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Abstract

A statistical problem that arises in several Þelds is that of estimating the features of an unknown dis-
tribution, which may be conditioned on covariates, using a sample of binomial observations on whether
draws from this distribution exceed threshold levels set by experimental design. One application is de-
structive duration analysis, where the process is censored at an observation test time. Another is referen-
dum contingent valuation in resource economics, where one is interested in features of the distribution of
values placed by consumers on a public good such as endangered species. Sample consumers are asked
whether they would vote for a referendum that would provide the good at a cost speciÞed by experimen-
tal design. This paper provides estimators for moments and quantiles of the unknown distribution in this
problem.
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1 Introduction

A statistical problem that arises in several Þelds is that of estimating the features of an unknown distribu-
tion, which may be conditioned on covariates, using a sample of binomial observations on whether draws
from this distribution exceed threshold levels set by experimental design. Three applications illustrate the
problem:
Bioassay - Find the distribution of survival times until the onset of an abnormality in laboratory animals

exposed to an environmental hazard. The animals are sacriÞced at times determined by experimental design,
and tested for the abnormality. An observation consists of a vector of covariates, a test time, and an indicator
for the test result.
Destructive Testing - Find the distribution of speeds at which air bags fail to protect passengers in

automobile crashes. At speeds selected by experimental design, drive cars into a barrier and determine
whether a dummy occupant is injured. An observation consists of covariates, a test speed, and an indicator
for injury.
Survey research with Shadow Effects - Find the distribution of a household economic variable such as

wealth. Subjects are asked if their economic variable exceeds a test value chosen by design. An observation
consists of covariates, a test value, an indicator for the response. Follow up queries are shadowed by the
framing effect of the Þrst bid. This shadowing effect is common in unfolding bracket survey questions on
economic variables, and on stated willingness to pay (WTP) for economic goods.1

Given a set of covariates, when the experimental design is randomized with a strictly positive test value
density and mild regularity conditions, we propose consistent estimators for conditional (on covariates)
moments of the unknown distribution. We also provide root n consistent estimators for the case where the
unknown distribution depends on covariates through a single index location shift. In addition, we provide
estimators of conditional quantiles of the unknown distribution.

1McFadden (1994) provides references and experminatal evidence that responses to follow up test values can be biased.
There are additional issues of the impact of framing of questions on survey responses, particularly anchoring to test values,
including the initial test value; see Green et al. (1998) and Hurd et al. (1998). The data generation process may then be a
convolution of the target distribution and a distribution of psychometric errors. This paper will ignore these issues and treat
the data generation process as if it is the target distribution. The difÞcult problem of deconvoluting a target distribution in the
presence of psychometric errors is left for future research.
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2 Model SpeciÞcation

The goal is estimation of conditional moments or quantiles of a latent, unobserved random scalarW , condi-
tioned on a vector of observed covariates X . The conditional cumulative distribution function ofW , denoted
G�� � x�, is unknown but assumed to be smooth.
A test value � is set by a randomized experimental design or natural experiment. The value � is a

realization of a random variable V� drawn from either a known or unknown conditional density h�� � x�
(we consider both cases). It is assumed that W is conditionally independent of V , conditioning on X
(consistent with experimental design).
DeÞne Y to equal one in the event that W exceeds V , and zero otherwise, so Y � I �W � V � where

I ��� is the indicator function. The observed data consist of a random sample of realizations of covariates X ,
test values V , and outcomes Y . The framework is similar to random censored regressions (with censoring
point �), except that for random censoring we would observe � for observations having � � � , whereas in
the present context we only observe y � I �� � ��.
Given a function r��� x�, the goal is estimation of the conditional moment �r �x� � E[r�W� X� � X �

x] for any chosen x in the support of X . Of particular interest are the moments based on r�W� X� � Wk

for integers k� In addition to moments we may also be interested in quantiles. Let �q�x� denote the q�th
quantile of W given x �
If the conditional distribution of W given X � x is Þnitely parameterized, then those parameters can

generally be efÞciently estimated by maximum likelihood (corresponding to ordinary binary choice model
estimation, e.g., logit or probit models), thereby yielding efÞcient estimates for conditional moments �r �x�
and quantiles �q�x� deÞned in terms of those parameters.
Assuming that the conditional distribution ofW given X is not Þnitely parameterized, we propose semi-

parametric and nonparametric estimators for these moments and quantiles. The semiparametric estimators
assume that the conditional mean ofW is Þnitely parameterized. The nonparametric estimators only require
smoothness assumptions, but suffer from the usual curse of dimensionality. We provide limit normal distri-
butions for these estimators. The semiparametric estimators all converge at the rate that would be obtained
if draws � were observed.
In the example of willingness-to-pay models,Wi would be an individual i�s unknown willingness to pay

for a resource, Vi would be a bid that was posed to the individual, and Xi would be observable characteristics
of the individual (such as age, income level, geographic location, and political party afÞliation). Objects of
interest might include the average willingness-to-pay for the resource among individuals in certain locations
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and income levels, or for voting models, the median willingness-to-pay among subsets of likely voters.
The next section provides results that will form the basis for the proposed estimators. Later sections

provide limiting distributions.

3 IdentiÞcation

Make the following assumptions.

ASSUMPTION A.1. The covariate vector X has compact support X � Rd . The latent scalar W
has an unknown, twice continuously differentiable conditional c.d.f. G�� � x�� with a compact support
[	0�X�� 	1�X�]. The test variable V is continuously distributed with a known or unknown positive prob-
ability density function h�� � x� having compact support [
0�X�� 
1�X�] such that 
0�X� � 	0�X� and

1�X� � 	1�X�� The variables W and V are conditionally independent, given X . Let Z � �X� V� Y �.

DeÞne m��� x� by
m��� x� � E[Y �V � �� X � x]

and let m�1 be the inverse of the function m with respect to its Þrst element (which exists on the support of
W given assumption A.1), so if t � m��� x� then � � m�1�t � x� for � � [	0�X�� 	1�X�].

ASSUMPTION A.2. The function r��� x�, chosen by the researcher, is regular, meaning that it is con-
tinuous in ��� x� for all � and x on their supports, and for each x is twice continuously differentiable in �.
Let � be a known constant that is in the support of W . The moment �r �x� exists, where �r �x� is deÞned by

�r �x� � E[r�W� X� � X � x]�

DeÞne r ���� x� � �r��� x��� and sr �z� by

sr �z� � r��� x�� r
���� x�[y 	 1�� � ��]

h�� � x� �

For any regular function r , Theorem 1 below provides an expression for the conditional mean �r�x�. Also
provided is the q�th conditional quantile of W given x , denoted �q�x��
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THEOREM 1. Let Assumptions A.1 and A.2 hold. Then

�r �x� � E[sr �Z� � X � x]�
�q�x� � m�1�1	 q � x�

PROOF OF THEOREM 1. First observe that, given the conditional independence of W and V�

m��� x� � E[Y �V � �� X � x] � 1	 G�� �x��

Next, by deÞnition, �r �x� � 
�1�x��0�x� r��� x�[�G���x���]d� . Integration by parts yields

�r �x� � r��� x�[G�� �x�	 1�� � ��]��1�x����0�x� 	
�1�x�

�0�x�

r ���� x�[G�� �x�	 1�� � ��]d��

Therefore, collecting terms we Þnd that

�r �x� � r��� x��
�1�x�

�0�x�

r ���� x�[E�Y �V � �� X � x�	 1�� � ��]d�

�
�1�x�

�0�x�

E[sr �Z��V � �� X � x�h�� � x�d�

� E[sr �Z� � X � x]�

where the last equality uses the assumptions regarding the supports of W and V , and the law of iterated
expectation. The conditional quantile expression follows from G�� �x� � 1	 m��� x�.

Theorem 1 provides the basis for the nonparametric moment estimators described in the next section,
and for some semiparametric and quantile estimators. Essentially, based on Theorem 1, �r �x� may be
estimated as the Þtted values of either a parametric or nonparametric regression of sr�z� on x .
Corollary 1 below will be used to obtain faster converging moment and quantile estimators, based on

stronger assumptions.

ASSUMPTION A.3. The latent W satisÞes W � g�X� �0� 	 �, where g is a known function, �0 � �

is a vector of parameters, and � is a disturbance that is distributed independently of V� X� with unknown,
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twice continuously differentiable c.d.f. G���� and compact support [a0� a1] that contains zero. DeÞne
U � g�X� �0� 	 V . Let ��U� denote the unconditional probability density function of U . The support of
U contains the interval [a0� a1].

DeÞne s�r �x� u� y� by

s�r �x� u� y� � r [g�x� �0�� x]�
r �[g�x� �0�	 u� x][y 	 1�u � 0�]

��u�
�

COROLLARY 1. Let Assumptions A.1, A.2, and A.3 hold. Then

��u� � E[h�g�X� �0�	U� � U � u]
G��u� � E�Y � U � u�
�r �x� � E[s�r �x�U� Y �]

�q�x� � g�x� �0�	 G��1�1	 q�

PROOF OF COROLLARY 1. Having ��u� � E[h�g�X� �0�	 u�] follows from the deÞnitions of U , � ,
and h� Also from deÞnitions, Y � I �� � U� which implies that G��u� � E�Y � U � u�. Next, following
the same steps as in Theorem 1 we have

�r�x� �
a1

a0
r [g�x� �0�	 u� x][�G��u��u]du

� r [g�x� �0�� x]�
a1

a0
r �[g�x� �0�	 u� x][G��u�	 1�u � 0�]du

�
a1

a0
E[s�r �x�U�Y � � U � u]��u�du � E[s�r �x�U� Y �]

Finally, the quantile expression follows from G�W � X � x� � 1	 G�[g�X� �0�	 W ].

The advantage of Corollary 1 over Theorem 1 for estimation is that in Corollary 1, �r�x� and ��u�
are expressed as unconditional expectations and so can be estimated using ordinary sample averages (given
an estimate of � ). Similarly, using Corollary 1 estimation of the quantiles �q�x� given � only requires
estimation of the one dimensional regression G��u� � E�Y � U � u�, instead of the high dimensional
m��� x�.
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4 Estimators

Assume that a random sample Zi � �Xi � Vi � Yi � for i � 1� � � � � n is observed, where Vi is a realization of V ,
Yi is a realization of Y , and Xi is a realization of X . Theorem 1 and Corollary 1 suggest a number of possible
estimators for �r �x�� To describe these estimators, let �E denote an estimated expectation. An unconditional
estimated expectation just denotes the sample average, while a conditional estimated expectation denotes a
nonparametric regression.

4.1 Nonparametric Estimators

Let Assumptions A.1 and A.2 hold.
If the experimental design, and hence the density function h� is known, then sr�zi � can be constructed

for each observation i , and�r �x�may then be consistently estimating by nonparametrically regressing sr �z�
on x . This Þrst estimator is ��1r �x� � �E[sr �z� � X � x]

Note that ��1r �x� depends on the design density h. One could replace h�� � x� with an estimate �h�� � x�
(using, e.g., kernel density estimation) in the deÞnition of sr�z�. Call the result�sr �z�. An estimator of �r �x�
that can be used when h is unknown is then���

1r �x� � �E[�sr �z� � X � x].
An estimator that does not entail knowing or estimating the density h is the following. Recall that

m��� x� � E[Y �V � �� X � x]� Let �m��� x� be a consistent estimator of m, that is, a nonparametric
regression of y on x� � , so �m��� x� � �E[Y �V � �� X � x]
Let a0 and a1 be known or estimated constants such that a0 � 	0�x� and a1 � 	1�x�. Then, based on the
proof of Theorem 1, a consistent estimator of �r �x� is given by

��2r �x� � r��� x�� a1

a0
r ���� x�[�m��� x�	 1�� � ��]d��

where the integral may be evaluated numerically. We give some more details later about the construction of
the estimators.
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4.2 Conditional Mean Estimation

This section considers estimation of the conditional mean of the unobservedW�when this conditional mean
is Þnitely parameterized. This structure permits estimation at rate root n, instead of the slow convergence
of the estimators described in the previous section.
For this section, continue to let Assumptions A.1 and A.2 hold, but assume also that E�W � X �

x� � ��x� �0� for all x � X , where ��x� �0� is a known function and �0 � B is an unknown vector
of parameters. The function ��x� �� equals �r �x� for r��� x� � �. Whatever other moments may be
considered, it is likely that the conditional mean function � would be of interest as well.
Assume the identiÞcation condition Pr[E�W � X � x� �� ��X� ��] � 0 for all � �� �0� � � B. It

follows from Theorem 1 that

��x� �0� � E
�
Y 	 1�V � 0�
h�V � X� � X � x

�
This suggests the conditional mean estimator ��x����� where�� is deÞned by

�� � arg min
��B

1
n

n�
i�1

�
Yi 	 1�Vi � 0�
h�Vi � Xi �

	 ��Xi � ��
�2���Zi ��

where ���z� is a known or estimated positive weight function chosen for efÞciency. The estimator �� is
an ordinary nonlinear weighted least squares, and so ��, and therefore also ��x���� is root n consistent
and asymptotically normal with a standard limiting distribution, under standard regularity conditions. No
nonparametric plug in functions are required. This estimator might not be efÞcient, since it violates the
principle of ancillarity due to its dependence on the design density h�
If h is not known, one could replace h�V � X� with an estimate �h�V � X� in the deÞnition of ��.

The resulting estimator would then take the form of an ordinary two step estimator with a nonparametric
Þrst step (the estimation of h) which, with regularity, will be root n consistent and asymptotically normal.
This estimator is equivalent to the estimator for general binary choice models proposed by Lewbel (2000),
though Lewbel provides other extensions, such as to estimation with endogenous regressors.

4.3 Semiparametric Estimators

This section discusses rate root n estimation of arbitrary conditional moments based on Corollary 1. For
these estimators we let Assumption A.3 hold, in addition to Assumptions A.1 and A.2. It will be convenient
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to Þrst consider the case where �0 in Assumption 3 is known, implying that the conditional mean of W is
known up to an arbitrary location (since � is not required to have mean zero). A special case of known �0
is when x is empty, i.e., estimation of unconditional moments of W , since in that case we can without loss
of generality take g to equal zero.

4.3.1 Estimation With Known �

Assume that �0 is known. Considering Þrst the case where the design density h is also known, for a given
u deÞne the sample average ���u� by

���u� � 1
n

n�
i�1
h[g�Xi � �0�	 u]�

Then, based on Corollary 1, we have the estimator

��3r �x� � r [g�x� �0�� x]� 1
n

n�
i�1

r �[g�x� �0�	Ui � x][Yi 	 1�Ui � 0�]���Ui �
�

This estimator is computationally extremely simple, since it entails only sample averages. Special cases of
the estimator��3r �x� were proposed by McFadden (1994) and by Lewbel (1997).
Let ���u� be an estimator of ��u� that does not depend on h. For example ���u� could be a (one

dimensional) kernel density estimator of the density ofU , based on the data �Ui and evaluated at u. We then
have the estimator

��4r �x� � r [g�x� �0�� x]� 1
n

n�
i�1

r �[g�x� �0�	Ui � x][Yi 	 1�Ui � 0�]���Ui �
�

which may be used when h is unknown.
Another approach to estimating �r �x� uses ordered observations in place of a preliminary estimate of

� . Augment the observed �U� Y � pairs with the artiÞcial observations �	0� 0� and �	1� 1�. Recode each
observation �U� Y � having U � 	0 as �	0� 0� and each observation having U � 	1 as �	1� 1�. Then, index
the observations so that the U �s, including the artiÞcial ones, are in non-decreasing order, and denote them
by Un0 � � � Un�n�1. The probability of ties in the interior of the support is zero. Let Yni denote the
observed Y associated with Uni � The proposed ordered data estimator is then

��5r�x� � r [g�x� �0�� x]� n�
i�1
r �[g�x� �0�	Uni � x][Yni 	 1�Uni � 0�]Un�i�1 	Un�i�12
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This estimator can be interpreted as being the same as ��4r �x�, with the density ��u� estimated by differ-
encing the empirical distribution of U� although this function, 2n�Un�i�1 	 Un�i�1�� is not a consistent
estimator of ��Ui �� The estimator ��5r �x� has the advantages of just equalling a sample average and of
not requiring knowledge of h, however, it can be shown to be less efÞcient than ��4r �x� with an optimally
estimated ���Ui ��

4.3.2 Estimation with Unknown �

Assumptions A.1, A.2, and A.3 imply that E�W � X � x� � 	 � g�x� �� for some arbitrary location
constant 	 (since no location constraint is imposed upon �). Therefore, based on the estimator of ��x� ��
described in section 4.2, we may obtain, a root n consistent, asymptotically normal estimate�� of � by the
simple least squares criterion

�� � argmin
�

�
min
�

1
n

n�
i�1

�
Yi 	 1�Vi � 0�
h�Vi � Xi �

	 	 	 g�Xi � ��
�2	

An estimator�h may be used in place of h if h is unknown.
Assumptions A.1, A.2, and A.3 make the latent error � independent of X , and therefore the binary choice

estimator of Klein and Spady (1993) will provide a semiparametrically efÞcient estimator of � (note that the
Klein and Spady estimator does not identify a location constant 	, but that is not required, since no location
constraint is imposed upon �). We will provide a numerically simpler estimator that is asymptotically
equivalent to Klein and Spady.
Let�� denote the chosen root N consistent, asymptotically normal estimator for �0. Replacing �0 with

any � � � we may rewrite the estimators of the previous section as ���r �x � �� for � � 3� 4� or 5. Note
that in addition to directly appearing in the equations for ���r , � also appears in the deÞnition of Ui �
g�Xi � �� 	 Vi � We later derive the root N consistent, asymptotically normal limiting distribution for each
estimator ���r �x ����. The estimators are not differentiable in Ui � which complicates the derivation of their
limiting distribution (e.g., Theorem 6.1 of Newey and McFadden (1994) is not directly applicable due to
this nondifferentiability).

5 Quantile Estimators

In addition to moments, one may also desire estimates of conditional quantiles of W . Let Assumptions
A.1 and A.2 hold and deÞne �G�� � x� � 1 	 �m��� x�� Then, based on Theorem 1, an estimate of the q�th
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quantile of W given X � x is just ��q�x� � �G�1�q � x�

The rate of convergence of this estimate will be slow, because of the high dimension of �m.
If Assumption A.3 holds in addition to A.1 and A.2, then faster convergence is possible. Given Corollary

1 we have U � g�X� �0�	 V , G��u� � E�Y � U � u�, and �q�x� � g�x� �0�	 G��1�1	 q�. Therefore,
let �Ui � g�Xi ����	 Vi and estimate the conditional quantile �q�x� by

�G��u� � �E�Y � �U � u���q�x� � g�x����	 �G��1�1	 q�

where the function �G� is obtained by nonparametrically regressing Y on �U , and is then numerically inverted
to obtain �G��1. This estimator ��q�x�will converge at a faster rate than the nonparametric quantile estimator��q�x�� With sufÞcient regularity, ��q�x� is asymptotically normal and converges at the same rate as a one
dimensional nonparametric regression estimator, i.e., the same as the best rate that could be obtained if
realizations of the latent � were observed.

6 Estimation Details and Distribution Theory

In this section we provide a bit more detail about the computation of the estimators�� jr �x� and their distri-
bution theory.

6.1 Nonparametric Estimators

We Þrst consider a fairly general class of nonparametric estimators and then specialize to kernels. SpeciÞ-
cally, we consider a class of linear estimators of m� that is, let

�m��� x� � n�
i�1

�ni ��� x�Yi � (1)

where �ni ��� x� are some smoothing weights that depend only on �X1� V1�� � � � � �Xn� Vn�� and satisfy
certain conditions as in Stone (1982). This includes a large class of commonly used estimation schemes
such as kernels, local polynomial, nearest neighbor, series, smoothing splines, etc., see Härdle and Linton
(1994) for further discussion. It does exclude local median or local quantile estimators whether they be
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based on kernels or nearest neighbors; it also excludes the popular neural networks class of estimators.
Finally, this framework so far excludes methods that have selected the smoothing parameter based on the
data. However, it should be possible to extend the treatment to a class of asymptotically linear smoothers,
which includes almost any smoothing method that can be asymptotically normal.
We shall suppose also that the smoothing weights in (1) satisfy exactly


n
i�1�ni ��� x� � 1� this is the

case for many linear estimators. In this case, we can write

�m��� x�	 m��� x� � n�
i�1

�ni ��� x��i �
n�
i�1

�ni ��� x�m�Vi � Xi �	 m��� x��� (2)

where the error term �i � Yi 	 m�Vi � Xi � is independent across i and satisÞes E��i �Vi � Xi � � 0� deÞne
also � 2i � var��i �Vi � Xi �� The Þrst term on the right hand side of (2) is conditional mean zero and deter-
mines the limiting variance, while the second term determines the bias. Under additional conditions, we can
approximate the bias term


n
i�1�ni ��� x�m�Vi � Xi �	 m��� x�� by 
n���� x� for some bounded and con-

tinuous function ���� x� and deterministic sequence 
n � 0 as n � ��We can also replace the weights
�ni ��� x� in


n
i�1�ni ��� x��i by some approximation ��ni ��� x� that depends only on �Xi � Vi �. We arrive

at the expansion

�m��� x�	 m��� x� � n�
i�1

��ni ��� x��i � 
n���� x�� Rn��� x�� (3)

where Rn��� x� is a remainder term that contains the various approximation errors described above. We
next state conditions under which �m��� x� is asymptotically normal.
THEOREM 2. Suppose that: (i) 0 � � 2 � � 2i � � 2 � �� (ii) Rn��� x�min	n� 
n� �p 0� where

	n � 1
�
n

i�1 ��2ni ��� x� �p 0� and (iii) max1�i�n ��2ni ��� x�
n
i�1 ��2ni ��� x� �p 0� Then

�m��� x�	m��� x�	 
n���� x��
n
i�1 ��2ni ��� x�� 2i

d	� N �0� 1��

This result is a standard application of the Lindeberg-Feller central limit theorem. The magnitude of
the bias term, 
n� depends on the method used and on the smoothness of m (and perhaps also on the
smoothness of the covariate density). The magnitude of 	n depends on the estimation method and on the
covariate density in general. The optimal rate in the central limit theorem is achieved when 	n and 
n are
the same magnitude.
By appropriately redeÞning y and m, Theorem 2 can be immediately applied to yield the limiting dis-

tribution for��1r �x�.
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Now consider estimating �r �x� using��2r �x�, which is equivalent to
��2r�x� � r��� x�� �1�x�


�0�x�
r ���� x�[�m��� x�	 1�� � ��]d�

where �m��� x� is deÞned in (1). This estimator is in the class of marginal integration/partial mean estimators
sometimes used for estimating additive nonparametric regression models, see Linton and Nielsen (1995),
Newey (1994), and Tjøstheim and Auestad (1994), except that the integrating measure �� where d���� �
	r ���� x�1�	0�x� � � � 	1�x��d�� is not necessarily a probability measure, i.e., it may not be positive or
integrate to one. The distribution theory for the class of marginal integration estimators has been worked out
for speciÞc smoothing methods like kernels or nearest neighbors. We give a derivation at the higher level
of generality given by the deÞnition (1). Then,

��2r �x�	 �r �x� �
�1�x�

�0�x�

r ���� x�[�m��� x�	 m��� x�]d�
�

n�
i�1

�ni �x��i � 
n��x�� Rn�x��

where: �ni �x� �
� ��ni ��� x�d����� ��x� � �

���� x�d����� and Rn�x� � 
 Rn��� x�d�����We next state
conditions under which��2r �x� is asymptotically normal.
THEOREM 3. Suppose that condition (i) from Theorem 2 is true, and that: (i) Rn�x�min	n� 
n� �p

0� where 	n � 1
�
n

i�1�
2
ni �x� �p 0� and (ii) max1�i�n �2ni �x�


n
i�1�

2
ni �x� �p 0. Then,

��2r �x�	 �r �x�	 
n��x��
n
i�1�

2
ni �x��

2
i

d	� N �0� 1�� (4)

Note that the magnitude of the bias, 
n� is the same for ��2r �x� as for �m��� x�� However, the magnitude
of the asymptotic variance of ��2r �x�, which is 	2n� can be expected to be of smaller magnitude than 	2n

[i.e., the asymptotic variance of �m��� x�] by virtue of the integration. This specially affects the veriÞcation
of condition 3(i) because we must make the remainder term in Theorem 3 of smaller order than those in
Theorem 2. In the next subsection we verify the conditions of Theorem 3 for a kernel estimator that falls in
the class deÞned by (1). The optimal rate will balance 	n with 
n�
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6.1.1 VeriÞcation of Conditions for Kernels

The Nadaraya-Watson kernel estimator has weights

�ni ��� x� �
k

��Vi
b

�
K

x�Xi
b

�

n
i�1 k


��Vi
b

�
K

x�Xi
b

�
in (1), where k is a kernel function and K �t� � �d

j�1 k�t j �. DeÞne �2�k� �
�
t2k�t�dt � Let ���2 denote

the Þrst and second derivative operators.
THEOREM 4. Suppose that assumptions B1 and B2 in the appendix hold and that the bandwidth se-

quence b � b�n� satisÞes b� 0 and nbd�2 log n � �� Then, (4) holds with 
n � b2�

���� x� � �2�k�
2
tr��2m��� x���m��� x��s��� x��� (5)

where s��� x� � log fV�X ��� x�� while

nbd
�

n�
i�1

�2ni �x��
2
i

�
p	� �K�2

� �1�x�

�0�x�
� 2��� x�

�
r ���� x�
fV�X ��� x�

�2
fV�X ��� x�d� � ��x��

Thus��2r �x� is asymptotically normal with mean �r �x�� b2��x� and variance n�1b�d��x��
6.2 Semiparametric Estimators

6.2.1 Estimation of �0

Consider brießy the conditional mean estimator ��Xi ���� where
�� � argmin 1

n

n�
i�1

�
Yi 	 1�Vi � 0��h�Vi � Xi � 	 ��Xi � ��

�2���Zi ��
If�h�Vi � Xi � is replaced with a known design density h�Vi � Xi � in the above, then the limiting distribution
is given by ordinary weighted nonlinear least squares. The root n limiting distribution of�� using an asymp-
totically trimmed kernel estimator of�h�Vi � Xi � is given by Lewbel (2000) (for the case where � is linear).
If V is independent of X� then�h�Vi � Xi � can be replaced with

�h�Vi � � 1
nb

n�
j�1
k
�
Vi 	 Vj
b

�
�

and the resulting estimator�� is a special case of the general theory covered by Andrews (1994, Theorem 1)
and Newey and McFadden (1994, section 8).
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6.2.2 Estimation of �0

Consider Þrst the estimator�� deÞned by
�� � argmin

��	
min
�

1
n

n�
i�1

�
Yi 	 1�Vi � 0��h�Vi � Xi � 	 	 	 g�Xi � ��

�2���Zi ��
The results of the previous section can be immediately applied taking � � �	� �� since ��X� �� � 	 	
g�X� ���
To obtain a semiparametrically efÞcient estimator of �0 we apply one-step estimation to Klein and Spady

(1993), starting from this initial root-n consistent�� . DeÞne �i ��� � E[Y � g�X� ���V � g�Xi � ���Vi ] �
G�[g�Xi � ��� Vi ], and

��i ��� �

n

j�1 Y jk

g�Xi ����Vi�g�X j ����Vj

b

�

n

j�1 k

g�Xi ����Vi�g�X j ����Vj

b

�
for every �� Let �Q��� � 1

n

n�
i�1
Yi ln[��i ���]� �1	 Yi � ln[1	��i ���]�

The semiparametrically efÞcient Klein and Spady estimator is � � arg sup��	 �Q���, which satisÞes the
Þrst order conditions �Q���� � 0. Given the well known problems with computing the Klein and Spady
estimator we instead propose the one-step estimator

�� ��� 	 [�H����]�1�Q������ (6)

where �Q����� � 1
n

n�
i�1

�
Yi��i ���� 	 1	 Yi

1	��i ����
����

i ����
and �H���� � 1

n

n�
i�1

� 	1��i ���� � 	1
1	��i ����

����
i �������

i ������
and in which ���

i ��� � ���i ����� . The initial condition�� is any root-N consistent estimator of � . Two-
step estimation in semiparametric models have been examined in some detail in the monograph Bickel,
Klaassen, Ritov and Wellner (1993) and the references therein. Under some regularity conditions, it can be
shown that�� has the same asymptotic distribution as ��
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6.2.3 Estimation of � with estimated �

Here we state the asymptotic properties of the conditional moment estimators based on Corollary 1. DeÞne

���
3r �x ���� � r [g�x����� x]� 1

n

n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]����Ui �
���
4r�x ���� � r[g�x����� x]� 1

n

n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]����Ui � �

where �Ui � g�Xi ����	 Vi and
����Ui � � 1

n

n�
j�1
h[g�X j ����	 �Ui ] � ����Ui � � 1

nb

n�
j�1
k

��Ui 	 �Uj
b

�
�

We shall suppose that
�
n��� 	 �0� � 1�

n

n�
i�1
m�Zi � �0�� op�1�

for some function m that is mean zero and has Þnite variance. The estimators ��3r �x� and ��4r �x� are the
special cases of ���

3r �x ���� and ���
4r�x ���� in which � is known, and so correspond to the case of m being

identically zero.
For each � � � and x � X let

f0�Zi � �� � r �[g�x� ��	Ui ���� x][Yi 	 1�Ui ��� � 0�]
��Ui �

f1�Zi � �� � r[g�x� ��� x]� r
�[g�x� ��	Ui ���� x][Yi 	 1�Ui ��� � 0�]

��Ui �

�F �
�

�

��
E
�
f1�Zi � ��

��
���0

�

where Ui ��� � g�Xi � �� 	 Vi � The quantities f0� f1 and �F depend on x but we have suppressed this
notationally. Note also that E f1�Zi � �0� � �r �x�� Finally, let

� i �
�g
��

�Xi � �0�	 E
�
�g
��

�Xi � �0�
�
�

THEOREM 5. Suppose that Assumptions C1-C3 in the Appendix hold. Then, as n� ��

�
n[���

3r �x ����	 �r �x � �0�] �
1�
n

n�
j�1

� j � op�1�� (7)
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where � j � �1 j � �2 j � �3 j � with:

�1 j � f1�Z j � �0�	 E f1�Z j � �0�

�2 j �
�
�F 	 E

�
f0�Zi � �0�

� ��Ui �
��Ui �

� i

��
m�Z j � �0�

�3 j � 	E
�
f0�Zi � �0�

h[g�X j � �0�	Ui ]	 ��Ui �
��Ui �

�X j
�
�

This implies that
�
n[���

3r �x ���� 	 �r�x � �0�] is asymptotically normal with mean zero and variance
�
 � var�� j � by the Lindeberg-Feller central limit theorem� The three terms �1 j � �2 j � and �3 j are all mean
zero and have Þnite variance. They are generally mutually correlated. When �0 is known, the term �2 j � 0
and this term is missing from the asymptotic expansion.
The result can be extended to a functional central limit theorem in x because the op�1� term in (7) is

uniform in x � X and the stochastic process � j �x� is tight in x due to the smoothness properties of r�
We next give the distribution theory for the semiparametric estimator���

4r �x ����� Let
� �
i �

�g
�� �

�Xi � �0�	 E
�
�g
�� �

�Xi � �0��Ui
�
�

where �u�Ui � � E[�g�Xi � �0��� �Ui ]�
THEOREM 6. Suppose that assumptions B1,B2 and C1-C4 in the Appendix hold. Then

�
n[���

4r �x ����	 �r�x�] �
1�
n

n�
i�1

��i � op�1��

where ��j � ��1 j � ��2 j � ��3 j � with �
�
1 j � �1 j � while

��2 j �
�
�F 	 E

�
f0�Zi � �0�

�
� ��Ui �
��Ui �

� �
i 	 ��

u�Ui �
���

m�Z j � �0�

��3 j � 	r
�[g�x� �0�	Uj � x]

��Uj �
�
Y j 	 E[Y j �Uj ]

�
�

This implies that
�
n[���

4r�x ���� 	 �r �x � �0�] is asymptotically normal with mean zero and variance ��

 �

var���j �� The three terms �
�
1 j � �

�
2 j � and ��3 j are all mean zero and have Þnite variance. They are generally

correlated. When �0 is known, the term ��2 j � 0 and this term is missing from the asymptotic expansion.
REMARKS
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1. Standard errors can be constructed by substituting population quantities by estimated ones. That is,
let ��
 � n�1
n

j�1��2j � where�� j ���1 j ���2 j ���3 j and for example
��1 j � r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]����Ui � 	 1

n

n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]����Ui � �

To construct��2 j we replace E[ f0�Zi � �0��� ��Ui ���Ui ��� i ] in �2 j by

1
n

n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]����Ui �
�� �

��Ui �����Ui �
�
�g
��

�Xi ����	 1
n

n�
j�1

�g
��

�X j ����� �

For the quantity �F we must use numerical derivatives, i.e.,

��F � 1
n

n�
i�1

�f1�Zi ��� � 
ek�	 �f1�Zi ����



�

where ek is the elementary vector in direction k and 
 is a small number, while

�f1�Zi ���� � r[g�x����� x]� r �[g�x����	Ui ����� x][Yi 	 1�Ui ���� � 0�]���Ui ����� �

For the conditional expectation in �3 j we should use a kernel regression smoother on the estimated quanti-
ties.
2. Regarding efÞciency, it is not possible to provide a ranking of the two estimators ���

3r �x ���� and���
4r �x ���� uniformly throughout the �parameter space�. However, one step in that direction might be to
use a semiparametrically efÞcient estimator of �0� It may be possible to develop an efÞciency bound for
estimation of the function�r ��� by following the calculations of Bickel, Klaassen, Ritov andWellner (1993,
Chapter 5). Since there are no additional restrictions on �r � the plug-in estimator with efÞcient�� should be
efÞcient.

6.2.4 Quantile estimators

The distribution theory is trivial. The estimator ��q�x� � �G�1�q � x� has the distribution theory for standard
conditional quantile estimators. The distribution theory for ��q�x� � g�x����	 �G��1�1	 q� is the same as
the distribution theory for ��q�x� � g�x� �0�	 �G��1�1	 q�� where�G��u� � �E�Y � U � u��
which is again basically a standard one-dimensional conditional quantile estimator. This is because�� con-
verges at rate root-n, so the estimation error in�� is asymptotically irrelevant given the slower convergence
rate of quantiles.
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7 Conclusions

We have provided some estimators of conditional moments and quantiles of the latent W� We have for
convenience assumed throughout that the support of V (which must contain the support of W ) is bounded.
Most of the results in this paper should extend to the inÞnite support case, although some of the estimators
may then require asymptotic trimming to deal with issues arising from division by a density estimate when
the true density is not bounded away from zero.
The precision of these estimators depends in part on the density h. When designing experiments one

may wish to choose h to maximize efÞciency based on the variance estimators.

8 Appendix

8.1 Regularity Conditions

We Þrst state some regularity conditions that are needed for the nonparametric estimation of h:
ASSUMPTION B.1. k is a symmetric probability density with bounded support, and is Lipschitz contin-

uous on its support, i.e.,
�k�t�	 k�s�� � c�t 	 s�

for some constant c.
ASSUMPTION B.2. The variables �V� X� are continuously distributed with Lebesgue density fV�X ��� x�

that satisÞes inf�0�x�����1�x� fV�X ��� x� � 0� Furthermore, m and fV�X are twice continuously differen-
tiable for all � with 	0�x� � � � 	1�x�. The set [	0�x�� 	1�x�]� x� is strictly contained in the support of
�V� X��
We also need some conditions on the estimator and on the regression functions and densities.
ASSUMPTION C.1. Suppose that

�
n��� 	 �0� �

1�
n

n�
i�1
m�Zi � �0�� op�1�

for some function m such that E[m�Zi � �0�] � 0 and � � E[m�Zi � �0�m�Zi � �0��] � ��

ASSUMPTION C.2. The function g is twice continuously differentiable in � and

sup
����0���n

�����g�� �x� ��
���� � d1�x� ; sup

����0���n

���� �2g
���� �

�x� ��
���� � d2�x�
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with Ed1�Xi � � � and Ed2�Xi � � ��

ASSUMPTION C.3. The density function h is continuous and is strictly positive on its support and is
twice continuously differentiable.
ASSUMPTION C.4. The kernel k is twice continuously differentiable on its support, and therefore

supt �k���t�� � �� The bandwidth b satisÞes b� 0 and nb6 � ��

8.2 Distribution Theory for Nonparametric Estimators

PROOF OF THEOREM 4. Under Assumptions B1 and B2 the expansion (3) holds with 
n � b2 and ���� x�
is as stated in (5), the weights

��ni ��� x� � 1
fV�X ��� x�

1
nbd�1

K
�
� 	 Vi
b

�
K
�
x 	 Xi
b

�
�

while the remainder term satisÞes

sup
�0�x�����1�x�

�Rn��� x�� � Op
��

log n
nbd�1

�
� op�b2��

See for example Masry (1996a, 1996b).
Provided nbd�2 log n � �� condition (i) of Theorem 3 is satisÞed because 	n � Op�1

�
nbd� as we

now show. We have�����ni �x�	 	1
nbd

K
�
x 	 Xi
b

�
r ��Vi � x�
fV�X �Vi � x�

����
�

����� 1nbd K
�
x 	 Xi
b

��
�1�x�

�0�x�

r ���� x�
fV�X ��� x�

1
b
K
�
� 	 Vi
b

�
d� 	 r ��Vi � x�

fV�X �Vi � x�

	�����
�

����� 1nbd K
�
x 	 Xi
b

�
�1�x�

�0�x�

�
r ���� x�
fV�X ��� x�

	 r ��Vi � x�
fV�X �Vi � x�

�
1
b
K
�
� 	 Vi
b

�
d�

����� for large n
� O�b2�

by a change of variables and dominated convergence argument that is in wide use in nonparametrics (see,
e.g., Newey and McFadden 1994 section 8). It works in this case because the set [	0�x�� 	1�x�] is contained
in the support of V and the conditions on K etc. Therefore, the asymptotic variance of ��2r �x� is

n�
i�1

�2ni �x��
2
i �

1
n2b2d

n�
i�1
K 2

�
x 	 Xi
b

��
r ��Vi � x�
fV�X �Vi � x�

�2
� 2i � Op�n�1b�d��
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as follows from Markov�s inequality. Therefore, 	n � Op�1
�
nbd� as required. In fact,


n
i�1�

2
ni �x��

2
i

satisÞes a law of large numbers and is approximately

1
nbd

E

�
1
bdX

K 2
�
x 	 Xi
b

��
r ��Vi � x�
fV�X �Vi � x�

�2
� 2�Vi � Xi �

	

� 1
nbd

�K�2
�

� 2��� x�
�
r ���� x�
fV�X ��� x�

�2
fV�X ��� x�d��

where � 2�Vi � Xi � � � 2i � by a change of variables and dominated convergence. Furthermore, condition (ii)
of Theorem 3 is satisÞed by the arguments used in Gozalo and Linton (1999, Lemma CLT).

8.3 Distribution Theory for Semiparametric Quantities

Let Ei denote expectation conditional on Zi �
PROOF OF THEOREM 5. Recall that

���
3r�x ���� � r[g�x����� x]� 1

n

n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]����Ui � �

where �Ui � g�Xi ����	 Vi and ����Ui � � 1
n

n�
j�1
h[g�X j ����	 �Ui ]�

By a geometric series expansion we can write

���
3r�x ���� � 1

n

n�
i�1

f1�Zi ����	 1
n

n�
i�1

f2�Zi � �0�[����Ui �	 ��Ui �]

	1
n

n�
i�1
[ f2�Zi ����	 f2�Zi � �0�][����Ui �	 ��Ui �]

�1
n

n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]
�2�Ui �����Ui � [����Ui �	 ��Ui �]2�

where
f2�Zi � �� �

r �[g�x� ��	Ui ���� x][Yi 	 1�Ui ��� � 0�]
�2�Ui �

�
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LEADING TERMS. We make use of Lemmas 1 and 2 given below. Lemma 1 implies that

1�
n

n�
i�1
[ f1�Zi ����	 E f1�Zi � �0�] � 1�

n

n�
i�1

�Fm�Zi � �0�� [ f1�Zi � �0�	 E f1�Zi � �0�]� � op�1�� (8)

Furthermore, by Lemma 2�����1n
n�
i�1

f2�Zi � �0�[����Ui �	 ��Ui �	
1
n

n�
j�1
L�Zi � Z j �]

�����
� 1

n

n�
i�1

� f2�Zi � �0�� � max
1�i�n

�����[����Ui �	 ��Ui �	
1
n

n�
j�1
L�Zi � Z j �]

�����
� op�n�1�2��

where L�Zi � Z j � � � j �Ui �� ��Zi �m�Z j � �0�� and

� j �u� � h[g�X j � �0�	 u]	 E�h[g�X j � �0�	 u]�

��Zi � � � ��Ui �
�
�g
��

�Xi � �0�	 E
�
�g
��

�Xi � �0�
��

�

Then

1
n2

n�
i�1

n�
j�1

f2�Zi � �0�L�Zi � Z j � �
n�
i�1

n�
j�1

�n�Zi � Z j �

� 1
n

n�
j�1

��Z j �� op�n�1�2��

where
��Z j � � E

�
f2�Zi � �0���Zi �

�
m�Z j � �0�� E

�
f2�Zi � �0�� j �Ui ��Z j

�
by standard U-statistic theory. We have

E
�
f2�Zi � �0�� j �Ui ��Z j

� � E
�
f2�Zi � �0�h[g�X j � �0�	Ui ]�Z j

�	 E �
f2�Zi � �0���Ui �

�
� E

�
� f1�Zi � �0�	 r [g�x� �0�� x]�

h[g�X j � �0�	Ui ]
��Ui �

�Z j
�

	E �
� f1�Zi � �0�	 r [g�x� �0�� x]�

�
� E

�
r �[g�x� ��	Ui � x][Yi 	 1�Ui � 0�]

��Ui �
h[g�X j � �0�	Ui ]	 ��Ui �

��Ui �
�Z j

�
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E
�
f2�Zi � �0���Zi �

� � E
�
f2�Zi � �0���Ui �

� ��Ui �
��Ui �

�
�g
��

�Xi � �0�	 E
�
�g
��

�Xi � �0�
���

� E
�
r �[g�x� �0�	Ui � x][Yi 	 1�Ui � 0�]

��Ui �
� ��Ui �
��Ui �

� i

�
�

so that the leading terms are as stated.
REMAINDERS. By the Cauchy-Schwarz inequality�����1n

n�
i�1
[ f2�Zi ����	 f2�Zi � �0�][����Ui �	 ��Ui �]

�����
�

�
1
n

n�
i�1
[ f2�Zi ����	 f2�Zi � �0�]2

�1�2�
1
n

n�
i�1
[����Ui �	 ��Ui �]2

�1�2

� Op�n�1�

from another application of Lemmas 1 and 2�
We have assumed that infu�U ��u� � 0� which implies that

min
1�i�n

���Ui � � inf
u�U

��u�� Op�n�1�2�

is bounded away from zero with probability tending to one. Therefore,�����1n
n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]
�2��Ui �����Ui � [����Ui �	 ���Ui �]2

�����
� supu�U [���u�	 ��u�]2 � Op�n�1�2�

infu�U �2�u����u�� Op�n�1�2�
1
n

n�
i�1

�r �[g�x����	 �Ui � x]� � ��Yi � � 1�
� Op�n�1��

In conclusion,
�
n[���

3r �x ����	 �r�x � �0�] �
1�
n

n�
i�1

�i � op�1��

as required. The asymptotic distribution of
�
n[���

3r�x ����	 �r�x � �0�] follows from the central limit theo-
rem for independent random variables.
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PROOF OF THEOREM 6. By a geometric series expansion we can write

���
4r �x ���� � 1

n

n�
i�1

f1�Zi ����	 1
n

n�
i�1

f2�Zi � �0�[����Ui �	 ��Ui �]

	1
n

n�
i�1
[ f2�Zi ����	 f2�Zi � �0�]� [����Ui �	 ��Ui �]

�1
n

n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]
�2�Ui �����Ui � [����Ui �	 ��Ui �]2�

LEADING TERMS. We make use of Lemma 3 given below. The term n�1

n
i�1 f1�Zi ���� has already

been analyzed above. By Lemma 3 we have with probability tending to one�����1n
n�
i�1

f2�Zi � �0�

�
[����Ui �	 ��Ui �]	

1
n

n�
j�1
L��Zi � Z j �

	����� � 1
nb3

�
1
n

n�
i�1

� f2�Zi � �0��d�Xi �
�

� Op�n�1b�3� (9)

for some function d��� and random variables L��Zi � Z j � � b�1k��Ui	Uj �b�	��Ui �����Zi ��m�Z j � �0��
where

���Zi � � � ��Ui �
�
�g
�� �

�Xi � �0�	 E
�
�g
�� �

�Xi � �0��Ui
��

	 ��Ui ���
u�Ui ��

Under our bandwidth conditions, the right hand side of (9) is op�n�1�2�� Furthermore,

1
n

n�
i�1

f2�Zi � �0�
1
n

n�
j�1
L��Zi � Z j � �

n�
i�1

n�
j�1

�n�Zi � Z j �

where
�n�Zi � Z j � �

1
n2
f2�Zi � �0�

�
1
b
k
�
Ui 	Uj
b

�
	 ��Ui �� ���Zi � � m�Z j � �0�

�
�

Note that Ei�n�Zi � Z j � � 0 but E j�n�Zi � Z j � �� 0�We write

Tn4 � 1
n

n�
j�1

��Z j ��
n�
i�1

n�
j�1

i 	� j

�n�Zi � Z j ��
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where

��Z j � � n2E j�n�Zi � Z j �

�n�Zi � Z j � � �n�Zi � Z j �	 E j�n�Zi � Z j ��

so that �n�Zi � Z j � is a degenerate kernel satisfying Ei�n�Zi � Z j � � E j�n�Zi � Z j � � 0�We next compute
�n�Z j �� using integration by parts, a change of variable, and dominated convergence we have

��Z j � �
�
f2�Z j � �0�	 E[ f2�Z j � �0��Uj ]

�
��Uj �� E

�
f2�Zi � �0����Zi �

� � m�Z j � �0�� Op�b2��
Finally,

� f2�Zi � �0�	 E[ f2�Zi � �0��Ui ]� ��Ui � �
r �[g�x� �0�	Ui � x]

��Ui �
�Yi 	 E[Yi �Ui ]�

E[ f2�Zi � �0����Zi �] � E
�
r �[g�x� �0�	Ui � x]

��Ui �
[Yi 	 1�Ui � 0�] �

�
� ��Ui �
��Ui �

� �
i 	 ��

u�Ui �
��

�

REMAINDER TERMS. First,

�����1n
n�
i�1
[ f2�Zi ����	 f2�Zi � �0�][����Ui �	 ��Ui �]

�����
�

�
1
n

n�
i�1
[ f2�Zi ����	 f2�Zi � �0�]2

�1�2�
1
n

n�
i�1
[����Ui �	 ��Ui �]2

�1�2
� op�n�1�2��

Second �����1n
n�
i�1

r �[g�x����	 �Ui � x][Yi 	 1��Ui � 0�]
�2�Ui �����Ui � [����Ui �	 ��Ui �]2

�����
� supu�U [���u�	 ��u�]2�1� op�1��

infu�U �2�u����u�� op�1�
1
n

n�
i�1

�r �[g�x����	 �Ui � x]� � ��Yi � � 1�
� op�n�1�2��
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8.4 Subsidiary Results

DeÞne

Fn��� �
1
n

n�
i�1

f �Zi � ��

for some function f� and let F��� � EFn��� and �F � �F��0����
LEMMA 1. Assume:

(i) For some vector m
�
n��� 	 �0� �

1�
n

n�
i�1
m�Zi � �0�� op�1�

where E[m�Zi � �0�] � 0 and � � E[m�Zi � �0�m�Zi � �0��] � ��

(ii) There exists a Þnite matrix �F of full (column) rank such that

lim
����0�
0

�F���	 �F �� 	 �0��
�� 	 �0�

� 0�

(iii) For every sequence of positive numbers 
n� such that 
n � 0�

sup
����0���n

���n[Fn���	 F���]	�
n[Fn��0�	 F��0�]

�� � op�1��

Then �
n[Fn����	 F��0�]�� N �0� V ��

where

V � var[�Fm�Zi � �0�� f �Zi � �0�]

� �F��F
� � var[ f �Zi � �0�]� 2�F Em�Zi � �0� f �Zi � �0��

See below for a discussion on the veriÞcation of (iii).
PROOF� Since�� is root-n consistent, there exists a sequence 
n � 0 such that

Pr[���n��� 	 �0��� � 
n]� 0
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as n � ��We can therefore suppose that ���n��� 	 �0��� � 
n with probability tending to one. We have

�
n[Fn����	 F��0�] � �

n[F����	 F��0�]��
n[Fn����	 F����]

� �F
�
n��� 	 �0��

�
n[Fn��0�	 F��0�]� o��[

�
n��� 	 �0���

��
n[Fn����	 F����]	 [Fn��o�	 F��0�]�

� �F
�
n��� 	 �0��

�
n[Fn��0�	 F��0�]� op�1�[by (ii) and (iii)]

� 1�
n

n�
i�1

�Fm�Zi � �0�� [ f �Zi � �0�	 E f �Zi � �0�]� � op�1��

and the result now follows from standard CLT arguments.
LEMMA 2. As n � �

max
1�i�n

���������Ui �	 ��Ui �	 1
n

n�
j�1
L�Zi � Z j �

����� � op�n�1�2�� (10)

where L�Zi � Z j � � � j �Ui �� ��Zi �m�Z j � �0� and

� j �u� � h[g�X j � �0�	 u]	 E�h[g�X j � �0�	 u]�

��Zi � � � ��Ui �
�
�g
��

�Xi � �0�	 E
�
�g
��

�Xi � �0�
��

�

PROOF. We have for any u�

���u�	 ��u� � 1
n

n�
j�1
h[g�X j ����	 u]	 E�h[g�X j � �0�	 u]�

� 1
n

n�
j�1
h[g�X j � �0�	 u]	 E�h[g�X j � �0�	 u]�

�1
n

n�
j�1
h�[g�X j � �0�	 u]

�g
��

�X j � �0���� 	 �0�� Rn�u��
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where

Rn�u� � 1
2n

n�
j�1
h��[g�X j � ��	 u]��� 	 �0�

� �g
��

�X j � ��
�g
�� �

�X j � ����� 	 �0�

� 1
2n

n�
j�1
h�[g�X j � ��	 u]��� 	 �0�

� �2g
���� �

�X j � ����� 	 �0��

where � are intermediate values between�� and �0. With probability tending to one for a sequence 
n � 0
we have by the Cauchy Schwarz inequality

�Rn�u�� � ���� 	 �0��2
1
2n

n�
j�1

sup
����0���n

�h��[g�X j � ��	 u]� sup
����0���n

���g
��

�X j � ����

����� 	 �0��2 12n
n�
j�1

sup
����0���n

�h�[g�X j � ��	 u]� sup
����0���n

���� �2g
���� �

�X j � ��
����

� ���� 	 �0��2 �
�
sup
t
�h���t�� 1

2n

n�
j�1
d1�X j �� sup

t
�h��t�� � 1

2n

n�
j�1
d2�X j �

�
(11)

� Op�n�1��

Since the right hand side of (11) does not depend on u� this order is uniform in u� Furthermore because h�

is bounded and continuous, by a standard uniform law of large numbers

sup
u�U

�����1n
n�
j�1
h�[g�X j � �0�	 u]

�g
��

�X j � �0�	 E
�
h�[g�X j � �0�	 u]

�g
��

�X j � �0�
������ � op�1��

where U is the support of Ui � g�Xi � �0�	 Vi � Therefore,

sup
u�U

��������u�	 ��u�	 1
n

n�
j�1

� j �u�	 J �u���� 	 �0�

����� � op�n�1�2�� (12)

where � j �u� � h[g�X j � �0�	 u]	 E�h[g�X j � �0�	 u]� are i.i.d. with mean zero and Þnite variance, and

J �u� � E
�
h�[g�X j � �0�	 u]

�g
��

�X j � �0�
�
�

Because
�
n��� 	 �0� � Op�1� the supremum over u � U is the same as a maximum over �Ui �
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Furthermore, by a second order Taylor series expansion

1
n

n�
j�1

� j ��Ui �� J ��Ui ���� 	 �0� � 1
n

n�
j�1

� j �Ui ��
1
n

n�
j�1

�� j

�u
�Ui �

�g
��

�X j � �0���� 	 �0�

�J �Ui ���� 	 �0�� op�n�1�2�

� 1
n

n�
j�1

� j �Ui �� Ei
�
�� j

�u
�Ui �

�g
��

�X j � �0�
�
��� 	 �0�

�J �Ui ���� 	 �0�� op�n�1�2��

where
�� j

�u
�u� � 	h�[g�X j � �0�	 u]� E

�
h�[g�X j � �0�	 u]

�
�

and the error term is bounded in the same way as above using the continuous second derivatives of h� g�That
is, max1�i�n �J ��Ui �	 J �Ui �� � Op�1� and

sup
�����0����n

max
1�i�n

������2� j�u2
�Ui ����

����� � d�Zi �
with Ed�Zi � � �� Note that

J �Ui �� Ei
�
�� j

�u
�Ui �

�g
��

�X j � �0�
�

� Ei
�
h�[g�X j � �0�	Ui ]

�g
��

�X j � �0�
�

�Ei
��	h�[g�X j � �0�	Ui ]� Ei �h�[g�X j � �0�	Ui ]�� �g

��
�X j � �0�

�

� Ei
�
h�[g�X j � �0�	Ui ]

�
E
�
�g
��

�X j � �0�
�
�

so that

����Ui �	 ���Ui � � 1
n

n�
j�1

� j �Ui ��
�
Ei

�
h�[g�X j � �0�	Ui ]

� � E �
�g
��

�X j � �0�
��

� ��� 	 �0�� op�n�1�2��

(13)
Finally,

���Ui �	��Ui � � 	Ei
�
h�[g�X j � �0�	Ui ]

� � �g
��

�Xi � �0� � ��� 	 �0�� op�n�1�2�� (14)
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These results are uniform under some additional conditions. Combining (13) and (14) we obtain the result
(10).

LEMMA 3. We have with probability tending to one���������Ui �	 ��Ui �	
1
n

n�
j�1
L��Zi � Z j �

����� � k
nb3

d�Xi �

for some function d� where

L��Zi � Z j � � 1
b
k
�
Ui 	Uj
b

�
	 ��Ui �� ���Zi � � m�Z j � �0�

���Zi � � � ��Ui �
�
�g
�� �

�Xi � �0�	 E
�
�g
�� �

�Xi � �0��Ui
��

	 ��Ui ���
u�Ui ��

PROOF. Making a second order Taylor series expansion we have ����Ui �	 ��Ui � � Tni � Rni � where

Tni � ��Ui �	 ��Ui ��
1
nb2

n�
j�1
k�
�
Ui 	Uj
b

��
�g
�� �

�Xi � �0�	
�g
�� �

�X j � �0�
�
��� 	 �0�

Rni � 1
nb3

n�
j�1
k ��

�
U�
i 	U�

j

b

��
�g
��

�Xi � �0�	
�g
��

�X j � �0�
�
��� 	 �0���� 	 �0�

�

�
�g
��

�Xi � �0�	
�g
��

�X j � �0�
��

� 1
nb2

n�
j�1
k�
�
Ui 	Uj
b

�
��� 	 �0�

�

�
�2g
���� �

�Xi � ���	
�2g
���� �

�X j � ���
�
��� 	 �0��

where �� are intermediate values between�� and �0� and U�
i � Ui �����We have with probability tending to

one

�Rni � � b�3 sup
u

��k���u��� � ���� 	 �0��2 �
������g�� �Xi � �0�

����2 � 1
n

n�
j�1

�����g�� �X j � �0�
����2
�

�b�1���� 	 �0��2 �
1
nb

n�
j�1

����k� �Ui 	Ujb

����� �d1�Xi �� d2�X j ��
by the Cauchy-Schwarz inequality� By the uniform convergence results of Masry (1996a,1996b):

max
1�i�n

1
nb

n�
j�1

����k� �Ui 	Ujb

����� � Op�1�

max
1�i�n

1
nb

n�
j�1

����k � �Ui 	Ujb

����� d2�X j � � Op�1��
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so that for suitable constants and dominating functions

�Rni � �
k1
nb3

�d3�Xi �� k2��
k3
nb

�d1�Xi �� k4�

with probability tending to one. This gives the result. Furthermore, if the functions d j are bounded this
translates into a uniform result

max
1�i�n

�Rni � � Op�n�1b�3��

Provided nb6 � �� this term is op�n�1�2�. With additional smoothness conditions on k this condition can
be substantially weakened.
Furthermore, by Masry (1996a, 1996b)

max
1�i�n

����� 1nb2
n�
j�1
k�
�
Ui 	Uj
b

�
	 E

�
1
b2
k�
�
Ui 	Uj
b

�
�Ui

������ � Op�
�
log n
nb3

�

max
1�i�n

����� 1nb2
n�
j�1
k �
�
Ui 	Uj
b

�
�g
�� �

�X j � �0�	 E
�
1
b2
k�
�
Ui 	Uj
b

�
�u�Uj � �Ui

������ � Op�
�
log n
nb3

��

Also, ����E �
1
b2
k�
�
Ui 	Uj
b

�
�u�Uj ��Ui

�
	 [�u�Ui ���Ui �]�

����
�

����� 1
b2
k�
�
Ui 	 u
b

�
�u�u���u�du 	 [�u�Ui ���Ui �]�

����
�

����� 1
b
k
�
Ui 	 u
b

�
[�u�u���u�]�du 	 [�u�Ui ���Ui �]�

����
�

����� k�t�
�
[�u�Ui � tb���Ui � tb�]� 	 [�u�Ui ���Ui �]�

�
dt
����

� Op�b2�

by integration by parts, change of variables and dominated convergence using the symmetry of k. This
order is uniform in i by virtue of the boundedness and continuity of the relevant functions. Therefore,

max
1�i�n

�Tni 	
1
n

n�
j�1
L��Zi � Z j �� � op�n�1�2��
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Finally, we have

max
1�i�n

�1
n

n�
j�1
L��Zi � Z j �� � Op�b2 �

�
log n
nb

�

by standard results for kernel estimates.

8.4.1 Stochastic Equicontinuity Results

We now show that condition (iii) of Lemma 1 is satisÞed. Let �n�c� � � : �n
��� 	 �0

�� � c�� Since�
n��� 	 �0� � Op�1�� for all � � 0 there exists a c and an integer n0 such that for all n � n0� Pr[�� �

�n�c�] � 1	 �� DeÞne the stochastic process

 n��� �
1�
n

n�
i�1

f �Zi � ��	 E[ f �Zi � ��]� � � ��

where
f �Zi � �� � r [g�x� ��� x]�

r �[g�x� ��	Ui ���� x][Yi 	 1�Ui ��� � 0�]
��Ui �

and deÞne the pseudo-metric

!��� � �� � E
�
f �Zi � ��	 f �Zi � � ��

�2�
�

on�� Under this metric, the parameter space � is totally bounded. We are only interested in the behaviour
of this process as � varies in the small set �n� By writing � � �0 � � n�1�2� we shall make a reparameteri-
zation to  n�� �� where � � ��c� � Rp�We establish the following result:

sup
���

� n�� �	  n�0�� � op�1� (15)

To prove (15) it is sufÞcient to show a pointwise law of large numbers, e.g.,  n�� � 	  n�0� � op�1� for
any � � �� and stochastic equicontinuity of the process  n at � � 0. The pointwise result is immediate
because the random variables are sums of i.i.d. random variables with Þnite absolute moment and zero
mean; the probability limit of  n�� � is the same for all � � � by the smoothness of the expected value in
� . To complete the proof of (15) we shall use the following lemma, proved below, which states that  n is
stochastically equicontinuous in � . The difÞculty in establishing the required equicontinuity arises solely
because the function g inside U is nonlinear in ��
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LEMMA SE. Under the above assumptions, the process  n�� � is stochastically equicontinuous, i.e., for
all � � 0 and � � 0� there exists 
 � 0 such that

lim sup
n
�

Pr

�
sup

��t1�t2���

� n�t1�	  n�t2�� � �

	
� ��

PROOF OF LEMMA SE. By a second order Taylor series expansion of g�Zi � �� around g�Zi � �0�:

g�Zi � �0 � � n�1�2� � g�Zi � �0��
1�
n

p�
k�1

�g
�� k

�Zi � �0�� k �
1
n

p�
k�1

p�
r�1

�2g
�� k��r

�Zi � ��� k� r (16)

for some intermediate points �� DeÞne the linear approximation to g�Zi � �0 � � n�1�2��

T �Zi � � � � g�Zi � �0��
p�
k�1

�g
�� k

�Zi � �0�� k

for any � � By assumption C2, for all k� r� sup��	 ��2g�Zi � ���� k��r �2 � d�Zi � with Ed�Zi � � ��

Therefore, for all 
 � 0 there exists an � � 0 such that

Pr

�
1�
n
max
i�k�r

sup
��	n

���� �2g
�� k��r

�Zi � ��
���� � �

	
� n

�
k�r
Pr

�
1�
n
sup
��	n

���� �2g
�� k�� r

�Zi � ��
���� � �

	

�


k�r E[d�Zi �]

�2

� 


by the Bonferroni and Chebychev inequalities. Therefore, with probability tending to one

max
1�i�n

�����1n
p�
k�1

p�
r�1

�2g
�� k��r

�Zi � ��� k� r
����� � "�

n

for some " � �� DeÞne the stochastic process

 n1�� � "� � 1�
n

n�
i�1

f �Zi � �0 � � n�1�2� "n�1�2�	 E f �Zi � �0 � � n�1�2� "n�1�2�
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on � � � and " � # � [0� " ]� where

f �Zi � �0 � � n�1�2� "n�1�2�

� r [g�x� �0 � � n�1�2�� x]� r
�[g�x� �0 � � n�1�2�	Ui ��0 � � n�1�2�� x]

��Ui �
[Yi 	 1�T �Zi � � n�1�2��

"�
n
� 0�]

It sufÞces to show that  n1�� � "� is stochastically equicontinuous in � � "� and the deterministic centering
term is of smaller order. The latter argument is a standard Taylor expansion. The argument for  n1�� � "� is
very similar to that contained in Sherman (1993) because we basically have a linear index structure in this
part. One can apply Lemma 2.12 in Pakes and Pollard (1989).
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