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For I.O. purposes, the promise of demand mod-
els in characteristic, rather than product space,
were in the possiblity of:

1. Analyzing own and cross price elasticities
in markets with a relatively large number
of goods.

2. Analysis of demand for new, or repositionned
old, goods, (a related problem is the anal-
ySis of consumer surplus generated by new
or repositionned old goods).



Typical Specification.

Variants date back to McFadden (1978) in
econometrics, and to Hotelling (1929) and Lan-
caster(1971) in theory. MicroBLP(2003)

Uz'j = 53 -+ Zkr:cjkzirﬂﬁk + Zklxjkyilﬂllcbl + SYE
where

5] = kajk)‘k —|— fj,

and some of the z's may be correlated with
the product specific unobservable £ (usually at
least price). In 1.O. often only product level
data available (BLP).

Conceptual Problem: It endows the utility func-
tion with an additive disturbance with the prop-
erty that its density, conditional on the realiza-
tions of the additive components for the other
products, is positive on the entire real line.
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Counterintuitive implications (troubling for eval-
uating the demand for and the consumer sur-
plus from new products).

e If we introduce a new product that is virtu-
ally identical to an old product the model
will insure that the demand for the two
products will exceed the old demand.

e As we increase the number of goods each
consumer’s utility grows without bound (re-
gardless of the observed characteristics of
those goods).

Also implies that the product space can never
“fill up” and markups cannot go to zero as we
increase the number of products.



Restatement of Problem. The dimension of
the characteristic space, K, is a function of the
number of products (contradicts the spirit of
the theory literature which focuses on demand
and product location in a given characteristic
space).

Advantages of Model with “Tastes for
Products”.

Largely computational. It insures the needed
probabilities are; (i) nonzero (at every 6), (ii)
have smooth derivatives (requires regularity con-
ditions ), (iii) are defined by integrals with sim-
ple limits of integration, and (iv) when aggre-
gated into shares can easily be inverted to ob-
tain £ (BLP).

Current Paper: Provide an estimation algorithm
with similar computational properties for a model
without the €5,5-




Finite Dimensional Models

Demand is determined by the location or “ad-
dress” of the products in the characteristics
space, and an exogenous distribution of con-
sumer preferences over this space. As the num-
ber of products increases, the product space
fills up, with products becoming very good sub-
stitutes for one another.

General version: the “ideal point” models (An-
derson, De Palma and Thisse, 1993) where

u;j = || X; — vi|| — a;pj,

where || -|| is some distance metric, which after
some rewriting is

uij = 28 — aipj + A

Two Assumptions.



e We only allow for one unobserved prod-
uct characteristic (opposite “extreme” of
standard model where there is a new un-
observed characteristic for each product)

e £ is a “vertical” characteristic in the sense
that every individual would prefer more of
it; i.e. we assume that \; > O for all 3.

Normalizations. Utility functions of each in-
dividual only identified up to an affine trans-
formation. Chose

e add —u; o to the utility of each choice so
that the utility of the outside option is zero

e divide each u;; by A; (so that the coeffi-
cient of £ is one for all consumers).



Then
uij = B — oipj + §j,
and
u; 0 = 0,

which is identical to the model in BLP without
their additive component with full support.

Since the £ is unobserved we still have a single
multiplicative normalization. Chose the mean
of a; = 1. This fixes the units of £ (in terms of
the mean of the marginal utilities of a dollar).

Estimation Issues.

Need

1. method of calculating the aggregate mar-
ket share function for fixed 6.



2. arguments that

(a) prove existence of a unique £ conditional
for any 0

(b) computes € vector from the market shares

3. a limiting distribution for the parameter
vector

The implications from (2b) and (3) imply that
the computational properties of the pure-characteristic
model are different then those of BLP.

Problem 1: Computing Market Shares.

Straightforward modification to the vertical model.
In the vertical model

ujj = 05 — oypj, 05 = xjB — oypj + &,



and U; 0 = 0.

Order goods in terms of increasing price. Good
j is purchased iff

5 — &

A (6, p) = max L < o
7 k>j (pg —pj)
5:— 8
< min—L—F_="A.(5,p)
k<j (pj — Pk)

So if the cdf of v is F'(-), then the market share
of product j is

sj(z,p, & 0, F) =

(F(Aj(z,p,8) — F(A(x,p, ) x 1|8, > A
K Dimensions.

Since Uj 5 = ZUJBZ — Q;p; + fj, conditional on g;
the model is once again a vertical model with
cut-off points in the space of «;, but now the



quality levels in those cut-offs depend on the
B;. Hence

sj(x,p,f;Q,F,G) =

X1 [Z](Zc,p,f,ﬂ) > é](x7p7§75)] dG(B))

where F'(-|3) is the cdf of a given g and G(-)
is the cdf of 3.

Integral which is typically not analytic. So we
use a simulation estimator to approximate it.

Problem 2a: EXistence and Uniqueness

Prove that there is in fact a unique & associ-
ated with each (0, s, F,G) and provide a way of
calculating it.



As in BLP we assume that s° is in the inte-
rior of the J-dimensional unit simplex. Let the
model’s prediction’s be

s(0,¢) = s(z,p, £ 0, F, G)

for any fixed F' and G. Now consider the sys-
tem of equations

s(0,8) = s°,

Given the normalization &g = 0O, our goal is to
show that for fixed 6 this system has exactly
one solution, £(6,s°), and to provide a way of
finding that solution.

Theorem. Suppose the discrete choice mar-
ket share function has the following properties:

1. Monotonicity. s; is weakly increasing and
continuous in §; and weakly decreasing in
§_j. Also VE_; there exists values of ; that



set s;(-) arbitrarily clost to zero, and values
that set it arbitrarily close to one.

2. Linearity of utility in &. If the & for every
good (including the outside good) is in-
creased by an equal amount, then no mar-
ket share changes.

3. Substitutes with Some Other Good. When-
ever s is strictly between 0 and 1, every
product must be a strict substitute with
some other good.

Then, for any F,G, 0, and for any market share
vector s that is strictly interior to the unit sim-
plex, there is a unique £ which solves the mar-
ket share equations.

Comments. It is easy to verify that our condi-
tions will be satisfed for any finite 8 as long as



F' (the distribution of «) has a density (w.r.t.
Lebesgue measure) which is positive on the
real line. Note that 8 need not have a den-
sity (and since we will be using simulation it
generally will not).

Problem 2b: Computing &.
We use 3 different methods for computing &.

BLP Generalized. The simplest is a general-
ization of the technique used in BLP. Assume

u;; = T — a;p; + & + oe€; 4,
’UJZ’,O — 0'662"0.
Note that if o¢ = 0 we are back to the pure

characteristics model, while if ¢ = 1 we have
the model in BLP.



If o > 0, we can multiply through by pue = 1/0¢
and

Al 9;(B,; 0, ue) F(da)G(dB).

where
exp |(z;B; — oip; + &) e
1+ 2321 exp [(zqB; — aipg + ﬁq)ﬂe].

g;(-) =

For fixed ue we can compute the inverse to
this model using the contraction mapping from
BLP (which converges at a geometric rte). As
e — oo these £(-) converge to the £(-) of the
pure characteristics model (uniformly in ).

Problem. Monte Carlo results in paper. ASs
e grows large we cannot compute the needed
exponents, and for ue which we can compute
the fixed point is not close enough to being
solved.



Alternative Contraction. Write the market
share as a function of £ as

5;(€5,6—4,0).
Now define the “element-by-element” inverse
for product j, r;(s;,£—;), as

sj(r;,§—;,0) = s;

The vector of element-by-element inverses, say
r(s,£€), when viewed as a function of £ takes
R — R’ ie.

§=r(s,¢"),

iIS a contraction, but with a modulus of one.

Problem. Because the modulus is one an it-
erative procedure for calculating & is not guar-
anteed to converge, and in Monte Carlo excer-
cises it often converged too slowly.



Fixed Point Homotopy. For each value of ¢,
we consider the value of ¢ that sets h(&,t, &)
to zero, where

h(€,t,80) = (1 —1t) (£ —&o) + 1% (§ —7(s,8)),
where t is a parameter that takes values be-
tween zero and one, and &g is an initial guess
for £ taken from applying BLP’'s method with
a large pe.

Call the value of £ that sets h(-) = 0, &(¢, &p).
For t =0, £&(t,&0) = &o. Fort =1, &(t,&) is
the fixed point that we are looking for. Homo-
topy: start at ¢t = 0 and slowly move ¢ toward
one. If t is moved slowly enough, then the
new solution “easy” to find (as by a Newton
method starting at the prior solution).

In our case we re-write the homotopy equation
h(&(t,&0),t,&0) = O as a functional equation,
and compute iterations as

&t 60) = —t) x o+ txr (s, 1t &0)) -



This is a strong contraction for t < 1. When
we converge at a fixed ¢t we increase ¢t and do it
again. As t — 1 this stops contracting. If iter-
ations gain you very little when the fixed point
is not yet solved to sufficient precision, switch
to the homotopy with Newton-type steps to
solve the system.

Actual Computations. Start with modifica-
tion to BLP technique. Then switch to alter-
native contraction, then to fixed point homo-

topy.
Problem 3: Limit Theorems.

Let
P"()=F xG"

and assume that our estimate of s° is obtained
from the choices of a sample of consumers of
Ssize n and therefore is denoted s™. We use



s™ and a simulation estimator to compute £(-)
from the equations

SJn — Sj(gaxapa : eapns)a

and then minimize a norm of
1 J

GJ(@,S”,P”S) — j Z zjgj(sn7xapaeapn8)'
j=1

The objective function, |G (8, s, P™%)||, has a
distribution determined by three independent
sources of randomness:

e from the draws on the vectors {¢;, z;},
e from the sampling distribution of s", and

e from the simulated distribution P"5.



Analogously there are three dimensions in which
our sample can grow: as n, as ns, and as J
grow large. The limit theorems use rates of
growth for each dimension that imply that all
sources of randomness effect the limit distri-
bution.

Heuristic argument.

£@0, s, P"°) =
5(07 507 PO) + {€(07 Sna Pns) T 5(97 307 Pns)} +

{5(0, so, P™) — &(0, SO, PO)}.

Recall that the £(-) are implicitly defined to the
solution to the following equation

SJn — 8j(£7x7p7 ; Q’PnS)’
which can be rewritten as

sp + " —e"(8) = 5;(&,2,p,; 6, PY),



where

IS the sampling error, and
e"®(0) =
s[¢(8, s°, P™), 0, P™*] — s[(6, s°, P™), 0, PY],

is the simulation error.

Now let

ds(¢, 0, P) 1
ae! '

H1(¢,0,P) = {

Note that H—1(.) is a J x J matrix, so its di-
mension is increasing as we increase J (as does

s).

Given our previous definitions and sufficient
smoothness we have



£(0, s, P") = ¢(0, s°, PO)+
H;1(0, s°, PO) {e" — e™5(0)} + r(0, s", P™),

where r(0, s, P™%) is the remainder term re-

sulting from our application of the mean value
theorem.

Consequently the Ilimit theorems work from

G (6, s", P™) = G (8, s°, PO)+

1 1
jz’Ho_l(H, sO, PY) {e" — 6”3(0)}+3z’r(9, s, P"™%).

Consistency gotten by providing conditions
under which



e the second and third terms in this equation
converge to zero in probability uniformly in
@ (insured by smoothness and rate condi-
tions on n and ns),

e an estimator which minimized |G (8, s9, PO)||
over § € © would lead to a consistent es-
timator of 6°. Nonstandard because as J
increases we change the behavior of each
ofthe y =1,...,J components of the sum.
Provide intuitive conditions which bound
1G (8, s9, P9)|| away from zero for ||§—6p]| >
k > 0 (do not require convergence to any-
thing at those 0).

Asymptotic Normality requires, in addition,
local regularity conditions and a limiting distri-
bution for

H; 10, s°, PO) {e" — e™%(6)}.



The rate needed for this limit distribution de-
pends on how the elements of the J x J ma-
trix H;1(9,s°, PO) grow, as J gets large. This
differs for the two classes of models, as will
become clear from two examples.

In the simple logit model, Uj 5 = 53 -+ €55 and
the required inverse is

£;(0) = (In[s;] —In[so]) — z;8 — ap;.

So
% _ 1

8sj S

Now consider how randomness in our s™ sam-
ples effects the estimate of £;(0). If s —s° = "
the first order impact of this randomness on
the value of our objective function at any 6
will be given by

%3

—1 0 —
HO (078 ) X €n = $|5:3

n
o X €,



which from above contains expressions like
1

n_—
Ja.
Sy

€

As J — oo, s; — 0 and the impact of any given
sampling error grows without bound. Thus to
insure that sampling error stays bounded as
J — oo we will need strict requirements on
how the variance in measurement error goes
to zero, i.e. how n increases, as J increases.

BLP is similar but there are two sources or
randomness whose impacts increase as J grows
large, sampling error and simulation error. Con-
sequently to obtain an asymptotically normal
estimator of the parameter vector from this
model both n and ns must grow at rate J2.

Practical Implication. In data sets with large
J one will have to use many simulation draws
before one can expect to obtain an accurate



estimator whose distribution is approximated
well by a normal with finite variance.

Vertical Model. Then Uj; = 5j — Q;Pj, 5j =
r;B8 + &; and u;g = 0. Recall then that if F(-)
is the distribution of «;, the market share of
good j3,9=1,...,J—11s

s; =F(Aj)—F(Ajtr1), sj=F(Ay).

Now the derivative matrix needed to analyze
the effect of the simulation and sampling errors
is of the form

0S ; Os;
0&p

= f(A g) — f( J-|-1)

0§p 8§p ’

1 1
= f(4;) + f(Aj41)
Pj — Pj—1 Pj4+1 — Pj




None of these elements tend to zero as J —
oo (if anything we expect these elements to
grow large as J grows large). Consequently
to obtain an asymptotically normal estimate of
the parameter vector in the vertical model both
n and ns need only grow (at most) at rate J
(and maybe slower than that depending on the
price process). That is we should not need as
many simulation draws, to obtain reasonable
parameter estimates from the vertical model.

Computational Comparison. Trade off

e The number of simulation draws needed
to get accurate estimates of the inverse,
and hence of the moment conditions, must
grow at rate J2 in the model with a taste
for products, while it need grow at most at
rate J in the pure characteristics model.



e Second the contraction mapping used to
compute the inverse is expected to con-
verge at a geometric rate for the model
with tastes for products, but not for the
pure characteristics model, and we have
good reason to worry that the inversion
for the pure-characteristic model will take
more time.

Initial Monte Carlos.

Will deal with two issues

e Compare implications of different ways of
computing pure characteristics model

e Compare impact of simulation error in BLP
to that in the pure characteristics model.



Computing the Pure Characteristic
Model.

Vertical model has analytic inverse (or almost
S0). So here we use

uij = 0; + oxvizx; — (0. * pj)

where

In(oy) = oprip; 6; = Bo + Bzzj + &

The consumer-specific random terms (v, V)
are distributed standard normal (so that «; is
log normal, with a normalized mean.) Base
case: x variable is drawn as twice a uniform
(0,1) draw that is specific to the firm plus 1/2
a uniform (0,1) draw that is common to all
firms in @ market. £ is drawn as a uniform on
(-0.5,0.5). Price, p, isset as p; = 659'/20. Note
that p is a function of § and ¢ is a function of &,
so that p and & are correlated in the simulated
datasets.



Calculating ¢

Table provides example markets of 5 products.
The first column of each table gives the “true”
answer, the second column gives the “exact”
(non-approx.) inverse and the remaining columns
give the random coefficients logit approxima-
tion at different values of u. The first two
panels of the table show the results without
simulation error — each calculated inverse and
share uses exactly the same 5000 draws used
to create the orginal shares. The last panel
uses a simulation of 250 draws to calculate
shares.

e the “exact” inverse is able to nearly exactly
reproduce the true ¢'s, and this conclusion
is independent of whether we have simula-
tion error (see panel C)



e the approximation with scale factor u =1
are unable to even reproduce the order of
the &’'s, but take only just over 1% of the
computer time the exact calculations took.

e we have to move to uc = 50 before we
reproduce the order of the §’s but then the
approximation does do quite well; at least
for the first two panels. However

— explue] ~ 5.2 x 1021 and the compute
time for this approximation is now just
one-half of what it would be under the
exact calculation.

— Once simulation error is introduced it
has more of an impact on the ue = 50
approximations then on the homotopy
(as we should have expected).



Examples of Calculating §
Using Different Methods

Approx* | Approx | Approx
True “Exact” u=1 u=10 | o =>50
A. Results With No Simulation Error.
01 2.9896 2.9896 3.0818 3.0150 | 3.0360
02 3.2142 3.2142 2.0859 3.1869 | 3.2637
03 3.5618 3.5618 3.1296 3.5968 | 3.6201
04 4.0433 4.0433 4.1301 4.1010 | 4.1048
05 4.1013 4.1013 2.6780 | 4.0552 | 4.1577
Relative Time: 1.0000 0.0112 0.0987 | 0.4456
B. An Example Which Uses 250 Simulation Draws.

01 2.7627 2.7703 3.4262 2.9119 | 2.8984
P, 3.4540 3.4773 3.5727 3.6775 | 3.7288
03 3.5703 3.5943 3.0197 3.7750 | 3.7958
04 3.7310 3.7592 -1.4011 | 3.4720 | 3.9165
05 3.7644 3.7938 4.1594 3.9948 | 4.0194

* This is BLP.




e Tables 2,3, & 4 compare exact/approximate
pure characteristic and BLP parameter es-
timates. Table 2 & 3 data consists of 20
markets with a small number of products
(distributed uniformly between [2,...,10]).
Table 4 has a large number of products
(100) and a small number of markets (5).
All tables use 500 simulation draws. Still
need to do comparisons in terms of elas-
ticities and welfare measures.

e Table 2. For this data design the RCL does
quite well, though the ue one needs to use
depends on the variance in &.

e Table 3. Use of BLP with an estimated
o does much worse, at least in terms of
coefficients.

e Table4. The RCL application does notice-
able worse, and BLP does quite badly.
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Table 2

Monte Carlo Results: Base Specifications

(1) (2) (3) (4)
Method RCL HTopy RCL HTopy
Scale (u): 30 00 50 00
& = U(—%,2) U(—%,%z) U(-1.5,1.5) U(-1.5,1.5)
oz (= 1) 1.04 1.03 1.24 1.26
(0.04) (0.03) (0.06) (0.06)
op (= 1) 1.00 0.98 1.02 1.02
(0.01) (0.01) (0.03) (0.03)
Bo (= 2) 2.06 2.00 2.34 2.33
(0.05) (0.05) (0.10) (0.09)
B (=1) 0.99 1.00 1.04 1.05
(0.01) (0.01) (0.02) (0.03)

The estimates are means across 100 simulated datasets.
Estimated standard deviations of the mean estimates
are given in parentheses. The homotopy estimates took
on the order of 10 times as long to compute.



Table 3: Results from RC-Logit Estimates

True (1) (2)

£ = U(—%,2) U(-1.5,1.5)

Oz 1 1.14 1.64
(0.04) (0.08)

op 1 1.03 1.09
(0.01) (0.03)

Bo 2 2.19 2.79
(0.06) (0.12)

By 1 1.00 1.03
(0.01) (0.03)

Scale, u 00 34.08 15.50
(3.31) (1.98)

© (Median) 00 17.81 4.67




Table 4: Example of Runs on a Dataset
with a Large Number of Products

Parameter Homotopy RCL Approx BLP

oz (= 1) 0.931 0.976 0.819
op (= 1) 1.006 0.926 0.885
By = (2) 2.265 1.548 2.694
Br = (1) 0.957 0.985 -0.173
Scale, u 00 20* 0.858

*In the random coefficients logit approximation, the
scale was initially set to 20. For some combinations of
parameter values and markets, this caused numeric
problems and the scale in those cases was halved until
the numeric problems went away. In a few cases, a
scale as low as 2.5 was necessary.



Second Issue: Number of Simulation
Draws.

For monte carlo tractability use for BLP

where

0; = xjB + &,
B8 = (=5,1), X is standard normal. R is the
number of simulation draws, and the “observed”
market shares are set to their expected value
at the true parameter values. Computation
of the inverse shares follows BLP, but we do

not use a variance reduction (importance sam-
pling) scheme of sort used in that paper.

Use for pure characteritic model the vertical
model with variance in observed shares gen-
erated by small samples of consumers rather
than from simulation error in the predicted shares.

u;j = 0 — OpA;pj, (1)
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where

0j = ;8 +¢&;
where the two components of £ are a constant
and a uniform drawn from (0,2), 8 = (1.5,1),
¢; is uniform on (—1,1), p = §2, \; is drawn
from the unit exponential distribution, so that

6, (set equal to one in the experiments) is the
mean disutility of a price increase.

Table 5:

e Bias at low values of R relative to J. If
J = 100 the bias does not seem to go away
even when R = 1000.

e At low values of R (say R = 50) the vari-
ance does not seem to go down as J in-
creases. The sampling variance should go
down, but for a fixed number of simulation



draws we expect the impact of simulation
error to be larger the larger is J. Hence
it seems like the simulation variance dom-
inates the model variance for low numbers
of simulation draws.

Table 6.

e NO apparent inconsistency in the estimates
anywhere in the table (even when J = 200
and n = 50).

e for fixed n the variance decreases in J.
However for small n the decrease is almost
imperceptible, while with large n the vari-
ance declines at very close to the rate of
V/J, which is the rate we would expect if
simulation had no impact on the estimates
at all.



To Come.

e Comparisons of BLP to pure-characteristics
when pure-characteristics is truth.

e Comparisons of BLP to pure-characteristics
model when both are wrong — the truth
IS generated from a characteristics model
with two unobserved characteristics with
random coefficients.

Both sets of comparisons compare

e OwWn and cross price elasticities.

e estimates of consumer surplus

e price indices.



Table 5:
Monte Carlo Estimates for the Random Coefficients
Logit
True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Simulation # of Products (J)
draws (R) 10 50 100
10 1.194 1.218

(0.982) (0.512)  *
[.031] [0.016]

50 1.025 1.039 1.241
(0.645) (0.311) (0.495)
[0.020] [0.010] [0.016]
100 0.982 1.013 1.037
(0.674) (0.271) (0.209)
[0.021] [0.009] [0.007]
500 0.098 1.008 1.015
(0.633) (0.255) (0.181)
[0.002] [0.008] [0.006]
10J 0.082 1.008 1.018
(0.674) (0.255) (0.181)
[0.014] [0.008] [0.006]
J2 0.082 1.008 1.018
(0.674) (0.244) (0.163)
[0.021] [.008] [.016]

Notes: Simulated Standard Errors (empirical standard
deviations across the repititions) in (-) and Simulated
Standard Error of the Estimated Mean in [-].
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Table 6 (Vertical Model;

True Value of the Parm is 1)
1000 Monte Carlo Repetitions

# Consumer
Draws (n)

10

# of Products (J)

25

50

100

200

50

1.023
(0.494)
[0.016]

1.022
(0.373)
[0.012]

1.011
(0.349)
[0.011]

0.997
(0.321)
[0.010]

1.013
(0.302)
[0.010]

100

1.005
(0.426)
[0.014]

1.010
(0.303)
[0.010]

1.005
(0.257)
[0.008]

1.002
(0.244)
[0.008]

1.009
(0.217)
[0.007]

500

0.993
(0.371)
[0.012]

0.098
(0.223)
[0.007]

1.001
(0.176)
[0.006]

1.005
(0.142)
[0.005]

1.007
(0.123)
[0.004]

1000

1.01
(0.361)
[0.011]

0.99
(0.227)
[0.007]

1.00
(0.162)
[0.006]

1.00
(0.118)
[0.004]

1.00
(0.097)
[0.003]

10J

1.018
(0.440)
[0.014]

1.014
(0.253)
[0.008]

1.008
(0.175)
[0.006]

0.098
(0.120)
[0.004]

0.096
(0.085)
[0.003]

0.998
(0.423)
[0.014]

0.998
(0.227)
[0.007]

1.000
(0.153)
[0.005]

1.002
(0.105)
[0.003]

1.000
(0.074)
[0.002]

0.997
(0.364
[0.011]

0.999
(0.214)
[0.007]

0.999
(0.141)
[0.005]

1.001
(0.101)
[0.003]

0.997
(0.072)
[0.002]

Notes: Simulated Standard Errors (empirical standard
deviations across the repititions) in (-) and Simulated
Standard Error of the Estimated Mean in [-].
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The Bootstrap vs. the Asymptotic
Vvariance

Not much difference in variance estimates,

Mean Monte Carlo Mean Asymp.

Model Parm Std. Dev. Std. Dev.
R.C. Logit 1.010 0.2574 0.2201
Pure VVert 1.002 0.1720 0.1719

Nor is there much difference in asymptotic dis-
tribution. See pictures.



