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Abstract. This paper fixes size distortions of tests for structural parameters in
the simultaneous equations model by computing critical value functions based on
the conditional distribution of test statistics. The conditional tests can then be
used to construct informative confidence regions for the structural parameter with
correct coverage probability. Commands to implement these tests in Stata are also
introduced.
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1 Introduction

When making inferences about coefficients of endogenous variables in a structural equa-
tion, applied researchers often rely on asymptotic approximations. However, as empha-
sized in recent work by Bound, Jaeger and Baker (1995) and Staiger and Stock (1997),
these approximations are not satisfactory when instruments are weakly correlated with
the regressors. In particular, if identification can be arbitrarily weak, Dufour (1997)
showed that Wald-type confidence intervals have zero confidence level. The problem
arises because inference is based on nonpivotal statistics whose exact distributions de-
part substantially from their asymptotic approximations when identification is weak.

Based on the methods developed by Moreira (2001a,b) and explained thoroughly by
Moreira (2002), we construct valid tests of structural coefficients based on the condi-
tional distribution of nonpivotal statistics. The conditional approach is then employed
to find critical value functions for Wald and likelihood ratio tests yielding correct rejec-
tion probabilities no matter how weak the instruments.

Together with the Anderson-Rubin and score tests, the conditional Wald and likeli-
hood ratio tests can be used to construct confidence intervals that have correct coverage
probability even when instruments may be weak and that are informative when instru-
ments are good. The regions based on the conditional Wald test necessarily contain
the 2SLS estimator while the ones based on the conditional likelihood ratio and score
tests are centered around the limited-information maximum likelihood (LIML) estima-
tor. Therefore, confidence regions based on these tests can be used as reliable evidence
of the accuracy of commonly used estimators.

In Section 2, exact results are developed for the two-equation model under the
assumption that the reduced-form disturbances are normally distributed with known
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covariance matrix. Sections 3 extends the results to more realistic cases and explains
how to construct confidence regions based on the conditional test. Finally, Section 4
considers the syntax of the program and illustrates a few examples.

2 The Conditional Approach

2.1 The Model

To simplify exposition, consider a simple model in which the structural equation of
interest is

y1 = y2β + u (1)

where y1 and y2 are n × 1 vectors of observations on two endogenous variables, u is
an n × 1 unobserved disturbance vector, and β is an unknown scalar parameter. This
equation is assumed to be part of a larger linear simultaneous equations model which
implies that y2 is correlated with u. The complete system contains exogenous variables
which can be used as instruments for conducting inference on β. Specifically, it is
assumed that the reduced form for Y = [y1,y2] can be written as

y1 = Zπβ + v1 (2)
y2 = Zπ + v2

where Z is an n × k matrix of exogenous variables having full column rank k and π
is a k × 1 vector; the n rows of the n × 2 matrix of reduced form errors V = [v1, v2]
are i.i.d. normally distributed with mean zero and 2× 2 nonsingular covariance matrix
Ω = [ωi,j ]. The goal here is to test the null hypothesis H0 : β = β0 against the
alternative H1 : β 6= β0.

Commonly used tests reject the null hypothesis when a test statistic J takes on a
value greater than a specified critical value c. The test is said to have size α if, when
the null hypothesis is true,

Prob(J > c) ≤ α

for all admissible values of the nuisance parameters π and Ω. Since π and Ω are
unknown, finding a test with correct size is nontrivial. Of course, if the null distribution
of J does not depend on the nuisance parameters, the 1− α quantile of J can be used
for c and the null rejection probability will be identically equal to α. In that case, J is
said to be pivotal and the test is said to be similar.

In practice, one often uses test statistics that are only asymptotically pivotal:

lim
n→∞

prob (J > cα) = α

However, the actual size of the test may differ substantially from the size based on the
asymptotic distribution of J . In fact, based on earlier work by Gleser and Hwang (1987),
Dufour (1997) shows that the true levels of the usual Wald tests deviate arbitrarily
from their nominal levels if π cannot be bounded away from the origin. Since weak
instruments are common in empirical research, it would be desirable to find tests with
approximately correct size α even when π cannot be bounded away from the origin.
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2.2 Known Covariance Matrix

To ease exposition, suppose for now that besides the assumption of normality Ω is
known. In this case, the k × 2 matrix Z ′Y is a sufficient statistic for the unknown
parameters (β, π). Hence, without loss of generality, any test depends on the data only
through Z ′Y . However, for any known nonsingular, nonrandom 2 × 2 matrix D, the
k× 2 matrix Z ′Y D is also sufficient. A convenient choice is the matrix D = [b,Ω−1a],
where b = (1,−β0)

′ and a = (β0, 1)′. Then the sufficient statistic can be represented
by the pair of k × 1 vectors

S = Z ′Y b = Z ′(y1 − β0y2) and T = Z ′Y Ω−1a

which are two independent, normally distributed vectors, T having a null distribution
depending on π and S having a null distribution not depending on π.

The goal here is to find a similar test at level α based on a test statistic ψ (S,T ,Ω, β0).
The following approach is suggested by the analysis in Lehmann (1986, Chapter 4). Al-
though the marginal distribution of ψ may depend on π, the conditional null distribution
of ψ given that T takes on the value t does not depend on π at all. As long as the con-
ditional distribution is continuous, its (1− α)-quantile c(t,Ω, β0, α) can be computed
and used to construct the similar test that rejects H0 : β = β0 if

ψ (S, T ,Ω, β0) > cψ (T ,Ω, β0, α)

Furthermore, Moreira (2001a) shows that T = a′Ω−1a·Z ′Zπ̂, where π̂ is the maximum
likelihood estimator of π when β is constrained to take the null value β0 and Ω is known.
Therefore, this method of finding similar tests can be interpreted as adjusting the critical
value based on a preliminary estimate of π. We illustrate below the conditional method
to the four test statistics included in the package.

Example 1 The Anderson-Rubin statistic for known Ω is

AR = S′
(
Z′Z

)−1
S/σ2

0

The distribution of AR is χ2(k) under the null hypothesis and its critical value function
collapses to a constant

cAR(t,Ω, β0, α) = qα(k)

where qα(df) is the 1− α quantile of a χ2 distribution with df degrees of freedom.

Example 2 A score statistic is given by:

LM =
(S′π̂)2

σ2
0π̂′Z ′Zπ̂

The null distribution of LM is χ2(1) and its critical value function collapses to a con-
stant

cLM (t,Ω, β0, α) = qα(1).
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Example 3 The Wald statistic centered around the 2SLS estimator is given by

W = (b2SLS − β0)
′
Y ′

2NZY 2 (b2SLS − β0) /σ̂2

where b2SLS = (y′2NZy2)−1y′2NZy1 and σ̂2 = [1 −b2SLS ]Ω[1 −b2SLS ]′. Here, the
nonstandard structural error variance estimate exploits the fact that Ω is known. The
critical value function for W can be simplified to

cW (T ,Ω, β0, α) = c̄W (τ,Ω, β0, α)

where τ ≡ t′(Z ′Z)−1t/
(
a′Ω−1a

)
.

Example 4 The likelihood ratio statistic, for known Ω, is given by

LR =
1
2

[
S̄
′
S̄ − T̄

′
T̄ +

√
[S̄′S̄ + T̄

′
T̄ ]2 − 4[S̄′S̄ · T̄ ′

T̄ − (S̄′T̄ )2]
]

where S̄ =
(
b′Ωb ·Z ′Z

)−1/2
S and T̄ =

(
a′Ω−1a ·Z ′Z

)−1/2
T . The critical value

function for the likelihood ratio test has the form

cLR (T ,Ω, β0, α) = c̄LR (τ, α) .

Note that it does not dependent directly on Ω and β0.

To implement the conditional procedure based on a statistic ψ, the package computes
the conditional quantile cψ(t,Ω, β0, α) using Monte Carlo simulation from the known
null distribution of S. Indeed, the package need only do a simulation for the actual
value t observed in the sample and for the particular β0 being tested; there is no need
to derive the whole critical value function cψ(t,Ω, β0, α).

3 Extensions

The package also extends the previous theory to a structural equation with additional
exogenous variables. Consider the structural equation

y1 = y2β + Xγ + u

where the “underlying” equation that relates the endogenous explanatory variable and
the instruments is given by

y2 = Zπ + Xδ + v2

The unknown parameters associated with X can be eliminated by taking orthogonal
projections and considering the statistics

S = Z ′MXY b and T = Z ′MXY Ω−1a
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where MX = I −X
(
X ′X

)−1
X. For a nonpivotal statistic ψ(S, T ,Ω, β0), the pack-

age finds the critical value by computing the 1 − α quantile of the distribution of ψ
conditioned on T = t.

For the case in which the error distribution is unknown, Moreira (2002) shows that
the conditional approach can be modified by replacing Ω by the consistent OLS estima-
tor. Weak-instrument asymptotics developed by Staiger and Stock (1997) and Monte
Carlo evidence shows that this modification does not affect significantly the size and
power of the resulting test.

The package also computes confidence regions by inverting the conditional tests;
that is, the whole region in which each statistic is below its critical value curve. Unlike
Wald-type confidence intervals, the confidence regions based on the conditional tests
have correct coverage probability even when the instruments are weak and are also
informative when instruments are good.

4 Stata Implementation

4.1 Command syntax

The software package accompanying this article contains three Stata commands to im-
plement the tests discussed above. The first command, condivreg, estimates a regres-
sion equation with an endogenous regressor using either 2SLS or LIML. We are unaware
of any other widely available programs for LIML estimation within Stata. Two com-
mands, condtest and condgraph, allow for post-estimation testing and construction
of confidence intervals. First we discuss the syntax of the commands, and then we
illustrate their use with an example.

The first step in conducting hypothesis tests involving the endogenous variable is to
fit the regression model using the condivreg command:

condivreg depvar
[
varlist1

]
(endogvar = varlistIV)

[
if exp

] [
in range

] [
, {

2sls | liml } nocons noinstcons level(#)
]

The syntax is similar but not identical to that for Stata’s built-in ivreg command.
depvar is the dependent variable in the model, and the optional varlist1 contains the
exogenous variables. endogvar denotes the endogenous variable in the equation; cur-
rently both the theory and the command are limited to the case of a single endogenous
variable. varlistIV includes the instruments to be used. The if and in modifiers work
in the usual way. There are five options that may be specified:

2sls requests that the 2SLS estimator be used. 2sls is the default.

liml requests that the LIML estimator instead be used. 2sls and liml are
mutually exclusive.

nocons indicates that no constant term is to be included in the regression
equation. The default is to include a constant term.



6 Tests with Correct Size

noinstcons indicates that no constant term is to be included in the first-
stage regression of the endogenous variable on the instruments and the
exogenous variables. Stata’s ivreg command excludes a constant from
both equations if its noconstant option is specified. Usually one will
not want to specify noinstcons unless nocons is also specified, but we
give the user the option to experiment. By default a constant term is
included.

level(#) specifies the nominal significance level to be used when displaying
the results. The default is to use the value stored in the global macro
$S level.

The 2SLS estimator is implemented using the formulas shown in [R] ivreg, and the
LIML estimator follows the derivation in Davidson and MacKinnon (1993, pp. 644–651).

After the equation has been estimated, the user can perform conditional tests in-
volving the parameter on endogvar using the condtest command. The syntax is

condtest ,
[
beta(#) reps(#) level(#)

]

This command has three options:

beta(#) contains the hypothesized value β0 of the parameter on the endoge-
nous variable. If this option is not specified, a default value of β0 = 0 is
used.

The reps(#) option specifies the number of simulations to perform to com-
pute the critical values of the test statistics. The default is 200.

level(#) specifies the nominal significance level to be used when displaying
the results. The default is to use the value stored in the global macro
$S level.

Additionally, the condgraph command can be used to create graphs showing the
test statistics and critical values for a range of null hypotheses. Using these graphs, the
user can then determine confidence intervals. The syntax is

condgraph , stats(string)
[
reps(#) points(#) range(numlist) level(#)

saving(filename) replace text comma
]

The supported options are

stats(string) lists the test statistics and critical values to be included in the
graph. Any one or two of the following may be specified: AR, LM, LR, and
Wald, for the Anderson-Rubin, Lagrange multiplier (score), likelihood
ratio, and Wald statistics, respectively. stats(string) is not optional.

reps(#) specifies the number of simulations to perform for each value of
β0 plotted on the graph. The default is 200.
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points(#) specifies the number of equally spaced values of β0 to include
on the graph. The default is 20.

range(numlist) takes two numbers representing the minimum and maxi-
mum values of β0 to include in the graph. The default is to use an inter-
val centered at the 2SLS or LIML estimate from the previous condivreg
result with a radius twice that of a confidence interval based on the con-
fidence level specified by level(#). That is, if β̂ is the estimated value
of the parameter on the endogenous variable, σ̂β is its standard error,
and 1−α is the confidence level, then the default endpoints for the graph
are β̂ ± 2zα/2σ̂β .

level(#) specifies the nominal significance level to be used when presenting
the results. The default is to use the value stored in the global macro
$S level.

saving(filename) requests that a file be saved which contains, for each value
of β0, the four test statistics along with their critical values. The file is
saved in Stata’s .dta dataset format with the name filename.dta unless
the text option is specified.

replace instructs the program to replace any existing version of the file
when saving to disk. The default is to print out an error message and not
change the file on disk. replace can only be specified if saving(filename)
is used.

text requests that the test statistics be saved as a text file instead of a Stata
dataset. The filename will be filename.out, and the columns will be tab-
delimited. If text is requested without the saving(filename) option, an
error message is printed.

comma requests that commas be used as column delimiters instead of tabs.
If comma is requested without the saving(filename) and text options,
an error message is printed.

condivreg and condtest save results as e-class and r-class macros, respectively.
Details are relegated to the appendix. condgraph does not save results as macros
because it has the saving() option. The commands are easier to use than the syntax
diagrams may lead one to believe, and the following examples clarify their usage.

4.2 A Simple Example

To illustrate how one uses these commands, we use the same dataset and regression
specification that is used in [R] ivreg. The first step is to estimate the regression:

(Continued on next page)
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. use http://www.stata-press.com/data/r7/hsng2.dta, clear

. condivreg rent pcturban (hsngval = faminc reg2-reg4)

Instrumental variables (2SLS) regression

First-stage results Number of obs = 50
----------------------- F( 2, 47) = 42.66
F( 5, 44) = 19.66 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = 0.5989
R-squared = 0.6908 Adj R-squared = 0.5818
Adj R-squared = 0.6557 Root MSE = 22.862

------------------------------------------------------------------------------
rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
hsngval | .0022398 .0003388 6.61 0.000 .0015583 .0029213
pcturban | .081516 .3081528 0.26 0.793 -.5384074 .7014394

_cons | 120.7065 15.70688 7.68 0.000 89.10834 152.3047
------------------------------------------------------------------------------
Instrumented: hsngval
Instruments: pcturban faminc reg2 reg3 reg4
------------------------------------------------------------------------------
For hypothesis tests on hsngval use condtest and condgraph.
------------------------------------------------------------------------------

Notice that the coefficient estimates and their standard errors as well as the summary
statistics in the upper righthand corner of the output are identical to those shown on
page 133 of [R] ivreg since we (by default) selected the 2SLS estimator. Instead of
showing an ANOVA table, however, condivreg displays statistics from the first stage
regression of the endogenous variable hsngval on the instruments pcturban, faminc,
reg2, reg3, and reg4. If the first-stage R2 were low, then traditional tests involving
the parameter on hsngval could be very misleading; of course, the tests implemented
by this software package possess good statistical properties even in that case.

Suppose that we wanted to test the null hypothesis that the parameter on hsngval
equalled 0.002. To do this, we use the condtest command. Because the critical values
are based on simulation, we will set the random number seed so that the results can be
reproduced.

(Continued on next page)
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. set seed 123

. condtest, beta(0.002) reps(1000)

Size-correct test statistics based on
Moreira’s (2002) conditional approach.

H0: b[hsngval] = 0.0020

Critical values based on 1000 simulations.
------------------------------------------------------------------------------
Statistic Value 95% C.V. Asy. C.V.*
------------------------------------------------------------------------------
Anderson-Rubin 15.9699 9.4877
Likelihood Ratio 4.4091 3.7422 3.8415
Lagrange Multiplier (Score) 3.9811 3.8415
Wald 0.6198 4.7326 3.8415
------------------------------------------------------------------------------
*Asy. C.V. denotes the usual asymptotic chi-square-one critical
values for the Wald and likelihood ratio test statistics.
------------------------------------------------------------------------------

Here we asked that 1,000 simulations be performed in computing the critical values
for the likelihood ratio and Wald test statistics. At the 5% significance level, based
on the Anderson-Rubin, score, and conditional likelihood ratio tests, we can reject
the null hypothesis that β = 0.002 because each one exceeds its corresponding 95%
critical value. However, the conditional Wald test does not allow us to reject that null
hypothesis. Also shown in the output are the standard χ2(1) critical values associated
with the traditional unmodified likelihood ratio and Wald tests. For the size-correct
Lagrange multiplier statistic, the critical value is the same as its asymptotic χ2(1)
counterpart. The Anderson-Rubin statistic has a χ2(k) distribution where k is the
number of exogenous variables excluded from the main equation; here k = 4.

Suppose now we would like to make a graph of the conditional likelihood ratio test
statistic for a range of values of β0 so that we can determine an approximate 95%
confidence interval. As shown by Moreira (2001b, 2002), the conditional likelihood
ratio test has better overall power properties than the other three tests. Since our last
estimation results are still those from condivreg, we do not need to reestimate the
model. Making confidence intervals is easy when we save the data on the graph, so we
will do that here.

. set matsize 110

. condgraph, stats(lr) points(50) range(0.0018 0.0040) saving(grpoints)

condgraph requires that the matsize be set at least as high as the number of points
in the graph plus the number of instrumental and exogenous variables in the equation
being estimated. Because condgraph is computationally intensive, be prepared to wait
awhile when requesting a large number of points on the graph and a large number of
simulations. Figure 1 shows the graph from the prior command.

(Continued on next page)



10 Tests with Correct Size
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Figure 1: Conditional Likelihood Ratio Test Statistics and Critical Values

Whenever the Wald or likelihood ratio statistics are requested, the asymptotic χ2(1)
critical value is also plotted on the graph for comparison purposes. In this example
the simulated critical values are similar to their asymptotic counterparts. However, the
discrepancy can be large if the instruments are weak.

As discussed in Section 3, the confidence region is the region of the graph where the
observed statistic lies below its critical value. Looking at the graph, the 95% confidence
region based on the likelihood ratio statistics appears to be approximately [0.020, 0.039].
Since we saved the data plotted on the graph with the filename grpoints.dta, we can
get a more accurate confidence interval:

. use grpoints, clear

. sort beta

. list beta lr lrcrit if lr[_n-1] > lrcrit[_n-1] & lr[_n] <= lrcrit[_n] & _n > 1

beta lr lrcrit
7. .0020694 3.39149 4.027182

. list beta lr lrcrit if lr[_n-1] <= lrcrit[_n-1] & lr[_n] > lrcrit[_n] & _n > 1

beta lr lrcrit
44. .0037306 4.023512 3.867011
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The first list command finds the value β∗ such that for all β < β∗ the likelihood
ratio statistic is greater than the corresponding critical value and for all β ≥ β∗ the
statistic is less than its critical value. Analogously, the second list command finds
the right endpoint of the confidence interval. Hence, the 95% confidence interval is
approximately [0.00207, 0.00373]. Notice that this 95% confidence interval based on the
conditional likelihood ratio test statistic differs quite substantially from the traditional
one reported by condivreg. In this example the conditional likelihood ratio confidence
interval lies to the right of the usual one, and it is slightly wider.

The test command can also be used to compare the size-correct Wald statistic with
the traditional Wald statistic. Since we just loaded in the graph data, we first have to
reload the original dataset; we do not need to reestimate the model since it is still in
memory.

. use http://www.stata-press.com/data/r7/hsng2.dta, clear

(1980 Census housing data)

. test hsngval = 0.002

( 1) hsngval = .002

F( 1, 47) = 0.50
Prob > F = 0.4825

Notice that the Wald test statistic for the hypothesis H0 : β0 = 0.002 computed by
condtest was 0.62, while here the Wald statistic is 0.50. The difference arises because
different estimators for the variance of the disturbances in equation (1) are being used.

4.3 A Weak-Instrument Example

In the previous example, the instruments were quite highly correlated with the endoge-
nous variable: the first-stage R2 was 0.69. As Figure 1 showed, the simulated critical
value of the size-correct likelihood ratio statistic was close to its asymptotic counterpart.
However, in many applications the correlation is often low; and this example illustrates
the practical ramifications.

To begin, we load in an example dataset and fit a model using condivreg:

(Continued on next page)
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. use example, clear

. condivreg y1 x1 (y2 = z1-z3)

Instrumental variables (2SLS) regression

First-stage results Number of obs = 400
----------------------- F( 2, 397) = 24.76
F( 4, 395) = 4.10 Prob > F = 0.0000
Prob > F = 0.0029 R-squared = 0.6696
R-squared = 0.0399 Adj R-squared = 0.6679
Adj R-squared = 0.0302 Root MSE = 32.338

------------------------------------------------------------------------------
y1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
y2 | 1.011903 .1947045 5.20 0.000 .6291221 1.394684
x1 | 4.15736 1.702533 2.44 0.015 .8102529 7.504466

_cons | .7493957 1.655456 0.45 0.651 -2.505161 4.003952
------------------------------------------------------------------------------
Instrumented: y2
Instruments: x1 z1 z2 z3
------------------------------------------------------------------------------
For hypothesis tests on y2 use condtest and condgraph.
------------------------------------------------------------------------------

Notice that in this example, the first-stage R2 is only 0.04. Next we use condgraph to
plot the likelihood ratio statistic and its critical values for various levels of β0:

. condgraph, stats(lr) points(50) reps(1000) range(0 2)

The results are shown in Figure 2. The simulated critical value function lies above
the asymptotic χ2(1) counterpart and highlights the fact that inference based on the
usual tests may be misleading. Moreover, as the graph illustrates traditional confidence
intervals would be too narrow. In this example, the size-correct confidence interval
is approximately [0.4082, 1.6327], while the confidence interval using the likelihood ra-
tio test statistic and the asymptotic critical value is [0.5714, 1.5102]. The asymptotic
confidence interval is over 30% too narrow here.

(Continued on next page)
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Figure 2: Conditional Likelihood Ratio Test Statistics and Critical Values – Weak
Instruments
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6 Appendix – Saved Results

6.1 condivreg

condivreg saves in e():

Scalars

e(N) number of observations
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(F) F statistic
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e(r2) R-squared
e(r2 a) adjusted R-squared
e(rmse) root mean square error
e(mss) model sum of squares
e(rss) residual sum of squares
e(F first) first-stage F statistic
e(df m first) first-stage model degrees of freedom
e(df r first) first-stage residual degrees of freedom
e(r2 first) first-stage R-squared
e(r2 a first) first-stage adjusted R-squared

Macros

e(cmd) condivreg
e(cons) yes or no — constant in model
e(instcons) yes or no — constant in instruments list
e(model) 2sls or liml
e(instd) instrumented variable
e(insts) instruments
e(inst) excluded exogenous variables
e(exog) included exogenous variables
e(depvar) dependent variable

Matrices

e(b) coefficient vector
e(V) variance-covariance matrix

Functions

e(sample) marks estimation sample

6.2 condtest

condtest saves in r():

Scalars

r(beta) hypothesized value of beta
r(ar) Anderson-Rubin statistic
r(lm) Lagrange multiplier statistic
r(lr) likelihood ratio statistic
r(wald) Wald statistic
r(arcrit) critical value of Anderson-Rubin statistic
r(lmcrit) critical value of Lagrange multiplier statistic
r(lrcrit) critical value of likelihood ratio statistic
r(waldcrit) critical value of Wald statistic
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