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Introduction

That IQ is a highly heritable trait has been widely reported.
Rather less well-known are such recent reports in major scientific
journals that the heritability of controllable life events is 53% among
women and 14% among men (Saudino et al., 1997), while the heritabilities of
inhibition of aggression, openness to experience, and right-wing
authoritarianism are respectively 12%, 40%, and 50% (Pedersen et al., 1989;
Bergeman et al., 1993; McCourt et al., 1999). It seems that milk and soda
intake are in part heritable, but not the intake of fruit juice or diet
soda (de Castro,.1993).

These numbers are parameter estimates obtained in structural
modeling of measures taken on pairs of siblings -- prototypically identical
(monozygotic) and fraternal (dizygotic) twins, reared together and reared
apart. The models are of the random effects type, in which variances and
covariances of an observed trait -- a phenotype -- are specified in terms
of latent factors -- genetic and environmental -- whose prespecified cross-
twin correlations differ by zygosity and rearing status. Estimation is by
maximum likelihood, with chi-square testing, and confidence intervals
(occasionally based on empirical likelihood). Heritability, the key
parameter of interest, is the proportion of phenotypic variance that is
attributable to genetic variance.

For these studies, various issues arise. Those to be touched on here
include: identification by theoretical restrictions, nonnegativity

constraints, pretest estimation, conditioning of the design matrix,



multivariate analyses, and the objectives of structural modeling.

For present purposes, I focus on the SATSA project -- the Swedish
Adoption/Twin Study of Aging which, beginning about 1984, assembled a
sample of adult twin pairs -- approximately 200 MZT (identical twins reared
together), 200 DZT (fraternal twins refed together), 100 MZA (fraternal
twins reared apart), and 150 DZA (fraternal twins reared apart).

Only same-sex pairs are included. The subjects have been assessed in person
and via mail questionnaires on repeated occasions, with varying sample
sizes, on a wide range of traits, some cognitive, others concerning
personality, temperament, and recollections of childhood upbringing.
Serious concerns about the representativeness of the samples and of the
reliability and validity of the measures are expressed in Goldberger &
Kamin (1998) and Kamin & Goldberger (2001). Here those concerns are

suppressed in order to focus on the modeling.

Primary Model

The specification of the primary SATSA model is captured as follows.
Consider a typical individual, whose phenotype (observable trait value) Y
is determined as
(1) Y Ta;, G +t+a,D +a3 8 +a, U.

Here G is the additive genetic factor, D is the nonadditive (dominance)
genetic factor, S is the shared environment factor, and U is the nonshared
environment factor. (The distinction between the two genetic factors will
be clarified later). Assume the factors are uncorrelated, and standardize
all variables to have zero means and unit variances, so the phenotypic

variance is



(2) v(y) = al2 + a22 +a,? +a,2=1

The individual is paired with his/her sibling, whose phenotype is
determined as

(3) Y = a, G' +a, D' +ag S +a, U'.

Across the sibling pair, all factor covariances are assumed to be zero
except perhaps for those that link the sibs’ additive genetic, nonadditive
genetic, and shared environment factors. So the phenotypic covariance for
sibs is

(4) C(Y,Y') = C(G,G') a,;2 + C(D,D’) a,? + C(5,8) a,° .

Referring to identical and fraternal twins (MZs and DZs), reared together

and apart (T and A), those factor covariances are assumed to be

c(G,G’') = 1 for MZs, = 1/2 for DZs

(5) c(D,b’) = 1 for MZs, = 1/4 for DZs
Cc(s,s’) = 1 for MZTs and DZTs, = 0 for MZAs and DZAs
c(u,u’) = 0,

see Figure 1. With all variables standardized, covariances are also
correlations, and will be lab€lled as such.

It is convenient to set out this display of variables:

(6) Xy X, Xgq
1. MZT 1 1 1
2. DZT 0.5 0.25 1
3. MZA 1 1 0
4. DZA 0.5 0.25 0

Here x,, xX,, X3 refer to the additive genetic, nonadditive genetic, and
shared environment factors. The values assigned to those wvariables

correspond to the correlations assumed above: The additive genetic factor



correlates 1 for MZs and 0.5 for DZs, the nonadditive genetic factor
correlates 1 for MzZs and 0.25 for DZs, the shared environment factor
correlates 1 for twins reared together and 0 for those reared apart, and
the nonshared environment factor correlates not at all.

So, the primary SATSA model has this linear specification for the
population phenotypic correlations:
(n p=Xp _
where p = (p; p, Pg P’ X = (x; X, X3), B = (B, B, Bg)', the Bs being the
squares of the corresponding as -- that is the components of phenotypic

variance. More explicitly,

(8) I 1 1 1 B,
py | =] 0.5 0.25 1 B,
Ps 1 1 0 B,
Py 0.5 0.25 0

In this model, the sum B,+ B, gives heritability. The nonshared environment
component of variance follows as a02 =By =1- (B + B, + B3)-

With 4 moments expressed in terms of 3 parameters, there is 1
equality restriction, namely

Py — P3 T Py T Py
which says that the difference between MZ and DZ correlations is the same
whether the twins are reared together or apart. Also with all 4 Bs assumed
nonnegative, there is an inequality restriction

p3/2 2 py 2 pg/4,

the DZA correlation should lie between one-fourth and one-half of the MZA
correlation. To the extent that B, is small, the same might hold also for
the DZT & MZT correlatioms.

Given random samples from each of the 4 groups, one might take



observed phenotypic correlations r = (r; r, r, r,)’, interpret them as
estimates of the population correlations, and estimate B8 = (B8,, B,, B3)' by
running the LS linear regression of the 4 x 1 vector r on the 4 x 3 matrix
X, thus minimizing

zi=i (x; = py) %
A more appropriate procedure, feasible WLS, would take account of the fact
that the variance of a sample correlation coefficient depends on the
population correlation coefficient and the sample size, and thus choose
values for the B-estimates to minimize

zi:i wi (g = )%
where wi = (1 — riz)z/ni, with ni being the number of observations in the
i-th twin group.

Most convenient is to work with Fisher'’s z-transforms of correlations

coefficients,

z = (1/2) logl(1 + r)/(1 — r)],

¢ = (1/2) logl(1 + p)/(1 — p)1,
relying on the fact that z is approximately N(¢, 1/n). This method, which
I'11l label ZLS, chooses values for the B-estimates to minimize

21:? ng(z; = £5)7%
which is a simple, albeit nonlinear, calculation. With 4 observations and 3
parameters, the minimized criterion provides an asymptotic xz(l) statistic
of model fit, which tests the equality restriction p;, — pg = p, — p,-

I have oversimplified the procedure of the SATSA group in several

respects. They do not standardize the observed variables, but rather work

with variances and covariances, taking ﬂo as a free parameter. (In that

case, the parameter estimates are rescaled ex post to report the



proportional allocation of variance). They do not use ZLS but rather
(Gaussian) ML . Often, they take as data 8 phenotypic variances -- the
between-family and within-family components for each of the 4 twin groups.
This gives 3 additional degrees of freedom for model fit, which are
essentially allocated to the hypothesis that the four phenotypic variances
are the same, an interesting hypothesis, but one that has little to do with
the behavior-genetic theory. Sometimes they work with 12 observed
phenotypic variances and covariances -- for each twin group a variance for
twin A, a variance for twin B, and the covariance. This gives 4 additional
degrees of freedom for model fit, which are effectively allocated to
equating the phenotypic variances for twins A and B in each twin group.
That labelling of the twins was arbitrary, so those 4 additional degrees of
freedom are in effect testing whether their own random assignment of the
labels was in fact random, a hardly interesting hypothesis and one that has
nothing éo do with the behavior-genetic theory. In economics, Ashenfelter &
Krueger (1994), working with twins but not with behavior genetics, also act
as if an arbitrary labelling of Twin A and Twin B were meaningful.
Typically, the observed traits have been residualized on age and
gender before the modelling exercise begins. But occasionally age is
introduced into the model itself as a covariate. This adds 2 parameters
(the population age variance and the trait-on-age slope), and adds 12
observed moments -- the covariance of twin A’s trait with age, the
covariance of twin B’s trait with age, and the variance of age -- fo; each
of the 4 twin groups. (Not only is the A:B labelling arbitrary, but the
twins have the same age). So Pedersen et al. (1992) could report a total of

18 degrees of freedom for model fit, while the core model, in correlational



terms, had only 1. Perhaps an analogous situation -- success in fitting
features of the data that have no particular relevance to the core theory

-- occurs on occasion in economics?

Genetical Theo;y

At this point, it should be apparent that the molecular content of
this line of research is, to put it mildly, minimal. It might be said that
all the genetical theory exploited is comprised of the integers 0, 1, 2, 4.
The genetic content of the model, after all, consists of the ratios 1/2 and
1/4 for DZ twins relative to MZ twins. The distinction between the two
genetic factors arises from the distinction between conditional expectation
functions and best linear predictors. Consider a gene with tﬁo alleles, m
and M. At this locus, an individual may be mm, mM/Mm, or MM. Score these as
Z = 0, 1, 2, and consider the distribution of phenotypes for persons of
each score. (See Figure 0). If E(YlZ) is linear -- the expected trait for

heterozygotes (Z = 1) is halfway between those for homozygotes (2 = 0 and Z

= 2) -- then only the additive genetic factor is present. If E(YIZ) is
nonlinear -- for example if the expected trait for Z = 2 is the same as for
Z = 0 -- then a nonadditive genetic factor is present. In that case, the

BLP(Y|2) reflects the additive factor, and the deviations E(Y|Z) — BLP(Y|2)
reflect the nonadditive factor. Only the additive factor contributes to
similarity between parent and child, while both factors contribute to
similarity between siblings. The Appendix sketches why DZs correlate 1/2
and 1/4 on the two genetic factors. Remarkably, the argument for a single
locus extends directly to multiple loci.

Observe how many possibilities have been ruled out a priori in the



primary SATSA model to obtain identification. Covariance between an
individual’s genotype and environment is ruled out, which runs counter to
conventional wisdom. There is no allowance for the possibility that the
separated twins were placed into similar environments. The specified
correlations 1/2 and 1/4 for C(G,G’') are valid under random mating; they
will be different if there is assortative mating for the trait. Most
critically, there is no allowance for MZTs to have more similar
environments than DZTs, that is no allowance for C(S,S’) to differ by
zygosity. This neglect is crucial, as can be seen by imagining that C(S,S’)
= 0.5 for DZTs, in which case the shared environment factor would be partly
tracking the additive genetic factor. SATSA attributes all excess
phenotypic similarity of MZs over DZs to their excessive genetic
similarity.

It is quite ironic that the assumptions of the SATSA model are
primarily about social behavior rather than about biological processes.
From a skeptical point of view, the nonadditive genetic factor -- a
statistical construct -- is simply a device that gives more flexibility to
the genetic side of the story, producing a combined genetic factor that can

correlate somewhere between 0.50 and 0.25 for DZs as compared with MZs.

Secondary Model

Occasionally, the SATSA group adopts an alternative model, one which
drops the nonadditive genetic factor, and introduces a "selective
placement" or "correlated environment" factor that correlates perfectly
across twins of all types. In terms of the tabular display above, replace

X, with a new variable X4 whose value is 1 for all 4 twin groups, and



correspondingly replace B, with B,- 1In this secondary model

Py 1 1 1 B,

(9) P, | =105 1 1 B4
Ps 1 1 0 Bs
Py 0.5 1 0

Here allowance is made for environmental similarity to differ between
reared-together and reared-apart twins, thus meeting the objection that the
separated twins may not have been fully separated. (This secondary model is
formally the same as one in which the variable x,* = 1 for twins reared
apart, 0 for twins reared together, replaces x,, and B,* = B, + B; replaces
B .

As the SATSA group points out, it is not possible to allow for both
nonadditive genetic variance and distinct environmental similarities by
rearing type because of the perfect collinearity that would result:

X, =3 x;, — 2 x,. (Of course, the requirement that B, and B, * be
nonnegative is not the same as a requirement that B, and B, be
nonnegative) .

Evidently, the design matrix in (9) spans the same space as that in
(8), so the secondary model again implies the single equality constraint,

Py — P3 T Py — Py-

However, with all its Bs assumed nonnegative, the relevant inequality is
now

(10) p3/2 < pg < py

the DZA correlation should lie between 1/2 and 1 times the MZA correlation.
So this model attracts SATSA when observed DZ correlations run ﬁigh

relative to the MZ correlations. Or they may choose retroactively after

observing that one of the formulations would have some more negative



10

parameter estimates.
We might describe SATSA’s approach as following a specific-to-
specific strategy. Can examples of that also be found in the economic

literature?

Agnostic Model
A specification that formally subsumes both the primary and secondary

models is

IR 1 0 1 6,
(11) Py | = 0 1 1 b,
Ps 1 0 0 0q
Py 0 1 0
Here 6, = B, + B,, 06, = 0.5 B, + 0.25 B,, 63 = By- This design matrix

spans the same space as the previous ones did, and therefore implies the
same single equality constraint p, — p; = p, — p, - But even with all 6's
required to be positive, it allows the DZA correlation to be free relative
to the MZA correlation. Adopting it would avoid the need to follow the
model choice procedure. This reparameterization would also take away some
of the pretenée of profound genetic-theoretical underpinnings to the SATSA

analyses.

Skeptical Model

As mentioned above, a crucial feature of the SATSA models is that
they make no allowance for environmental resemblance to differ for MZTs and
DZTs, as a result say of more similar treatment by parents and peers. A
simple alternative, that still has only 3 parameters, would allow for an

additive genetic factor, an MZT shared environment factor, and a DZT shared
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environment factor. Thus

I 1 1 0 6,

(12) p, | =05 o 1 5,
Ps 1 0 0 54
Py 0.5 0 0

The single equality restriction is now

(13) Py = P3/2.

We may suppose that all 3 s are nonnegative, and presumably also §, > 6§,
(environmental similarity greater for MZTs than DzZTs). This specification,

as far as I know, has not been used by behavior geneticists.

Estimation

It is rare in practice for SATSA to actually report estimates of
either the full primary or secondary models set out above. Almost
inevitably, one or another of the three factors will be dropped and a
reduced model fitted and reported. Either one of the estimated fs was
"nonsignificant" or their algorithm -- which evidently precludes negative
estimates -- found the nonnegativity constraint to be binding, and so set
the estimate at zero. That is, only reduced models are estimated and
reported. This is the general-to-specific phase of their strategy.

In particular, throughout the SATSA publications, one rarely --
perhaps 5% of the time -- finds traits for which both additive and
nonadditive genetic variance components are estimated. It is not hard to
see why. While introducing separated twins formally identifies B8,, B,, and
B;., the identification is tenuous. Treating the 4 x 3 X matrix of (8) as if
it were 4 observations, the correlation (about zero) between x1 and x2 is

0.97. The high collinearity carries over to ZLS and ML estimation,
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producing unreliable and negatively correlated estimates of B, and B,. The
implied estimate of ﬂl + ﬂ2 -- heritability -- might well be reliable.
Pedersen, Plomin, Nesselroade, & McClearn (1992) cast their lot with the
additive side; Plomin, Pedersen, Lichtenstein, & McClearn (1994), analyzing
the same cognitive traits, cast their lot with the nonadditive side.

Had the Agnostic model been used instead, in almost all cases the
SATSA group would have stayed with a full 3-parameter model for the
correlation coefficients. The condition §, > #, > 0 is equivalent to
B, + B, > 0.5 B, + 0.25 B, > 0, that is to 0.5 B, + 0.75 B, > 0, and almost
invariably, even when unconstrained estimates of one of those f8s would be
negative, the corresponding estimates of the fs would have been properly
ordered.

One virtue of the ZLS method is that it does not constrain the
parameter estimates to be nonnegative, and indeed for many of the SATSA
articles, produces negative estimates where SATSA would report zeros. That
permits tests of the nonnegativity constraints, which are never reported by
SATSA. A curiosity of the SATSA analyses is that they almost always
formulate the model in terms of path coefficients (our as) rather than the
variance components (our fBs, which are squared as). As a result, they
report ML standard errors for the estimated path coefficients, which do not
translate into standard errors for the parameters of primary interest,
namely the proportions of variance explained. The ZLS procedure routinely
produces standard errors for the estimated 8's.

For a few traits selected from SATSA publications, Table 1 gives
estimates of the several models.

More recently, behavior geneticists occasionally report confidence
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intervals using the (profile) likelihood function. Their source article is
Neale & Miller (1997), which among other things, recommends discarding any
negative portion of the interval, that is, left-truncating the interval at
zero.

Empirical implementation of the SATSA models is not a straightforward
task, but involves a sequence of choices and stopping rules. Nothing about
the path that led to their final variant is accounted for in the
statistical inference they engage in. Thus the standard errors and
confidence intervals they report are merely nominal, ignoring the chain of
tried and discarded models that were encountered en route. The pretesting
issues associated with such model selection are not raised in the behavior-
genetic reports. My impression from the econometric and statistical
literature is that under pretesting nominal standard errors are
misleadingly low, so actual precision is overstated. Is the present context
special in that there is no split between focus and secondary parameters,
and the constraints are inequalities? Some Monte Carlo runs will be useful.

If the SATSA group insist on the requirement that all Bs be
nonnegative, it is because of their insistence on interpreting them as
components of variance. But there is nothing in principle that precludes
factors that contribute to dissimilarity rather than similarity of twins.
Perhaps negative coefficient estimates should not serve to reject a
particular variant, or perhaps the frequent occurrence of negative
estimates should serve as an indication that their general behavior-genetic

approach is wrong?
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Multivariate Models

Having analyzed dozens of observed traits separately in the same
manner, the SATSA group has moved on to multivariate analyses, in which
several phenotypes are modeled jointly in terms of latent factors. So now
one is concerned with accounting for observed covariance, as well as
variance, of traits. For example, Lichtenstein & Pedersen (1995) analyze
five observable traits jointly -- life events, loneliness, perceived
support, quantity of relationships, and health -- for which they have
measures on their twin pairs. (See Figure 2).

The structure here may be captured as follows (dropping the
nonadditive genetic factor). For an individual,

(14) y =A;, g+ BA; s+ A, u,

where the observed vector y is 5 x 1, and the latent factors g, s, u are 5
X 1 (with identity wvariance matrices), while the parameter matrices A, Ay,
and A, are at most lower triangular. The individual is paired with his/her
twin (identified by primes) for whom

(16) y' = A, g’ +A; s’ + A, u’.

The familiarvassumptions are made about cross-twin correlations among the
latent factors. ML estimation of the parameter matrices then produces a
decomposition of the 5 x 5 V(y) matrix into its genetic and environmental
constituents. This leads Lichtenstein & Pedersen to conclude, e.g., that of
the 0.17 correlation between perceived support and health among women, 0.15
is due to genetic factors, and 0.02 to nonshared environment.

Macroeconomists will recognize the Cholesky structure of the model.
The ordering of the elements of y is apparently arbitrary. The behavior

geneticists credit Martin & Eaves (1977) for the start of multivariate twin
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modeling. But Behrman, Taubman, & Wales (1977) empirically implemented such
a model, one with a natural recursive ordering: education to initial

occupation to current occupation to earnings.

Objectives

This stream of research represents structural modeling in the sense
that the equations represent causal links rather than (mere) empirical
associations. The regressions among observable variables are derived in
terms of more fundamehtal parameters. The parameters of interest are not
those of the conditional expectation of one observed variable given others.
However, the requirement that one of the structural parameters may change
while others remain uncﬁanged has not been invoked by the behavior
geneticists.

It is fair to ask what the objectives of these human behavior
genetics exercises are. What does one learn by learning that genetic
factors account for say 50% of the variance of a certain trait? There may
be a popular impression that to the extent that a trait is heritable, it is
not malleable, that is not subject to change by environmental intervention.
That impression is incorrect: Goldberger (1979), Maccoby (2001). Nor do the
SATSA group make such a claim; they appear content to view the variance
allocation as an end in itself. I recall only one article in which a policy
recommendation was offered. Because perceptions of job climate have a high
genetic component, Hershberger et al. (1994) recommend that firms should
"place some value on selecting employees on the basis of [their] reported
perceptions of climate from past jobs." The authors hasten to add that

firms may already be doing just that.
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Note: This paper derives from joint work with Leon J. Kamin.
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Appendix

Consider a single locus at which there are two possible alleles m and
M, so at individuals are either mm, mM/Mm, or MM. Let Z = "the score"
denote the number of capital Ms an individual has at that locus, so Z = 0,
1, 2. For simplicity suppose that the two alleles are equally likely, so
that in equilibrium, Prob(2=0) = 1/4, Prob(z=1) = 1/2, Prob(Z=2) = 1/4.
Assuming that all phenotypic variance is genetic, for each Z there is a
phenotype Y, which we can code as
Y, = —a Y, Db Y, T a .
Then E(Y) = b/2 and V(YY) = a?/2 + b%/4. The two pieces of V(Y) are the
additive and nonadditive genetic variances respectively. If b = 0, Y is
linear in Z, the heterozygote’'s phenotype is halfway between those of the
homozygotes, that is all genetic variance is additive. If a = 0, there is
no linear component in Y(Z), the two homozygotes’ phenotypes are the same,
that is all genetic variance is nonadditive.
Denote the scores of husband, wife, and child by H, W, S respectively.
It’'s easy to verify the tabulations of Pr(SlH,W) below, and then E(YlH,W)
for the two extreme cases. The final column gives the probabilities for
each H,W combination assuming random mating.

Conditional probabilities Expected phenotypes

HW S=0 Ss=1 §8§=2 Ifb=0 Ifa=0 Pr(HW
00 1 0 0 -a 0 1/16
01 1/2 1/2 0 -a/2 b/2 2/16
02 0 1 0 0 b 1/16
10 1/2 1/2 0 -a/2 b/2 2/16
11 1/4 1/2 1/4 0 b/2 4/16
12 0 1/2 1/2 a/2 b/2 2/16
20 0 1 0 0 b 1/16
21 0 1/2 1/2 a/2 b/2 2/16
2 2 0 0 1 a 0 1/16

Conditional on H,W, any two (non-MZ) sibs are drawn independently, so
across all families, C(Y,Y’), the covariance of their phenotypes is the
same as the variance of the sibship means.

For the b = 0 case, where E(Y) = 0 and V(Y) = a?/2, we calculate

VIE(Y|H,W)] = (a?/16) (1 + 4/2 + 1) = a%/4 ,
which is one-half of the additive variance. For the a = 0 case, where
E(Y) = b/2 and V(YY) = b2%/4, we calculate
E(E2(Y|H,W)] = (b2/16) (1 + 4/2 + 1 + 1) = b*(5/16),
so
VIE(Y|H,W)] = b%(5/16) — (b/2)? = b?/16,
which is one-fourth of the nonadditive variance.

The same conclusion follows when Y(Z) has both additive and
nonadditive components, when allele probabilities are unequal, when
there is random variation in Y for given Z, when multiple loci are
introduced. See Falconer & Mackay (1996, Chapter 9). When Y(Z) is not
deterministic, then one extreme case has E(Y|Z) linear so BLP(YlZ) =
E(le), and the other has BLP(Y]Z) horizontal with E(Y|Z) not constant.



Table 1 . 19
Fitting SATSA Models & Variants to Cognitive Abilities

Observed = = =  ~=-c----eo--- Parameter Estimates ---------------
Correlations Chi- Primary Secondary Agnostic Skeptical

rl r2 r3 r4 squ bl b2 b3 b1l b4 b3 tl t2 t£3 dl d2 ds3

First Principal Component

Observed .80 .22 .78 .32 -
SATSA model: from their ML 1.94 0 .81 0
from my ZLS 1.77 0 .80 0
Primary/Secondary/Agnostic 0.60 .31 .48 -.01 1.04 -.24 -.01 .80 .28 -.01
Skeptical 0.56 .77 .03 -.16
Synonyms
Observed .81 .24 .58 .29 -
SATSA model: from their ML 2.99 0 .63 .14
from my ZLS 2.92 0 .65 .15
Primary/Secondary/Agnostic 2.69 .14 .52 .13 .91 -.26 .13 .66 .20 .13
Skeptical 0.00 .58 .23 -.05
Names and Faces Immediate
Observed .31 .24 .15 .18 -
SATSA model: from their ML 2.15 .32 0 0
: from my ZLS 1.99 .29 0 0]
Primary/Secondary/Agnostic 0.19 .46 -.27 .10 .05 .14 .10 .19 .16 .10
Skeptical 0.74 .22 .09 .13
Names and Faces Delayed
Observed .39 .25 .42 .15 -
SATSA model: from their ML 0.61 .42 O 0
: from my ZLS 0.53 .40 © 0
Primary/Secondary/Agnostic 0.37 .33 .04 .04 .40 -.02 .04 .38 .18 .04
Skeptical 0.27 .39 .00 .06

Guide to Table 1.

Pedersen et al. (1992), for 14 cognitive ability traits, report correlations in Table 2,
and ML parameter estimates in Table 3 (obtained from variance-covariance matrices) for their
preferred reduced version of the primary model. The observed correlations given above are,
along with the sample sizes, all the input data available to me.

I apply their ML estimates to get fitted correlations, and an associated chi-square
statistic using the ZLS criterion. Then I re-estimate by ZLS to provide a baseline. The
numbers are reassuringly close.

Then I fit the full Primary, Secondary, and Agnostic models, by ZLS. All give the same
chi-square; they differ in violations of the nonnegativity constraints. Finally I fit the
Skeptical model, by ZLS.

Degrees of freedom for model fit are the number of correlations (4) minus the
number of parameters estimated (3 for full models, 2 or 1 for reduced versions).

Fitted correlations can be calculated from the parameter estimates.
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