
& y_{1}=I\left[f_{1}\left[y_{2}-r(w) y_{1}, w\right]+e_{1} \geq 0\right] \\
& y_{2}=I\left[f_{2}\left(y_{1}, w\right)+e_{2} \geq 0\right]
\end{aligned}
$$

where
$r(w)=I\left[f_{2}(1, w)+e_{2} \geq 0\right]-I\left[f_{2}(0, w)+e_{2} \geq 0\right]$ is coherent for any $f_{1}, f_{2}$.
Another coherent is

$$
\begin{aligned}
& y_{1}=I\left[\phi_{1}\left[(1-d) y_{2}, w\right]+e_{1} \geq 0\right] \\
& y_{2}=I\left[\phi_{2}\left[d y_{1}, w\right]+e_{2} \geq 0\right]
\end{aligned}
$$

for any $\phi_{1}, \phi_{2}$, and dummy $d$.

An example is
(9) $y_{1}=I\left[x^{\prime} \beta_{1}+(1-d) y_{2} \alpha_{1}+e_{1} \geq 0\right]$
(10) $\quad y_{2}=I\left[x^{\prime} \beta_{2}+d y_{1} \alpha_{2}+e_{2} \geq 0\right]$
$d$ may be included in $x$.
An example $d$ is let $d=1$ if decide $y_{1}$ first.
Signs of $\alpha_{1}$ and $\alpha_{2}$ indicate substitute or complement. Can have opposite signs, e.g., if $\alpha_{1}>0$ and $\alpha_{2}<0$, then individuals having $d=1$, view the choices as substitutes.

Let $P_{y_{1}, y_{2}}=\operatorname{prob}\left(y_{1}, y_{2}\right)$.
$P_{11}(\theta \mid x)=\int_{-x^{\prime} \beta_{2}-d \alpha_{2}}^{\infty}\left(\int_{-x^{\prime} \beta_{1}-(1-d) \alpha_{1}}^{\infty} f\left(e_{1}, e_{2}\right) d e_{1}\right.$
$P_{01}(\theta \mid x)=\int_{-x^{\prime} \beta_{2}}^{\infty}\left(\int_{-\infty}^{-x^{\prime} \beta_{1}-(1-d) \alpha_{1}} f\left(e_{1}, e_{2}\right) d e_{1}\right) d$
$P_{10}(\theta \mid x)=\int_{-\infty}^{-x^{\prime} \beta_{2}-d \alpha_{2}}\left(\int_{-x^{\prime} \beta_{1}}^{\infty} f\left(e_{1}, e_{2}\right) d e_{1}\right) d e_{2}$
$P_{00}(\theta \mid x)=\int_{-\infty}^{-x^{\prime} \beta_{2}}\left(\int_{-\infty}^{-x^{\prime} \beta_{1}} f\left(e_{1}, e_{2}\right) d e_{1}\right) d e_{2}$
With $n$ iid draws, $\log$ likelihood is
$\sum_{i=1}^{n} y_{1 i} y_{2 i} \ln P_{11}\left(\theta \mid x_{i}\right)+\left(1-y_{1 i}\right) y_{2 i} \ln P_{01}\left(\theta \mid x_{i}\right)+$
$y_{1 i}\left(1-y_{2 i}\right) \ln P_{10}\left(\theta \mid x_{i}\right)+\left(1-y_{1 i}\right)\left(1-y_{2 i}\right) \ln P_{00}\left(\theta \mid x_{i}\right.$

Behavioral Models
Previous models ad hoc, though with $d$ sequential decision making.

Resolve incoherency by more fully modeling behavior, e.g., modeling choice among multiple equilibria.

Example: two simultaneous binary decisions. Consider naive model

$$
\begin{array}{ll}
\text { (11) } & y_{1}=I\left[x^{\prime} \beta_{1}+y_{2} \alpha_{1}+e_{1} \geq 0\right] \\
\text { (12) } & y_{2}=I\left[x^{\prime} \beta_{2}+y_{1} \alpha_{2}+e_{2} \geq 0\right]
\end{array}
$$

Resolve incoherency by McFadden random utility modeling.
(11) $y_{1}=I\left[x^{\prime} \beta_{1}+y_{2} \alpha_{1}+e_{1} \geq 0\right]$
(12) $y_{2}=I\left[x^{\prime} \beta_{2}+y_{1} \alpha_{2}+e_{2} \geq 0\right]$

Let $U_{j}=$ utility from choice $y_{j}$. If

$$
\begin{aligned}
& U_{1}=\left(x^{\prime} \beta_{1}+y_{2} \alpha_{1}+e_{1}\right) y_{1} \\
& U_{2}=\left(x^{\prime} \beta_{2}+y_{1} \alpha_{2}+e_{2}\right) y_{2}
\end{aligned}
$$

Then $y_{1}=\arg \max U_{1}$ gives (11) and $y_{2}=\arg \max U_{2}$ gives (12).
To resolve the incoherency, let
$\left(y_{1}, y_{2}\right)=\arg \max U_{1}+U_{2}$.
Let $V\left(y_{1}, y_{2}\right)$ be $U_{1}+U_{2}$ given
$y_{1}, y_{2}$ and let $a=a_{1}+a_{2}$. Then

$$
\begin{aligned}
V(0,0) & =0 \\
V(1,0) & =x^{\prime} \beta_{1}+e_{1} \\
V(0,1) & =x^{\prime} \beta_{2}+e_{2} \\
V(1,1) & =x^{\prime}\left(\beta_{1}+\beta_{2}\right)+a+e_{1}+e_{2} \\
\left(y_{1}, y_{2}\right) & =\arg \max V\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
V(0,0) & =0 \\
V(1,0) & =x^{\prime} \beta_{1}+e_{1} \\
V(0,1) & =x^{\prime} \beta_{2}+e_{2} \\
V(1,1) & =x^{\prime}\left(\beta_{1}+\beta_{2}\right)+a+e_{1}+e_{2} \\
\left(y_{1}, y_{2}\right) & =\arg \max V\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

Is a special case of ordinary multinomial choice, general is $V(1,1)=x^{\prime} \beta_{3}+e_{3}$.

Is coherent if $e_{1}, e_{2}$ continuous.
$a>0$ increases the $\operatorname{prob}\left(y_{1}=y_{2}=1\right)$, choices are complements if $a$ is positive, substitutes if $a$ is negative.

Let $P_{y_{1}, y_{2}}=\operatorname{prob}\left(y_{1}, y_{2}\right)$.

$$
\begin{aligned}
& P_{11}(\theta \mid x)=\int_{-x^{\prime} \beta_{2}-a}^{\infty}\left(\int_{\max \left[-x^{\prime} \beta_{1}-a,-x^{\prime}\left(\beta_{1}+\beta_{2}\right)-a-e_{2}\right]}^{\infty} f\left(e_{1}, e_{2}\right) d e_{1}\right) d e_{2} \\
& P_{01}(\theta \mid x)=\int_{-\infty}^{-x^{\prime} \beta_{2}}\left(\int_{-\infty}^{\min \left(-x^{\prime} \beta_{1}-a, x^{\prime}\left(\beta_{2}-\beta_{1}\right)+e_{2}\right.} f\left(e_{1}, e_{2}\right) d e_{1}\right) d e_{2} \\
& P_{10}(\theta \mid x)=\int_{-\infty}^{-x^{\prime} \beta_{2}-a}\left(\int_{\max \left[-x^{\prime} \beta_{1}, x^{\prime}\left(\beta_{2}-\beta_{1}\right)+e_{2}\right]}^{\infty} f\left(e_{1}, e_{2}\right) d e_{1}\right) d e_{2} \\
& P_{00}(\theta \mid x)=\int_{-\infty}^{-x^{\prime} \beta_{2}}\left(\int_{-\infty}^{\min \left(-x^{\prime} \beta_{1},-x^{\prime}\left(\beta_{1}+\beta_{2}\right)-a-e_{2}\right.} f\left(e_{1}, e_{2}\right) d e_{1}\right) d e_{2}
\end{aligned}
$$

With $n$ iid draws, log likelihood is
$\sum_{i=1}^{n} y_{1 i} y_{2 i} \ln P_{11}\left(\theta \mid x_{i}\right)+\left(1-y_{1 i}\right) y_{2 i} \ln P_{01}\left(\theta \mid x_{i}\right)+$
$y_{1 i}\left(1-y_{2 i}\right) \ln P_{10}\left(\theta \mid x_{i}\right)+\left(1-y_{1 i}\right)\left(1-y_{2 i}\right) \ln P_{00}\left(\theta \mid x_{i}\right.$

Conclusions
Coherency is existence of a reduced form.
Necessary and sufficient conditions for coherency of simultaneous systems containing a binary choice equation were provided.

Coherency generally requires models to be triangular or recursive, similar to Heckman's linear model result, except nonlinearity permits the direction of causality to vary across observations.

Alternatively, coherency can be obtained by nesting the behavioral models that generate each equation separately into a single larger behavioral model that determines both, using the logic of McFadden's Random Utility Model.

