Wealth Accumulation, Credit Card Borrowing, and

Consumption-Income Comovement

David Laibson, Andrea Repetto, and Jeremy Tobacman

Current Draft: May 2002

1 Self control problems

- People are patient in the long run, but impatient in the short run.
- Tomorrow we want to quit smoking, exercise, and eat carrots.
- Today we want our cigarette, TV, and frites.

Self control problems in savings.

- Baby boomers report median target savings rate of 15%.
- Actual median savings rate is 5%.
- 76% of household's believe they should be saving more for retirement (Public Agenda, 1997).
- Of those who feel that they are at a point in their lives when they "should be seriously saving already," only 6% report being "ahead" in their saving, while 55% report being "behind."
- Consumers report a preference for flat or rising consumption paths.

Further evidence: Normative value of commitment.

- "Use whatever means possible to remove a set amount of money from your bank account each month before you have a chance to spend it."
- Choose excess withholding.
- Cut up credit cards, put them in a safe deposit box, or freeze them in a block of ice.
- "Sixty percent of Americans say it is better to keep, rather than loosen legal restrictions on retirement plans so that people don't use the money for other things."
- Social Security and Roscas.
- Christmas Clubs (10 mil. accounts).

An *intergenerational* discount function introduced by Phelps and Pollak (1968) provides a particularly tractable way to capture such effects.

Salience effect (Akerlof 1992), quasi-hyperbolic discounting (Laibson, 1997), present-biased preferences (O'Donoghue and Rabin, 1999), quasi-geometric discounting (Krusell and Smith 2000):

$$1, \beta \delta, \beta \delta^2, \ \beta \delta^3, \ \dots$$

$$U_{t} = u(c_{t}) + \beta \delta u(c_{t+1}) + \beta \delta^{2} u(c_{t+2}) + \beta \delta^{3} u(c_{t+3}) + \dots$$

• For exponentials:
$$\beta = 1$$

 $U_t = u(c_t) + \delta u(c_{t+1}) + \delta^2 u(c_{t+2}) + \delta^3 u(c_{t+3}) + ...$

• For hyperbolics: $\beta < 1$

$$U_{t} = u(c_{t}) + \beta \left[\delta u(c_{t+1}) + \delta^{2} u(c_{t+2}) + \delta^{3} u(c_{t+3}) + \dots \right]$$

Outline

- 1. Introduction
- 2. Facts
- 3. Model
- 4. Estimation Procedure
- 5. Results
- 6. Conclusion

2 Consumption-Savings Behavior

- Substantial retirement wealth accumulation (SCF)
- Extensive credit card borrowing (SCF, Fed, Gross and Souleles 2000, Laibson, Repetto, and Tobacman 2000)
- Consumption-income comovement (Hall and Mishkin 1982, many others)
- Anomalous retirement consumption drop (Banks et al 1998, Bernheim, Skinner, and Weinberg 1997)

2.1 Data

Statistic	m_e	se_{m_e}
% borrowing on 'Visa'? (<i>% Visa</i>)	0.68	0.015
borrowing / mean income (<i>mean Visa</i>)	0.12	0.01
C-Y comovement (<i>CY</i>)	0.23	0.11
retirement C drop (<i>C drop</i>)	0.09	0.07
median 50-59 $\frac{wealth}{income}$	3.88	0.25
weighted mean 50-59 $\frac{wealth}{income}$ (<i>wealth</i>)	2.60	0.13

- Three moments on previous slide (*wealth*, % Visa, mean Visa) from SCF data. Correct for cohort, household demographic, and business cycle effects, so simulated and empirical hh's are analogous. Compute covariances directly.
- C-Y from PSID:

$$\Delta \ln(C_{it}) = \alpha E_{t-1} \Delta \ln(Y_{it}) + X_{it} \beta + \varepsilon_{it} \quad (1)$$

• C drop from PSID

$$\Delta \ln(C_{it}) = I_{it}^{\mathsf{RETIRE}} \gamma + X_{it}\beta + \varepsilon_{it} \qquad (2)$$

3 Model

- We use simulation framework
- Institutionally rich environment, e.g., with income uncertainty and liquidity constraints
- Literature pioneered by Carroll (1992, 1997), Deaton (1991), and Zeldes (1989)
- Gourinchas and Parker (2001) use method of simulated moments (MSM) to estimate a structural model of life-cycle consumption

3.1 Demographics

 Mortality, Retirement (PSID), Dependents (PSID), HS educational group

- 3.2 Income from transfers and wages
 - Y_t = after-tax labor and bequest income plus govt transfers (assumed exog., calibrated from PSID)
 - $y_t \equiv \ln(Y_t)$. During working life:

$$y_t = f^W(t) + u_t + \nu_t^W \tag{3}$$

• During retirement:

$$y_t = f^R(t) + \nu_t^R \tag{4}$$

3.3 Liquid assets and non-collateralized debt

- $X_t + Y_t$ represents liquid asset holdings at the beginning of period t.
- Credit limit: $X_t \ge -\lambda \cdot \overline{Y}_t$
- $\lambda = .30$, so average credit limit is approximately \$8,000 (SCF).

3.4 Illiquid assets

- Z_t represents illiquid asset holdings at age t.
- Z bounded below by zero.
- Z generates consumption flows each period of γZ .
- Conceive of Z as having some of the properties of home equity.
- Disallow withdrawals from Z; Z is perfectly illiquid.
- Z stylized to preserve computational tractability.

- 1. House of value H, mortgage of size M.
- 2. Consumption flow of γH , minus interest cost of ηM , where $\eta = i \cdot (1 \tau) \pi$.
- 3. $\gamma \approx \eta \implies$ net consumption flow of $\gamma H \eta M \approx \gamma (H M) = \gamma Z$. We've explored different possibilities for withdrawals from Z before..

3.5 Dynamics

- Let I_t^X and I_t^Z represent net investment into assets X and Z during period t
- Dynamic budget constraints:

$$X_{t+1} = R^X \cdot (X_t + I_t^X)$$

$$Z_{t+1} = R^Z \cdot (Z_t + I_t^Z)$$

$$C_t = Y_t - I_t^X - I_t^Z$$

• Interest rates:

$$R^X = \begin{cases} R^{CC} & \text{if } X_t + I_t^X < \mathbf{0} \\ R & \text{if } X_t + I_t^X > \mathbf{0} \end{cases}; \qquad R^Z = \mathbf{1}$$

• Three assumptions for $\left[R^X, \gamma, R^{CC}\right]$:

Benchmark:	[1.0375,	0.05,	1.1175]
Aggressive:	[1.03,	0.06,	1.10]
Very Aggressive:	[1.02,	0.07,	1.09]

3.6 Time Preferences

• Discount function:

$$\{1, \beta\delta, \beta\delta^2, \beta\delta^3, ...\}$$

- $\beta = 1$: standard exponential discounting case
- $\beta < 1$: preferences are qualitatively hyperbolic
- Null hypothesis: $\beta = 1$

$$U_t(\{C_{\tau}\}_{\tau=t}^T) = u(C_t) + \beta \sum_{\tau=t+1}^T \delta^{\tau} u(C_{\tau})$$
 (5)

In full detail, self t has instantaneous payoff function

$$u(C_t, Z_t, n_t) = n_t \cdot rac{\left(rac{C_t + \gamma Z_t}{n_t}
ight)^{1-
ho} - 1}{1-
ho}$$

and continuation payoffs given by:

$$\beta \sum_{i=1}^{T+N-t} \delta^{i} \left(\prod_{j=1}^{i-1} s_{t+j} \right) (s_{t+i}) \cdot u(C_{t+i}, Z_{t+i}, n_{t+i}) \dots + \beta \sum_{i=1}^{T+N-t} \delta^{i} \left(\prod_{j=1}^{i-1} s_{t+j} \right) (1-s_{t+i}) \cdot B(X_{t+i}, Z_{t+i})$$

- n_t is effective household size: adults+(.4)(kids)
- γZ_t represents real after-tax net consumption flow
- s_{t+1} is survival probability
- $B(\cdot)$ represents the payoff in the death state

3.7 Computation

• Dynamic problem:

 $\max_{\substack{I_t^X, I_t^Z\\ s.t.}} u(C_t, Z_t, n_t) + \beta \delta E_t V_{t,t+1}(\Lambda_{t+1})$

- $\Lambda_t = (X_t + Y_t, Z_t, u_t)$ (state variables)
- Functional Equation:

 $V_{t-1,t}(\Lambda_t) = \{s_t[u(C_t, Z_t, n_t) + \delta E_t V_{t,t+1}(\Lambda_{t+1})] + (1-s_t) E_t B(\Lambda_t)\}$

- Solve for eq strategies using backwards induction
- Simulate behavior
- Calculate descriptive moments of consumer behavior

4 Estimation

Estimate parameter vector θ and evaluate models wrt data.

- $m_e = \mathsf{N}$ empirical moments, VCV matrix $= \Omega$
- $m_s(\theta) =$ analogous simulated moments
- $q(\theta) \equiv (m_s(\theta) m_e) \Omega^{-1} (m_s(\theta) m_e)'$, a scalarvalued loss function
- Minimize loss function: $\hat{\theta} = \arg\min_{\theta} q(\theta)$
- $\hat{\theta}$ is the MSM estimator.
- Pakes and Pollard (1989) prove asymptotic consistency and normality.
- Specification tests: $q(\hat{\theta}) \sim \chi^2(N \# parameters)$

5 Results

• Exponential
$$(eta=1)$$
 case:
 $\hat{\delta}=.857\pm.005; \quad q\left(\hat{\delta},1
ight)=512$

• Hyperbolic case:

$$\left\{ egin{array}{ll} \hat{eta} = .661 \pm .012 \ \hat{\delta} = .956 \pm .001 \end{array}
ight. q\left(\hat{\delta}, \hat{eta}
ight) = 75
ight.$$

(Benchmark case: $\left[R^X, \gamma, R^{CC} \right] =$ [1.0375, 0.05, 1.1175])

Punchlines:

- β estimated significantly below 1.
- Reject $\beta = 1$ null hypothesis with a t-stat of 25.
- Specification tests reject both the exponential and the hyperbolic models.

Benchmark Model	Exponential	Hyperbolic	Data	Std err
Statistic:	$m_s(1, \hat{\delta}) \ \hat{\delta} = .857$	$egin{aligned} m_s(\hateta,\hat\delta)\ \hateta=.661\ \hat\delta=.956 \end{aligned}$	m_e	se_{m_e}
% Visa	0.62	0.65	0.68	0.015
mean Visa	0.14	0.17	0.12	0.01
CY	0.26	0.35	0.23	0.11
Cdrop	0.16	0.18	0.09	0.07
wealth	0.04	2.51	2.60	0.13
$q(\hat{ heta})$	512	75		

Robustness

Benchmark:	$\left[R^X, \gamma, R^{CC}\right] =$	[1.0375, 0.05, 1.1175]
Aggressive:	$\left[R^X, \gamma, R^{CC}\right] =$	$[1.03, \ 0.06, \ 1.10]$
Very Aggressive:	$\left[R^X, \gamma, R^{CC}\right] =$	$[1.02, \ 0.07, \ 1.09]$

	Benchmark	Aggressive	Very Aggressive
$\frac{exp}{\hat{\delta}}$.857 (.005)	.930 (.001)	.923 (.002)
$q\left(\hat{\delta}, 1 ight)$	512	278	64
hyp $\left[\widehat{\delta}, \widehat{eta} ight]$		[.944, .815] (.001),(.014)	[.932, .909] (.002) , (.016)
$q\left(\hat{\delta},\hat{eta} ight)$	75	45	33

Aggressive	Exponential	Hyperbolic	Data	Std err
Statistic:	$m_s(1, \hat{\delta}) \ \hat{\delta} = .930$	$egin{aligned} m_s(\hateta,\hat\delta)\ \hateta=.815\ \hat\delta=.944 \end{aligned}$	m_e	se_{m_e}
% Visa	0.44	0.65	0.68	0.015
mean Visa	0.08	0.16	0.12	0.01
CY	0.10	0.22	0.23	0.11
Cdrop	0.08	0.14	0.09	0.07
wealth	2.50	2.61	2.60	0.13
$q(\hat{ heta})$	278	45		

V. Agg.	Exponential	Hyperbolic	Data	Std err
Statistic:	$m_s(1, \hat{\delta}) \ \hat{\delta} = .923$	$egin{aligned} m_s(\hateta,\hat\delta)\ \hateta=.909\ \hat\delta=.932 \end{aligned}$	m_e	se_{m_e}
% Visa	0.58	0.65	0.68	0.015
mean Visa	0.12	0.15	0.12	0.01
CY	0.14	0.19	0.23	0.11
Cdrop	0.12	0.14	0.09	0.07
wealth	2.53	2.66	2.60	0.13
$q(\hat{ heta})$	64	33		

6 Conclusion

- Structural test using the method of simulated moments rejects the exponential discounting null.
- Specification tests reject both the exponential and the hyperbolic models.
- Quantitative results are sensitive to interest rate assumptions.
- Hyperbolic discounting does a better job of matching the available empirical evidence on consumption and savings.