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y endogenous vector,
w covariates, unobservables, parameters
Structural model: y = H(y, w).
A model is defined to be coherent if, for
each w ∈ there exists a corresponding
unique value for y that satisfies the model.

Denote the unique y that corresponds
to each w by the reduced form
equation y = G(w), which must satisfy
G(w) = H [G(w),w].

1



Example y = (y1, y2), w = (α, e1, e2)
y1 = I (y2 + e1 ≥ 0)
y2 = αy1 + e2

Then

y1 = I (αy1 + e1 + e2 ≥ 0)
So y1 = 0, y2 = e2 if
0 = I (e1 + e2 ≥ 0), so e1 + e2 < 0

and y1 = 1, y2 = a + e2 if
1 = I (α+e1+e2 ≥ 0), so α+e1+e2 ≥ 0
Both y1 = 0 and y1 = 1 are solutions if
−a ≤ e1 + e2 < 0.
Neither y1 = 0 nor y1 = 1 will satisfy this
model if 0 ≤ e1 + e2 < −a.
This model is incoherent unless e1 + e2 is
constrained not to lie between zero and−a.
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Let y = (y1, y2),
y1 is a dummy endogenous
Provide necessary and sufficient
conditions for coherence of

(1) y1 = H1(y1, y2, w)
(2) y2 = H2(y1, y2, w)

for arbitrary functions H1 and H2,
where H1 can only equal zero or one.

Examples:
discrete endogenous regressor models,
regime shift models,
treatment response models,
sample selection models,
joint continuous-discrete demands,
simultaneous discrete choice models
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(1) y1 = H1(y1, y2, w)
(2) y2 = H2(y1, y2, w)

Theorem 1: Assume y1 ∈ {0, 1}. The sys-
tem of equations (1) and (2) is coherent iff
for some g

(3) H1[1, g(1, w),w] = H1[0, g(0, w),w]
(4) y2 = g(y1, w)

To prove, solve (2) to get (4), substitute
(4) into (1), and show incoherent whenever
H1[y1, g(y1, w),w] is not the same for both
values of y1. Required nondependence of
this expression on y1 shows severity of
coherence with a dummy endogenous
variable.
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Corollary 1: The general endogenous
selection model, in which y1 indexes
whether y2 is observed,

y1 = R(y2, w)
y2 = r(w)y1

is coherent iff R is independent of y2.

Proof: By (3) coherency requires
R[r(w),w] = R(0, w), so R(y2, w) = R(0, w).
No cohorent selection model can be
endogenous, where endogeneity is
defined as having the selection criterion
y1 depend on the observed outcome y2.

Coherence is possible using some other
notion of endogeneity, such as having y1
depend on the latent outcome r(w).
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Replace (1) and (2) with
(5) y1 = I [h(y1, y2, w)+ e1 ≥ 0]
(2) y2 = H2(y1, y2, w)
for some function h, where e1 ∈ w.
Define sy(w) = h[y, g(y, w),w].
Theorem 2. The system (5) and (2) is co-
herent iff y2 = g(y1, w) and either s0(w) =
s1(w), or e1 /∈ interval [−s0(w),−s1(w)].
s0(w) = s1(w) holds iff for some f
(6) y1 = I [ f [y2 + [g(0, w)− g(1, w)]y1, w]+ e1 ≥ 0
y2 = g(y1, w)

s0(w) = s1(w) holds iff for some φ and
some binary d(w)
(7) y1 = I [φ[(1− d(w))y2, w]+ e1 ≥ 0]
(8) y2 = g[d(w)y1, w]
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Applying Theorem 1, coherency requires
I [s0(w) + e1 ≥ 0] = I [s1(w) + e1 ≥ 0],
which holds if s0(w) = s1(w) (triangular),
or by limiting e1.

Theorem 2 shows that, with a binary
choice equation, must either restrict
error support (Dagenais 1997), or
make system triangular.

Two representation of triangular:
Generalize Blundell and Smith (1994):

(6) y1 = I [ f [y2 + [g(0, w)− g(1, w)]y1, w]+ e1 ≥ 0
(4) y2 = g(y1, w)

or generalize Heckman (1978):

(7) y1 = I [φ[(1− d(w))y2, w]+ e1 ≥ 0]
(8) y2 = g[d(w)y1, w]
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EXAMPLES:
Nonparam Dummy Endogenous Regressor

y1 = G1(y2, x, e1)
y2 = G2(y1, x)+ e2

For y1 discrete, Das (2001) estimates G2,
implicitly assuming coherency.
G2 can be conditional average outcome of
endogenous treatment y1.
By Theorem 1, coherency requiresG1[G2(y1, x)+
e2, x, e1] independent of y1.
By (6), a coherent model is
y1 = G1[y2 + [G2(0, x)− G2(1, x)]y1, x, e1)
y2 = G2(y1, x)+ e2
permits Das estimator for G2.
Another coherent is

y1 = G1[(1− d)y2, x, e1)
y2 = G2(dy1, x)+ e2
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Linear Dummy Endogenous Regressor

y1 = I [x β1 + y2α1 + e1 ≥ 0]
y2 = x β2 + y1α2 + e2

Heckman (1978): Coherent if α1 = 0 or
α2 = 0, triangular systems.
Blundell and Smith (1994) is

y1 = I [x β3 + y2α1 + y1γ 1 + e3 ≥ 0]
y2 = x β2 + y1α2 + e2
coherent if γ 1 = −α1α2. This is (4) and
(6) with f and g are linear.

Can let φ and g in (7) and (8) be linear.
Then get coherent

y1 = I [x β1 + (1− d)y2α1 + e1 ≥ 0]
y2 = x β2 + dy1α2 + e2
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Endogenous Regime Switching

y1 = I [x β1 + y2α1 + e1 ≥ 0]
y2 = x β2 + e2 + (x β3 + e3)y1

not coherent except under
severe restrictions such as α1 = 0.
Theorem 2 suggests two
coherent alternatives:

y1 = I [(x β1 + y2α1 + y1x β4 + e1 ≥ 0]
y2 = x β2 + e2 + (x β3 + e3)y1
is coherent if β4 = −α1β3,
and

y1 = I [x β1 + (1− d)y2α1 + e1 ≥ 0]
y2 = x β2 + e2 + (x β3 + e3)dy1

is coherent.
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Simultaneous Binary Choices
y1 = I [h1(y1, y2, w)+ e1 ≥ 0]
y2 = I [h2(y1, y2, w)+ e2 ≥ 0]

Are interrelated choices substitutes or com-
plements?
Dagenais (1997) coherence by imposing lin-
earity and restricting the support of (e1, e2).
By Theorem 2, coherent is
y1 = I [ f1[y2 − r(w)y1, w]+ e1 ≥ 0]
y2 = I [ f2(y1, w)+ e2 ≥ 0]

where
r(w) = I [ f2(1, w)+e2 ≥ 0]−I [ f2(0, w)+e2 ≥ 0]
is coherent for any f1, f2.
Another coherent is
y1 = I [φ1[(1− d)y2, w]+ e1 ≥ 0]
y2 = I [φ2[dy1, w]+ e2 ≥ 0]

for any φ1, φ2, and dummy d.
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An example is

(9) y1 = I [x β1 + (1− d)y2α1 + e1 ≥ 0]
(10) y2 = I [x β2 + dy1α2 + e2 ≥ 0]
d may be included in x .

An example d is let d = 1 if decide y1 first.
Signs of α1 and α2 indicate substitute or
complement. Can have opposite signs, e.g.,
if α1 > 0 and α2 < 0, then individuals hav-
ing d = /1, view the choices as substitutes.
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Let Py1,y2 = prob(y1, y2).

P11(θ | x) =
∞

−x β2−dα2

∞

−x β1−(1−d)α1
f (e1, e2)de1

P01(θ | x) =
∞

−x β2

−x β1−(1−d)α1

−∞
f (e1, e2)de1 de

P10(θ | x) =
−x β2−dα2

−∞

∞

−x β1
f (e1, e2)de1 de2

P00(θ | x) =
−x β2

−∞

−x β1

−∞
f (e1, e2)de1 de2

With n iid draws, log likelihood is
n

i=1
y1i y2i ln P11(θ | xi)+(1−y1i)y2i ln P01(θ | xi)+

y1i(1−y2i) ln P10(θ | xi)+(1−y1i)(1−y2i) ln P00(θ | xi
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Behavioral Models

Previous models ad hoc, though with
d sequential decision making.

Resolve incoherency by more fully
modeling behavior, e.g., modeling
choice among multiple equilibria.

Example: two simultaneous binary
decisions. Consider naive model

(11) y1 = I [x β1 + y2α1 + e1 ≥ 0]
(12) y2 = I [x β2 + y1α2 + e2 ≥ 0]
Resolve incoherency by McFadden
random utility modeling.
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(11) y1 = I [x β1 + y2α1 + e1 ≥ 0]
(12) y2 = I [x β2 + y1α2 + e2 ≥ 0]
Let Uj = utility from choice y j . If

U1 = (x β1 + y2α1 + e1)y1
U2 = (x β2 + y1α2 + e2)y2

Then y1 = argmaxU1 gives (11)
and y2 = argmaxU2 gives (12).
To resolve the incoherency, let
(y1, y2) = argmaxU1 +U2.
Let V (y1, y2) be U1 +U2 given
y1, y2 and let a = a1 + a2. Then
V (0, 0) = 0
V (1, 0) = x β1 + e1
V (0, 1) = x β2 + e2
V (1, 1) = x (β1 + β2)+ a + e1 + e2

(y1, y2) = argmax V (y1, y2).
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V (0, 0) = 0
V (1, 0) = x β1 + e1
V (0, 1) = x β2 + e2
V (1, 1) = x (β1 + β2)+ a + e1 + e2

(y1, y2) = argmax V (y1, y2).
Is a special case of ordinary multinomial
choice, general is V (1, 1) = x β3 + e3.
Is coherent if e1, e2 continuous.

a > 0 increases the prob(y1 = y2 = 1),
choices are complements if a is positive,
substitutes if a is negative.
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Let Py1,y2 = prob(y1, y2).

P11(θ | x) =
∞

−x β2−a

∞

max[−x β1−a,−x (β1+β2)−a−e2]
f (e1, e2)de1 de2

P01(θ | x) =
−x β2

−∞

min(−x β1−a,x (β2−β1)+e2

−∞
f (e1, e2)de1 de2

P10(θ | x) =
−x β2−a

−∞

∞

max[−x β1,x (β2−β1)+e2]
f (e1, e2)de1 de2

P00(θ | x) =
−x β2

−∞

min(−x β1,−x (β1+β2)−a−e2

−∞
f (e1, e2)de1 de2

With n iid draws, log likelihood is

n

i=1
y1i y2i ln P11(θ | xi)+(1−y1i)y2i ln P01(θ | xi)+

y1i(1−y2i) ln P10(θ | xi)+(1−y1i)(1−y2i) ln P00(θ | xi
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Conclusions

Coherency is existence of a reduced form.

Necessary and sufficient conditions for co-
herency of simultaneous systems contain-
ing a binary choice equation were provided.

Coherency generally requires models to be
triangular or recursive, similar to Heckman’s
linear model result, except nonlinearity per-
mits the direction of causality to vary across
observations.

Alternatively, coherency can be obtained by
nesting the behavioral models that gener-
ate each equation separately into a single
larger behavioral model that determines both,
using the logic ofMcFadden’s RandomUtil-
ity Model.
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