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possibly non-causal and non-invertible autoregressive moving average processes driven by

independent identically distributed non-Gaussian noise. The normalized approximate max-
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tine implemented in FORTRAN 77.
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1 INTRODUCTION

Time series data occur in a variety of disciplines including engineering, science, so-

ciology and economics among others. There are many techniques that have been

derived to infer the characteristics of such series. This is done by �rst hypothesizing

a mathematical model to represent the data. Having chosen a model it then becomes

possible to estimate parameters which will enhance our understanding of the mech-

anisms which generate this sequence. Once a satisfactory model has been developed

then it maybe used to help separate the noise from the signal and even predict future

values.

There is extensive literature on �nite parameter time series models such as Brock-

well and Davis [1991], Greene [1993], and Hamilton [1994] to name a few. Among

these the autoregressive moving average (ARMA) models are extensively studied

with wide applications. Existing literature on these models are mainly based upon
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the Gaussian, causal and invertible assumptions. In recent years there has been con-

siderable interest in the non-Gaussian, non-causal, and non-invertible ARMA mod-

els[Lii and Rosenblatt 1982] and [Rosenblatt 1985]. Applications of these models have

been well documented [Nikias and Petropulu 1993]. Inferences on these models are

based on higher order moment or cumulant information. This paper presents a max-

imum likelihood (MLE) based algorithm which gives e�cient consistent estimates of

the parameters of a non-Gaussian, possibly non-causal and non-invertible stationary

ARMA process. Examples are given to illustrate the usefulness of the algorithm.

2 THEORY

We begin by considering ARMA sequences driven by independent identically dis-

tributed non-Gaussian noise [Lii and Rosenblatt 1996]. The MLE so developed is a

function of the coe�cients of the ARMA model and the probability density function

of the driving noise process. The number of local maxima encountered are directly

related to the roots of the ARMA polynomials. The surface of the MLE is non-linear

in nature resulting in the need to implement methodical sequential search techniques

if the parameter space is small or stochastic techniques if the parameter space is large.

With this in mind, we de�ne a zero mean process fXt; t = : : : ;�1; 0; 1; : : :g which
is said to be an ARMA(p,q) process if fXtg is stationary and satis�es

Xt + �1Xt�1 + : : :+ �pXt�p = Zt + �1Zt�1 + : : :+ �qZt�q (1)

where Zt are independent and identically distributed random variables with mean

zero and variance �2. The parameters � and � are polynomial coe�cients represented

by

�p(B)Xt = �q(B)Zt (2)

with

�p(B) = 1 + �1B + �2B
2 + : : :+ �pB

p (3)

and

�q(B) = 1 + �1B + �2B
2 + : : :+ �qB

q: (4)

B is the backshift operator having the property

BkZt = Zt�k: (5)

We assume that �p(z) and �q(z) 6= 0 for all jzj = 1. Causality and invertibility are

de�ned with respect to the roots of the polynomials. If all the roots of
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�p(B) =
pY

i=1

(1� �iB) (6)

are greater than 1 then the autoregressive polynomial is said to be causal. If all the

roots of

�q(B) =
qY

i=1

(1� �iB) (7)

are greater than 1 then the moving average polynomial is said to be invertible.

The input process is assumed to have a probability density function f(z) which

must be normalized by the standard deviation � as the scale factor (i.e. f�(z) =

��1f(z��1)). This noise process can be represented by a Laurent series expansion of

��1(z)�(z),

Zt = �(B)�1�(B)Xt (8)

=
1X

j=�1
�jXt�j: (9)

To facilitate the computation of �j, the maximum likelihood function, and the co-

variance matrix it is convenient to factor the polynomials associated with the ARMA

process into

�(B) � �+(B)��(B) (10)

� (1 + �+1 B + : : :+ �+r B
r)(1 + ��r+1B + : : :+ ��p B

s); (11)

�(B) � �+(B)��(B) (12)

� (1 + �+1 B + : : :+ �+r0B
r0)(1 + ��r0+1B + : : :+ ��q B

s0); (13)

where �+ and �+ have no roots on the closed unit disc and �� and �� have all roots

in the interior of the unit disc. The inverses are

��1(B) = (�+(B))�1(��(B))�1 (14)

� (�(B))(�(B)) (15)

� (
1X

j=0

�jB
j)(

1X

j=s

�jB
�j); (16)

��1(B) = (�+(B))�1(��(B))�1 (17)

� (�0(B))(� 0(B)) (18)

� (
1X

j=0

�0jB
j)(

1X

j=s0
� 0jB

�j): (19)
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Then the driving noise process Zt is

Zt = (�0(B)(�(B)))� 0(B)Xt (20)

� �00(B)� 0(B)Xt (21)

� (
1X

j=0

�00jB
j)(

1X

j=s0
� 0jB

�j)Xt: (22)

For numerical purposes, the computation of the noise process is approximated by

Ẑt =
p+L�0X

j=0

s0+L�0X

k=s0
�00j�

0
kXt�j+k (23)

where L�0 , L�0 represent the truncated length of the �0 and � 0 polynomials. The pro-

cedure for estimating an ARMA process without the Gaussian, causal, and invertible

assumptions has been developed by Lii and Rosenblatt [1996]. The MLE is a function

of the input sequence and the parameter space which has the following form:

L(�) =
n�kX

t=k+1

log(f�(Ẑt))

n� 2k
+ log(j��p j)� log(j��q j) (24)

where k represents a truncation at the boundaries of the data by a factor of O(n0:5)

implemented by max(10;
p
n) and the vector � represents the p + q + 1 unknown

parameters

� = (�+1 ; : : : ; �
+

r ; �
�
r+1; : : : ; �

�
p ; �

+

1 ; : : : ; �
+

r0 ; �
�
r0+1; : : : ; �

�
q ; �)

0 (25)

which are to be estimated. Parameterization of the estimates as de�ned in equation

(1) where �
1
= (�1; : : : ; �p; �1; : : : ; �q; �)

0 uses equations (10) and (12). The covariance
matrix

P�1 is obtained from equation (1.5) and Table (1) of Lii and Rosenblatt [1996].

The Jacobian R = [@�
1
=@�] is required to calculate the covariance matrix (R

P�1R0)
for the estimates of �

1
. We now give a few examples to illustrate the algorithm.

3 EXAMPLES

3.1 ARMA's with Recipricol Roots

Consider the case of an ARMA(1,1) where the roots of the AR and MA process are

reciprocals.
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(1� �B)Xt = (1� ��1B)Zt (26)

This model is unidenti�able using second order statistics such as the auto-covariance

function (ACF) and the partial auto-covariance function (PACF). None of the non-

zero lagged results are signi�cantly di�erent from zero. The power spectrum is thus

a constant across all frequencies which is the characteristic of white noise.

However, the procedure outlined above is quite capable of detecting this condition

should the underlying process have a non-Gaussian noise distribution. Simulating a

Student t with 4 degrees of freedom as the density of Zt and a sample size of 800

with � = 0:5 in (26) produces the log-likelihood surface depicted in Figure 1. (Refer

to equations 24 and 26 for the de�nition of the surface and the ARMA model.) With

2 roots there are 4 local maximum since the root and its reciprocal produce areas

maximizing the MLE. One of the root combinations gives the Global maximum. The

surface features have been truncated at the bottom in this Figure to accentuate the

areas where the maxima occur. Table 1 reveals that the parameters calculated using

Splus are essentially zero. This corresponds to a white noise process as anticipated.

The reason is that Splus assumes causality, invertibility, and a Gaussian distribution

for the noise process.

Table 1: ARMA(1,1) Parameter Estimates given Distribution Assumptions. Note:

Results given as mean/std.

Simulated Student t(4) Gaussian

Parameters Estimation Estimation

�1 = -0.5 -0.518/0.037 -0.046/0.076

�1 = -2.0 -2.017/0.152 -0.066/0.074

� = 1.0 0.951/0.079 1.83
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Figure 1: The maximum likelihood surface for the simulated data
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Figure 2: Residuals compared to a Laplacian Distribution. (The + represent the

histogram of the residuals while the solid line is a �tted Laplacian density function)

3.2 Economic Data

This example uses unemployment data for the United States from 1948 to 1977.

The data consist of monthly statistics over the course of 30 years resulting in 360

samples which have not been adjusted for seasonality [Herzberg 1985]. The initial

identi�cation process using the ACF and PACF points to the possibility of unit roots

at lag 1 and at lag 12. The Dickey-Fuller procedure [Hamilton 1994] and the Durbin-

Watson procedure [Greene 1993] con�rm that single unit roots at lag 1 and 12 are

signi�cant possibilities based upon the hypothesized model of a random walk with

drift. After di�erencing at the lags indicated, the result is a zero mean stationary

time series. The Gaussian, causal, and invertible assumption using Splus leads to the

following ARIMA model (2; 1; 0)1(0; 1; 1)12 represented by

(1� B)(1�B12)(1� �2B
2)Xt = (1� �12B

12)Zt: (27)

The above model was determined based upon the Akaike's AIC criterion. At this

point, we examine the residuals and determine if they exhibit a Gaussian structure

(Figure 2). It appears that they do not and a �rst approximation of their density

might be the Laplacian distribution. Using this assumption and the non-Gaussian,
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Table 2: Parameter Estimates given Distribution Assumptions for ARIMA model

(2; 1; 0)1(0; 1; 1)12. Note: Results given as mean/std.

Laplacian Gaussian

Parameters Estimation Estimation

�2 = -0.041/0.0401 -0.121/0.0535

�12 = -0.706/0.0285 -0.762/0.0358

� = 89.0/5.049 83.7

non-causal, and non-invertible MLE procedure we obtain the parameter estimates in

Table 2. The AR coe�cient is not distingushiable from zero and the MA coe�cient is

slightly smaller and still signi�cant. The ARIMA model (0; 1; 0)1(0; 1; 1)12 represented

by

(1� B)(1�B12)Xt = (1� �12B
12)Zt: (28)

is the result of using distributional assumptions consistent with the residuals. The

model has been reduced to its most parsimonious form exhibiting yearly correlations

which would be expected of employment data. No attempt was made to examine

other possible models. The procedure outlined above involves �nding the best stan-

dard model using existing methods, examining the residuals, choosing an appropriate

distribution, and then reexamine the results to determine an improvement in the

model to gain additional insights into the process.

3.3 Other Distributional Considerations

The exponential power distribution is a su�ciently rich family to explore the general

behavior of symmetrical, unimodal distributions. The Normal, Laplacian, and even

Uniform like distributions can be generated from this family, so it might o�er a rea-

sonably rich parametric distribution to examine the e�ects of di�erent assumptions.

This of course does not limit the procedure since any parametric or non-parametric

assumption can be investigated by the algorithm.

The zero mean exponential power distribution has the following form [Box and

Tiao 1973]:

f(y) =
e�0:5jyj

2
1+�

�(1 + 1+�

2
)21+

1+�

2

(29)
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Table 3: ARMA(2,3) Parameter Estimates given Distribution Assumptions. Note:

Results given as mean/std.

Simulated Exp-Power Gaussian

Parameters Estimation Estimation

�1 = 1.333... 1.320/0.023 0.646/0.023

�2 = 0.444... 0.440/0.022 0.002/0.018

�1 = 0.5 0.524/0.036 -1.011/0.028

�2 = -1.25 -1.246/0.031 0.265/0.027

�3 = 0.375 0.363/0.035 0.007/0.024

� = 1 0.998/0.019 1.53

where � = (�1; 1]. An ARMA(2,3) using this distribution will be generated having

multiple roots and one in particular that will be reciprocal such as

(1 + �1B)
2Xt = (1 + ��11 B)(1� �2B)

2Zt: (30)

In this case, second order statistics produces a model which is an ARMA(1,2) having

the following form

(1 + �1B)Xt = (1� �2B)
2Zt: (31)

As before, the reciprocal root reduces the number of parameters under the normal

assumption. The reason for this can be found in the roots of the polynomial and the

ability to reparameterize using the auto-covariance generating function [Brockwell and

Davis 1991]. To illustrate this, a simulated sequence with a sample size of 2000 and

� = 0:75, �1 = 2=3, and �2 = 1=2 produces the speci�c estimates shown by Table 3.

This con�rms the anticipated results exhibited by equation 30 and 31 which matches

the simulated parameter values under the two di�erent assumptions. Table 4 provides

the covariance matrix which indicates the interrelationships of the parameters under

the power distribution assumption.
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Table 4: ARMA(2,3) Covariance Matrix using the Non-Gaussian Parameter Estima-

tion Process
�1 �2 �1 �2 �3 �

�1 0.000517 0.000476 0.000312 0.000373 -0.000622 0.000079

�2 0.000476 0.000476 0.000331 0.000321 -0.000574 0.000050

�1 0.000312 0.000331 0.001281 -0.000335 -0.000580 -0.000469

�2 0.000373 0.000321 -0.000335 0.000987 -0.000529 0.000459

�3 -0.000622 -0.000574 -0.000580 -0.000529 0.001191 -0.000110

� 0.000079 0.000050 -0.000469 0.000459 -0.000110 0.000376

4 PROGRAM STRUCTURE AND I/O

4.1 Using NGMLE

The algorithm described previously has been implemented in FORTRAN 77. Though

a single call to a subroutine is enough to obtain the estimates required, the program

is composed of building blocks which are broken into the following libraries. The user

will be unaware of this except at the time of compilation where the libraries must be

located in the same directory or path. The following is a list of libraries utilized by

the non-Gaussian MLE subroutine (ngmle).

POPFNC.for Develops the MLE [Lii and Rosenblatt 1996] and

stands for the pop ulation func tion associated

with a popular stochastic maximization technique.

Includes polynomial multiplication and inversion

subroutines.

COVAR.for Calculates the covariance matrix of the unknown

parameters and includes matrix utilities.

SEARCH.for Performs the search of the MLE surface.

Decides which search method to use and

either implements the uniform grid search or

the Simulated Annealing/Genetic Algorithm.

[Holland, 1992],[Vanhaarhoven and Aarts 1987]

PUBLIC.for Contains the public domain software which

includes a random number generator, polynomial

root �nder and matrix inverter.
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The driver program must call the non-Gaussian MLE subroutine as described below.

The user must compile the libraries and supply the scaled density function. Here is

a rough outline of how to structure the driver program.

c Dimension all variables including the work

c space variables.

. . .

c Read in data

. . .

c Assign input values for the subroutine call

. . .

call ngmle(nx,x,p,q,etalim,c1,c2,ndiv,nrep,supsag,rspc,ispc

z,nz,xmle,eta,covvec,stdev,nnzc)

. . .

c Output Results

c Be sure to resolve the covariance vector

c into the covariance matrix properly.

c Refer to the example test drivers.

. . .

The input-output table follows which de�nes the parameters for the subroutine. In

addition, sample calculations are provided for normalizing a distribution and de�ning

the constants required by the program.
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INPUTS

TYPE VARIABLE COMMENTS

INTEGER NX The actual number in the sequence X.

REAL(array) X The ARMA sequence to be analyzed.

INTEGER P An integer in the ARMA(p,q)

sequence. The AR degree.

INTEGER Q An integer in the ARMA(p,q)

sequence. The MA degree.

REAL ETALIM The lower and upper bounds within which

(2 dim array) to search for the coe�cient values,

ETALIM(1,j)=lower bound of the jth coe�cient.

ETALIM(2,j)=upper bound of the jth coe�cient.

REAL C1 A constant used in the covariance calculations.

REAL C2 A constant used in the covariance calculations.

INTEGER NDIV The number of subdivisions per parameter to

sequentially search the MLE surface.

INTEGER NREP The number of repetitions to search the

surface as the search volume is collapsed

about the global maximum. Each collapse

improves the estimates accuracy by 1/NDIV.

INTEGER SUPSAG Suppression of the genetic algorithm and

simulated annealing. SUPSAG = 1 suppresses

the stochastic search in favor of the sequential.

REAL(array) RSPC A real work space vector. Its dimension is

(11*101+2*NX+124*NP+10*NP*NP)

NP=P+Q+1 where P,Q, and NX have been

previously de�ned.

COMPLEX(array) CSPC A complex work space vector. Its dimension is

(4*NP)

INTEGER(array) ISPC A integer work space vector. Its dimension is

(200+4*NP) where NP has been previously

de�ned.

OUTPUTS

REAL(array) Z The estimated driving sequence

INTEGER NZ The number of components in the

estimated driving sequence vector.

REAL XMLE The non-Gaussian MLE. Refer to equation (24).

INTEGER(array) ETA The estimated parameter values.

Refer to equation (1).

REAL(array) COVVEC The estimated covariance vector for the

parameter estimates.

REAL(array) STDEV The standard deviation of the

estimated parameters.

INTEGER NNZC The number of non-zero parameters. Refer to

Driver program for an ARMA(2,12) example.
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4.2 User Supplied Functions and Constants

The user must supply the probability density of the driving noise process f�(z) =

��1f(z��1) in order to calculate the ARMA model parameters from equation (1).

The two constants c1 and c2 are utilized for the calculation of the covariance matrix

[equations 1.4 from Lii and Rosenblatt 1996]. The constants have the following form

c1 = �2E(
f
0
�

f�
(z))2; (32)

c2 = E(z
f
0
�

f�
(z))2: (33)

Note: The two constants are �xed for the given probability distribution. These are

calculated prior to the analysis if the density is of a suitable parametric form but may

require a two step process if numerical integration is required to obtain the constants

once the scale factor has been found.

To facilitate the discussion of scaling the density and calculating the constants,the

ARMA(2,12) example depicted in the driver program will be fully evaluated. This

should be su�cient to allow the user the ability to prescribe any parametric or non-

parametric density function. If the input density function is non-parametric then (c1
and c2) will have to be calculated numerically.

4.2.1 Example to scale the Laplace Density

The Laplacian probability density is normally written as

f(z) =
1

2�
e
�jzj
� : (34)

To scale this function we need to modify z by the appropriate quantity. The standard

deviation of this function is � =
p
2�. Therefore, the proper scaling function is

f�(z) =

p
2�

�
f(

p
2�z

�
) (35)

=
1p
2�

e
�
p
2jzj
� : (36)
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The density supplied by the user becomes

f(z) =
1p
2
e�

p
2jzj (37)

which in Fortran code would be the following function.

function dnsity(z)

dnsity = exp(-sqrt(2.0)abs(z))/sqrt(2.0)

return

end

The actual calling sequence in the program would be fsigma=dnsity(z/sigma)/sigma.

The probability density function must be speci�ed properly or the results will not be

as intended. The program will search for the best � to maximize the log likelihood.

4.2.2 Example Calculation and implementation of c1 for the Laplacian

Distribution

c1 = �2E(
f
0
�

f�
(z))2 (38)

By using a simple technique of taking the derivative of a log, we can manipulate the

above equation for the Laplace distribution by

f
0
�

f�
(z) =

d

dz
log(f�(z)) (39)

which gives

(
d

dz
log(f�(z)))

2 =
2

�2
: (40)

Finding the expectation of this gives the following constant

c1 = �2E(
2

�2
) (41)

= 2: (42)
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Table 5: Constants utilized in the asymptotic covariance calculations for familiar

distributions
Name c1 c2
Laplace 2 2

Gaussian 1 3

Student t(4) 1.43 2.14

Exp Power (� = �0:75) 2.55 9

4.2.3 Example Calculation and implementation of c2 for the Laplacian

Distribution

c2 = E(z
f
0
�

f�
(z))2 (43)

Similarly for this

c2 = E(z2
2

�2
) (44)

= 2 (45)

since the scaled expectation squared is simply the variance of this distribution. Table

5 gives various common distribution values for the constants de�ned above.

5 PROGRAMMATIC CONSIDERATIONS

5.1 Restrictions

The root �nding technique (refer to equations 10-13) requires that the polynomial

under investigation be the order speci�ed. If the range to search for the last coe�cient

(i.e. �p or �q) passes exactly through zero thus reducing the order of the polynomial,

then an error will occur. This can be eliminated by making sure that the range and

the corresponding search grid never pass through this point. It is also important to

make sure that the density function is not exactly zero (refer to equation 24). This

can be mitigated by providing a lower tolerance limit in the user supplied density

function.

No limits have been placed on the number of parameters � or sequence size xt.

However, the procedure has only been utilized with 19 parameters and a sequence

size of 5000 for testing ARMA processes. The Simulated Annealing and Genetic

Algorithms have been tested indivdually for up to 80 parameters and the polynomial
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root �nder has been tested up to a 100th degree polynomial. This has been adequate

for all the problems we have encountered. If the need arises to go beyond this limit

then the increase in sequence size and the parameter space will increase the computer

time proportionately.

5.2 Precision

Single Precision is used throughout. The numerical procedures for inverting the

MA polynomial �(B) is a source of possible error for roots close to the unit circle.

Currently a maximum of 100 coe�cients for L�0 , L�0 from equation 23 are used in

this procedure which automatically varies according to the position of the roots . The

closer the roots are to the unit radius, the more terms are required in the inverted

polynomial truncation. A tolerance of 10�6 is utilized for a run of 5 coe�cients as a

secondary truncation criteria. It is assumed that the sequence has been checked for

unit roots and they are eliminated prior to analysis by this algorithm.

Computational results to 5 signi�cant places have been obtained on the Sun

sparc 2, 5, and 20 Workstations using di�erent operating systems. The Dec Alpha

A500MP-R also matched these results with the stated accuracy. These have been

compared to Monte-Carlo simulations for low-order ARMA processes which agree

with the numerical results of this algorithm [Breidt et al., 1991 and Lii and Rosenblatt

1992,1996].

5.3 Timing

Several techniques are utilized in the searching process due to the multiple local max-

ima in the Likelihood surface. If the number of parameters is small, the program will

use a uniformly distributed grid search procedure to �nd the Global Maximum. If the

number of parameters is large, then stochastic procedures (i.e. simulated annealing

and genetic algorithms) will be simultaneously executed and compared to locate the

Global Maximum.

The program will automatically choose the technique which will search the pa-

rameter domain in the shortest execution time unless the stochastic methods are

intentionally suppressed. The Sun Sparc stations and the DEC Alpha were used

to determine the optimum mix of deterministic and stochastic search procedures to

speed the examination of the Likelihood surface. If the total MLE computations

NMLE exceeds 120,000 then the procedure will opt for a stochastic search technique.

This is an ad-hoc number derived from experience for a number of di�erent problems.

The equation which determines the number of computations called for is a product

of the number of subdivisions NDIV of each non-zero parameter
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NMLE = (NDIV )NNZC : (46)

The number of subdivisions NDIV is controlled by the user whereas the model being

investigated sets the number of non-zero coe�cients toNNZC. To force the stochastic

search the user can arti�cially make the number of subdivisions large enough to

exceed (120; 000)
1

NNZC . A 
ag has also been included to suppress the stochastic

search methods if only a deterministic search is desired.

In general, by increasing the sequence length, the execution time will be propor-

tionately increased. However, increasing the number of parameters will exponentially

increase the execution time. A tradeo� has been accomplished by using a stochastic

search procedure which permits an e�cient utilization of cpu time thereby making

the increase in parameters a proportional increase in execution time.

5.4 Additional Comments

Some of the numerical support routines used in implementing this procedure were

obtained from the internet. The three main functions found in the public domain

include a pseudo-random number generator, polynomial root �nder, and a matrix

inverter. They are composed of subroutines and functions which are called by the

program and found in PUBLIC.for identi�ed by the following subroutine names:

SUNIF A psuedo-uniform random number generator used in the stochastic

search procedures. i.e. genetic algorithm/simulated annealing

================================

NIST Guide to Available Math Software.

Fullsource for module 599 from package TOMS.

Retrieved from NETLIB on Wed Jun 4 20:21:26 1997.

================================

ALGORITHM 599, COLLECTED ALGORITHMS

FROM ACM ALGORITHM APPEARED IN

ACM-TRANS. MATH. SOFTWARE,

VOL.9, NO. 2, JUN., 1983, P. 255-257.
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RPQR79 Polynomial root �nder utilized to seperate

roots inside and outside the unit circle.

================================

BEGIN: PROLOGUE RPQR79

DATE WRITTEN: 800601 (YYMMDD)

REVISION DATE: 820801 (YYMMDD)

CATEGORY NO. F1A1A

KEYWORDS: POLYNOMIAL ROOTS,REAL,ROOTS,

ZEROES,ZEROS

================================

AUTHOR: VANDEVENDER, W. H., (SNLA)

PURPOSE: To �nd the zeros of a polynomial with real

coe�cients.

DESCRIPTION: This routine is an interface to an eigenvalue

routine in EISPACK.

This interface was written by Walter H. Vandevender.

ABSTRACT: This routine computes all roots of a polynomial

with real coe�cients by computing the eigenvalues of the

companion matrix.

SPOSV Matrix inversion for the Covariance terms.

================================

NIST GUIDE TO AVAILABLE MATH

SOFTWARE. FULLSOURCE FOR MODULE SPOSV

FROM PACKAGE LAPACK. RETRIEVED FROM

NETLIB ON TUE JUN 17 13:13:58 1997.

=================================

LAPACK DRIVER ROUTINE (VERSION 2.0)

UNIV. OF TENNESSEE, UNIV. OF CALIFORNIA

BERKELEY, NAG LTD.,

COURANT INSTITUTE, ARGONNE NATIONAL LAB,

AND RICE UNIVERSITY

MARCH 31, 1993

PURPOSE

SPOSV COMPUTES THE SOLUTION TO A REAL SYSTEM

OF LINEAR EQUATIONS

A * X = B,

WHERE A IS AN N-BY-N SYMMETRIC POSITIVE

DEFINITE MATRIX AND X AND B

ARE N-BY-NRHS MATRICES.
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There is a typographical error in the paper de�ning the covariance matrix found

in Table 1 of Lii and Rosenblatt, 1996. The 8th term in the table should be

�u;v =
X

j

�
0
j�u�

0
j+v�p�r0: (47)

In addition, our de�nition of all the ARMA polynomials (� and �) utilizes a positive

sign convention which changes the sign of the 14th and 15th terms in the same

Table (Table 1 of Lii and Rosenblatt, 1996). With these three modi�cations a direct

comparison of the code and the equations in the table may be made since the equations

and the code have the same lexicographical characteristics. A modi�cation has also

been made in the parameterization of the model results. The MLE parameterization

utilized ��, �+, �� and �+. To obtain the � and � parameterization required the

development of the Jacobian to produce the �nal results. This has been implemented

by the covariance library functions. Only an interested user comparing the code with

the referenced papers need be aware of these di�erences.
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