Some Tools, Tips, and Tricks

Michael Ash*
mash@econ.berkeley.edu

17 June 1999

1 ETEX2:Tips

BETEX is available free over Internet for many platforms including DOS, Windows, and Mac-
intosh. See the CTAN web site, discussed at greater length in Section 1.4. There are also
low-cost distributions, e.g., on CD-ROM, that may be significantly easier to install than the
free distributions. Below I offer some of the IWTEX tricks that I use most frequently or that
I had a hard time figuring out. ETEX has a great worldwide community that will usually
answer how—to questions. The newsgroup for this discussion is comp.text.tex. Phil Spec-
tor’s BTEX presentations are on his web site: http://www.stat.berkeley.edu/ spector.
An excellent reference site for XTEX with a hyperlink table of contents is http://www.ens.
fr/~cousot/software/LaTeX-html/.

1.1 The minipage environment

Minipage lets you put boxes of text in your document with great flexibility about place-
ment. Footnotes in a minipage environment are handled in a way that is particularly useful
for putting footnotes in figures or tables. Footnotes are lettered instead of numbered, the
footnote counter begins at a,b,...within each minipage, and the footnotes appear at the
bottom of the minipage instead of at the bottom of the page.

Minipage takes an optional position argument, [t] for top or [b] for bottom, and a manda-
tory width argument. You can specify the width with a measurement, e.g., {4in} will give
4 inches, or

{0.75\textwidth}

will give a minipage that is % the width of the text. The following minipage,

*For the time being, my web site is http://socrates.berkeley.edu/~maash. The web site has links
to many of the resources listed in this document. I have attempted to avoid making this document too
EML-specific.

This code will give a 2-inch
wide minipage that begins
at the 4-inch mark® on the
page.

“Note the use of hspace to
move the text to the 4-inch mark.
was produced with

\hspace{4in}\begin{minipagel} [t]{2in}
This code will give a 2-inch wide minipage that begins at the 4-inch
mark\footnote{Note the use of hspace to move the text to the 4-inch
mark.} on the page.
\end{minipage}

1.2 The table and tabular environments

The tabular environment allows the insertion of row-by-column grid of cells that I think of
as a table. The table environment inserts a numbered and captioned box in the text at a
place where you specify and ETEX finds room. It’s very common but not necessary to embed
a tabular environment inside a table environment. If you want an unnumbered, uncaptioned
grid of cells to appear in your text, you can jump right into the tabular environment.

One of my favorite constructions in ITEX is to embed tabular inside minipage inside
table. (You can save keystrokes by using emacs to edit your BTEX files; there is a shortcut
to insert environments with two keystrokes.) As noted above, this construction permits table
footnotes as well as table notes that are offset from the rest of the text.

Table 1: Minipage/footnote demonstration: Home Run Kings

Slugger Year HRs
Mark McGuire® 1998 70
Roger Maris® 1961 61

George Herman Ruth® 1927 60

Notes: This table shows some home run
kings and the number of home runs each
hit in his banner year.

Source: http://stats.espn.go.com/
premium/mlb/profiles/chart/players/
3866 .html

2On steroids, but natural steroids.

®No more asterisk, no more record.
¢“Babe”

The output in Table 1 was produced with the input in Table 2.

Table 2: Source for Home Run Kings

\begin{table} [htbp]
\begin{center}
\caption{Minipage/footnote demonstration: Home Run Kings}
\label{tab:hrk}
\begin{minipage} [t]{3in}
\begin{center}
\begin{tabular}[t]{lcc}
\hline\hline
Slugger & Year & HRs \\
\hline
Mark McGuire\footnote{On steroids, but natural steroids.} & 1998 & 70 \\
Roger Maris\footnote{No more asterisk, no more record.} & 1961 & 61 \\
George Herman Ruth\footnote{‘‘Babe’’} & 1927 & 60 \\
\hline\hline
\end{tabular}
\end{center}
Notes: This table shows some home run kings and the number of home runs
each hit in his banner year.\\
Source: \url{http://stats.espn.go.com/premium/mlb/profiles/chart/players/3866.html}
\end{minipage}
\end{center}
\end{table}

Aesthetic tip: Almost never use vertical lines in your tables. They do not aid reading
and they do not look good.

1.2.1 multicolumn

Multicolumn is a useful tool for designing IXTEX 2¢ tables. It allows text to take up more
than one column. The syntax is

\multicolumn{cols}{pos}{text}

where: cols specifies the number of columns to span; pos specifies the formatting of the entry
(c for centered, 1 for flushleft, r for flushright); and text specifies what text is to make up
the entry. There is an example of this in Table 3 with source in Table 4.

Another use of multicolumn is to change the alignment or justification of a single cell,
e.g., you would like the heading of a column to be centered but all of the numeric entries
to be right justified. In the tabular statement, specify the format of the whole column as
right justified; in the particular cell, use a one-column multicolumn statement to specify that
particular cell as centered.

\multicolumn{1}{c}{My text}

Table 3: Multicolumn demonstration

Age in
Person Year of birth 1969 1999
Dad 1940 29 59
Mom 1943 26 56
Me 1969 0 30

1.2.2 Column separators and decimal alignment

To align on decimal points, you can use the @ specifier in the tabular format. In scientific
tables it is often desirable to align the columns on a decimal point. This can be done using
the @ col specifier and breaking the number into the integral part in a right-justified column
and the fractional part in a left-justified column. Note that the decimal point is replaced by
the column separator, &, and that the @ suppresses the intercolumn space. The following
input:

\begin{tabular}{re{.}1}
3%14159\\
16&2\\
123&456

\end{tabular}

Table 4: Source for multicolumn demonstration

\begin{table} [htbp]
\caption{Multicolumn demonstration}
\label{tab:multicol}

\begin{center}
\begin{tabular}[t]{lccc}
\hline \hline

& & \multicolumn{2}{c}{Age in} \\
Person & Year of birth & 1969 & 1999 A\
\hline
Dad & 1940 & 29 & 59 \\
Mom & 1943 & 26 & 56 \\
Me & 1969 & O & 30 \\
\hline
\end{tabular}

\end{center}
\end{table}
3.14159
will display as: 16.2
123.456

1.2.3 Other tabular tips

You can draw horizontal lines across the entire table with the \hline function or across
several columns with \cline{i-j} function where i and j are column numbers.

You can stretch a narrow table to fill more of the page. LaTeX normally sets the width
of the tabular environment to “natural” width, i.e., determined from the contents of the
columns. For narrow tables it is sometimes more pleasing to make them wider. The tabular*
environments allows for setting a width; however, it is necessary to have rubber space between
colunmns that can expand to the specified width. This can often be most easily accomplished
by using an extracolsep command in an @ specifier as shown in the example below which
sets the table width to 75 percent of the text width.

\begin{tabular*}{0.75\textwidth}{@{\extracolsep{\fill}}cccr}
label 1 & label 2 & label 3 & label 4 \\

\hline % put a line under headers

item 1 & item 2 & item 3 & item 4 \\

\end{tabular*}
old label 1 label 2 label 3 label 4
yie Siteml item 2 item 3 item 4

1.3 Inserting graphics

BETEX can include a variety of graphics. I have found Encapsulated PostScript easiest to
include, but you can also include PostScript, .gif files, etc. The basic method is to use the
package graphicx and then to use the \includegraphics command. This command can,
but need not, appear inside the figure environment. The \includegraphics command offers
various options for enlarging, shrinking, stretching, and rotating the graphic. Read Reckdahl
(1997)’s excellent “Using Imported Graphics in BTEX 22”7 which is available in PostScript
format from:

ftp://ftp.tex.ac.uk/tex-archive/info/epslatex.ps
ftp://ftp.dante.de/tex-archive/info/epslatex.ps
ftp://tug2.cs.umb.edu/tex-archive/info/epslatex.ps

or in PDF format from:

ftp://ftp.tex.ac.uk/tex-archive/info/epslatex.pdf
ftp://ftp.dante.de/tex-archive/info/epslatex.pdf
ftp://tug2.cs.umb.edu/tex-archive/info/epslatex.pdf

You can also read Section 3 of this document on the xfig application.

1.4 Packages/CTAN

BETEX is a set of macros that use Donald Knuth’s typesetting program TEX. One of the
advantages of IXTEX is that it is (relatively) easy to extend. Many users worldwide have
written packages that extend the functions of BTEX. Some of these packages make one sim-
ple change to the functions of WTEX. Others create a set of new environments or functions.*
Some examples are fullpage (to widen all margins), doublespace (to control line spac-
ing), geometry (to control document dimensions, e.g., margins), url (to insert URL’s into
documents), but packages range from offering more control over figure captions (caption,
ccaption, caption2) through printing CD covers (cdcover) to notation for chess games
(chess). The relevant package file typically ends in .sty. Sometimes the .sty file contains
the documentation and sometimes it has accompanying text or dvi files that contain the
documentation. Packages are easy to install in your own directories (be sure the directory
is in the TEXINPUTS search path)

In most cases, the syntax to use the package is to include the following text in the
preamble of the document (after the documentclass statement but before \begin{document}.

\usepackage [options] {package?}

where options, if any, are specific to the package and discussed in the package documentation.
If you are using several packages without options, you can include them in one line.

'When you introduce a package, you relinquish some of INTEX’s terrific portability; someone with whom
you are sharing the source file must also have the package installed. Be aware of this as an important
drawback of packages.

\usepackage{fullpage,doublespace,url,harvard}

Another contribution of BTEX’s generous and vast user base is new document classes
(letter, article, report, and book are some of the document classes in the base KTEX distri-
bution). These files are typically named .cls or .sty. In this case, the invocation syntax
is

\documentclass [option]{class}

The user-contributed documentclass for which I am most grateful is ucthesis.cls which
handles all of the dissertation formatting (titlepage and other front matter, margins, etc.)
required by Graduate Division at UC—Berkeley.

Many packages are maintained by the TEXUser Group. These are catalogued on-line
with a search utility and brief descriptions and available for downloading at their web site,
http://www.tex.ac.uk/tex-archive/help/Catalogue/catalogue.html, and its mirrors.

The Comprehensive TEXArchive Network (CTAN) of which this catalogue is a small
part is an excellent source for IXTEX material, including free BTEX distributions for various
platforms. Several mirror sites for CTAN are ftp://ftp.cdrom.com/pub/tex/ctan/ and
ftp://ftp.tex.ac.uk/tex-archive

1.5 BibTeX

BibTeX is a wonderful bibliography manager for use with KTEX. Erik Heitfield (PhD ’98)
wrote the following explanation of how to use BibTeX.

This is an example of how to use bibtex, my favorite feature of KTEX. To cite
a reference, you use the “\cite” or “\citeasnoun” command. For example, you
should read the complete description of TEX (Knuth 1990), and Lamport (1986)

describes the INTEX macro extensions. The previous sentence was generated with

For example, you should read the complete description of \TeX\
\cite{knuthtex}, and \citeasnoun{Lamport} describes the \LaTeX\ macro
extensions.

If you like referring to papers by their authors and dates (i.e. APA style), check
out the “harvard.sty” package. (You must use the “harvard.sty” package to use
“citeasnoun.”) Finally, the “nocite” command is useful for making documents
appear in your bibliography which are not cited in your document.

Three files are required for a bibTeX document:
1. A .tex file containing a “bibliographystyle” command and a “bibliography”
command.

2. A .bst file (referenced by the “bibliographystyle” command) which describes
the format of bibliography entries. Several such files are included on the
Suns, and hundreds more can be downloaded from ctan.

7

3. A .bib database file (referenced by the “bibliography” command) which
contains information on the papers you want to cite.

To compile a bibTeX document, first run it through IXTEX 2¢, then through
bibTeX, and then through BTEX 2¢ a second (and maybe a third) time so all the
references are resolved.

Here is a short excerpt from this document’s associated bibliography file, tools.bib. Note
that each entry: (1) names the type of publication; (2) includes a key word that is used to
reference the entry in “cite” commands; and (3) contains the relevant bibliographic informa-
tion, including your optional annotations.

@Manual{gnumake,
title = {GNU Make},
OPTkey = {},
author = {Richard M. Stallman and Roland McGrath},
organization = {Free Software Foundation},
OPTaddress = {7},
OPTedition = {7},
year = {1988},
OPTmonth = {3,
note = {Available from http://www.gnu.ai.mit.edu/software/make/make.html},
OPTannote = {
+

O@string{aw = "Addison--Wesley Publishing Company"}

@book{knuthtex,
author="Donald E. Knuth",
title="The {\TeX}book",
publisher=aw,
year=1990,
annote="This book is the definative reference on the
{TEX} document formatting language. However, it
contains no information on \LaTeX\ extensions, and
is therefore of limited use to casual \LaTeX\
users."}

and here is a reprint of the lines that cause the bibliography to be printed at the end of this
file. The following appear as the last lines of this file.

\bibliographystyle{/usr/local/texmf/bibtex/bst/kluwer}
\bibliography{tools}
\nocite{*}

I cannot emphasize enough how useful and time-saving I found BibTeX while writing
my dissertation. There are utilities, many available for free that enable you to do more

sophisticated management of BibTeX databases. The emacs bibtex utility will allow you to
alphabetize entries and do some simple management. There are also scripts available from
the Comprehensive Perl Archive Network (CPAN, ftp://uiarchive.cso.uiuc.edu/pub/
lang/perl/CPAN/) that will convert common database formats, e.g., EconLit and MedLine,
into BibTeX entries.

1.6 \label and \ref

BTEX keeps track of numbering sections, equations, list items, figures, and tables and can
also manage reference to them at other points in the text. For example, you want to refer
correctly to the table with your critical regression results whether it’s Table 17 or Table
18. If you use emacs to edit your ITEX files and to insert sections, figures, and tables (see
Section 4.2), emacs will prompt you for labels. The basic labeling syntax is

\caption{This is my figure}
\label{fig:myfig}

or

\section{My section}
\label{sec:mysect}

It is not necessary to use “fig:” or “sec:” in the name, but I find it a useful mnemonic. To
refer to the label, use the ref syntax:

As we shall see in Section \ref{sec:mysect}...

and BETEX will insert the correct number each time it processes the file.

1.7 Fonts

ITEX allows some control over fonts. You can choose the size of text. The following standard
type size commands are supported by ITEX. The commands as listed here are “declaration
forms”. The scope of the declaration form lasts until the next type style command or the
end of the current group.

\tiny, \scriptsize, \footnotesize, \small, \normalsize, \large,
\Large, \LARGE, \huge, \Huge,

You can also use the environment form of these commands; e.g.
\begin{tiny}...\end{tiny}

You can also choose different typefaces, e.g., italic, boldface, sans serif, slanted. The
following type style commands are supported by ETEX. These commands are used so
\textit{italics text} will give italics text. The corresponding command in parenthe-
sis is the "declaration form”, which takes no arguments. The scope of the declaration form
lasts until the next type style command or the end of the current group.

The declaration forms are cumulative; i.e., you can say

\sffamily\bfseries

to get sans serif boldface. You can also use the environment form of the declaration forms;
e.g.
\begin{ttfamily}...\end{ttfamily}.

\textrm (\rmfamily) Roman.

\textit (\itshape) \emph Emphasis (toggles between \textit and \textrm).
\textmd (\mdseries) Medium weight (default). The opposite of boldface.
\textbf (\bfseries) Boldface.

\textup (\upshape) Upright (default). The opposite of slanted.

\textsl (\slshape) Slanted.

\textsf (\sffamily) Sans serif.

\textsc (\scshape) Small caps.

\texttt (\ttfamily) Typewriter.

\textnormal (\normalfont) Main document font.

\mathrm Roman, for use in math mode.

\mathbf Boldface, for use in math mode.

\mathsf Sans serif, for use in math mode.

\mathtt Typewriter, for use in math mode.

\mathit Italics, for use in math mode, e.g. variable names with
several letters.

\mathnormal For use in math mode, e.g. inside another type style
declaration.

\mathcal Calligraphic letters, for use in math mode.

1.7.1 Fonts and Numbering in Section Headings and Captions

Because KTEX does a good job maintaining the unity of structure of the document, it is
slightly inflexible in allowing you to choose the format of these structures. The packages
sectsty.sty and titlesec.sty available from CTAN (see Section 1.4) give some control over the
look (fonts and numbering) of section headings. The packages caption.sty and ccaption.sty
give some control over the look of figure or table captions.?

1.7.2 Text in math mode

Especially in economics, we may want to include text in equations. The \mbox{text} con-
struction will keep text from being italicized and will preserve spaces. Also, some math
functions involve text, e.g., log, exp, and sin. These should always be written with $\1log$,
\exp, and \sin
Compare
In(Labor® K apital®) = alnLabor + BlnK apital (1)

which was produced with

2Tn general, you can learn which package to use by searching the catalogue. In this case, the keyword
“section” or “caption” would yield these packages. See Sectionl.4.

10

\begin{equation}
1n (Labor~\alpha Kapital~\beta) = \alpha 1ln Labor + \beta 1ln Kapital
\end{equation}

and
In(Labor®Kapital”) = o In Labor + 3 In Kapital (2)

which was produced with

\begin{equation}
\1n (\mbox{Labor}~\alpha \mbox{Kapitall}~\beta) =
\alpha \1n \mbox{Labor} + \beta \1ln \mbox{Kapitall}
\end{equation}

1.8 Mailing labels

ETEX can be used the produce mailing labels that can be printed or xerographically repro-
duced onto self-adhesive labels. The document in Table 5 produces one sheet of 33 return
address labels for me. The labels package is designed for use with standard mailing labels.
You can learn more about mailing labels from the document, including how to read in a list
of addresses, by reading the labels.dvi document:

% xdvi /usr/local/texmf/tex/labels/labels.dvi

Table 5: Return address labels—complete document

\documentclass{article}
\usepackage{labels}
\LabelCols=3/
\LabelRows=11%
\TopBorder=0in
\BottomBorder=0in}
\LabelSetup
\numberoflabels=33
\begin{document}
\begin{labels}

Michael Ash

2238 Roosevelt, Apt B
Berkeley CA 94703-1722
\end{labels}
\end{document}

11

2 Some perl applications

There are many resources for learning perl, including Phil Spector’s excellent presenta-
tion which is available in PostScript and PDF formats from http://stat.berkeley.edu/
“spector. Rather than introduce perl, I want to show several ways I've applied perl to make
my work easier. Please feel free to ask me about the code in these applications

The first application is used in conjunction with on-line data extraction from the Panel
Study of Income Dynamics (http://www.umich.edu/"psid). The perl script (psidcode.pl)
takes as input the variable list chosen by the user and generated by the PSID web site.
The perl script then reads through all (16 codebooks representing 24 years of family and
individual data) of the compressed PSID codebook stored as zip files on the EML and
extracts only the chosen variable definitions. The script is currently available from “mash/
access/psidcode.pl and is reprinted in Appendix A.

One of the most useful features of perl for me is that it can write IXITEX 2z code. 1
did this to mass produce my job market letters and I also use it to write Stata output to
IXTEX 2¢ files. Remember that you need to use double backslashes (\\) when you print in
perl to generate a single backslash in the BTEX file perl generates. The following code,
stat2lat.pl parses Stata output, extracts regressions results, and writes a BTEX file that
presents the regressions in a set of user-specified tables. For the time being, you can copy
this code from “mash/access/stat2lat.pl, and the script is reprinted in Appendix B.

Another application I wrote parses Job Openings for Economists and writes addresses to
a file which IXTEX can use for mailing labels and another perl script can use to address form
letters. This application is reprinted in Appendix C and is available from “mash/jobmarket/
joe.pl.

3 xfig

Unix offers an excellent drafting program called xfig which you can use to draw and label
diagrams, e.g. indifference curves, phase diagrams, market equilibria, etc. The program
has a mouse-driven graphical user interface with a helpful menu. It also has a nice snap-
to-grid feature; it’s easy to edit, move, and align objects; etc. Documentation on xfig is
available from the xfig home page, http://www.xfig.org, and from http://duke.usask.
ca/"macphed/soft/fig/index.html

Figures are saved in simple ASCII files with the suffix fig.> You can export xfig figures to
various formats, including Encapsulated PostScript and other formats suitable for import to
IXTEX. The easiest way import an xfig figure (myfig.fig) to BTEX is to use the menu to export
it from xfig as an Encapsulated PostScript file (myfig.eps) and then to import it to BTEX
with \includegraphics{myfig.eps}. Remember that you must \usepackage{graphicx}
in the preamble to use this command.

It is possible to embed ETEX code in the text of an xfig figure; so you can use a full range
of symbols, subscripts, superscripts, etc. Trying to insert sub/superscripted characters by
hand is incredibly tedious and frustrating. To embed IXTEX code in an xfig figure, you should

3In fact, you can learn how to write to and to manipulate these files directly.

12

launch xfig with the following options:
% xfig -specialtext -latexfonts -startlatexFont default

Draw your diagram and save it as a .fig file. Then, export the diagram in two steps: (1)
Combined PS/ERX (PS part); and (2) Combined PS/EEX (ELX part). There will be two
exported files that BTEX will overlay: myfig.pstext_t (the parts of the figure that contain the
ITEX code) and myfig.pstex (containing the rest of the figure). Be sure to keep these in the
same directory as the BTEX document. Then, in BTEX, use the command \inputmyfig.pstext
to insert the diagram where you want it. You may want to put the diagram inside a figure
environment to give it a number and a caption. The resulting figure may look imperfect
when you view the .dvi file with xdvi but should be correct in PostScript. Here is a very
short example (not so helpful since you cannot see the associated .fig file).

\documentclass{article}
\usepackage{graphicx}
\begin{document}
\begin{figure} [htbp]
\begin{center}
\caption{Importing xfig figures with embedded \LaTeX}
\label{fig:xfigtest}
\input{ex.pstex_t}
\end{center}
\end{figure}
\end{document}

Figure 1: Importing xfig figures with embedded IXTEX

EBTEX
O
B
0‘9
S
>
) o 2,
S
¥
>
~
&

13

4 emacs

Emacs is an editor and a lot more. Versions of emacs are available, free for many platforms,
including DOS, Windows, and Macintosh. At the EML, you start emacs by typing emacs at
the unix prompt:

% emacs

which gives a nice window interface if you are hooked up or a text interface if you are not.
If you are at a workstation but do not want the window interface, you can use the -nw flag.
You can get an especially user-friendly gui version of emacs by typing xemacs at the unix
prompt:

% xemacs

4.1 Learning emacs

tutorial You should begin your career with emacs by running through the tutorial. The
tutorial will explain how to open, save, and close documents, move through documents,
and edit text. First, copy the essential lines of my .emacs file (See Table 6 that assign
help and backspace. Then, start emacs and type “Control-x 7 t”

help Emacs has an excellent on-line help facility (of which the tutorial is a small part). You
can invoke the help facility with “Control-x ?” which offers a menu of options.

info The best part of the on-line help is complete, menu-driven documentation. You can
invoke this with “Control-x 7 i” and then navigate the menu with arrow keys.

quitting emacs You can quit emacs with “Control-x Control-c¢”.

quitting command line You can stop the current command if you get caught on the
command line with “Control-g”.

4.2 Advantages of emacs

The advantages of emacs are myriad. You can read e-mail and usenet groups, learn the
islamic and hebrew calendar dates, and even get psychoanalyzed by emacs (try “Meta-x
doctor”). Here are some of the features that I use most. It’s also widely available and free
to install if you don’t find it.

dired and ftp Emacs has a nice built in file manager that will move, copy, and erase files.
You can invoke it with “Meta-x dired” or “Control-x d”. The file manager is not limited
to the EML. You can find and manage files on remote computers too. To open a file
on a remote computer, use the standard find file sequence, “Control-x Control-f” and
when prompted for the file name, enter /userid@remotehost: You will be prompted
for your password on the remote host and can then proceed to move, copy, open, erase,
ete. files.

14

latex—mode Emacs has many modes that are designed to facilitate editing files of different
types. For example, in latex-mode, emacs uses indentation, color, highlighting, and
italics to make BTEX files easier to read and edit. The latex-mode also allows you
to process IXTEX files from within emacs, to view dvi files, to BibTeX files, to insert
environments with several keystrokes or from the menu bar. For example, the emacs
command “Control-c Control-e” will prompt you to start a document and choose a class
(if you haven’t already) and, thereafter, to insert an environment, etc. The BibTeX
assistance in emacs is also excellent.

SAS, Stata, Splus, perl, java, ¢ You can edit and run programs for these and other ap-
plications from within emacs, and emacs again uses indentation, color, highlighting,
and fonts to facilitate editing. The basic development tools come with many emacs
packages, including ours at the EML. For Splus and SAS, you need only include the
following two lines in your .emacs file:

; Use ESS to edit and run SAS, Splus
(require ’ess-site)
(require ’essd-sas)

Stata will soon be included in this utility.* If you want to learn what’s available for
Stata immediately, please copy “mash/stata.el to your home directory, read the first
paragraphs of stata.el, and insert the following lines in your .emacs file (you can
copy my .emacs file):

; Use stata.el to edit and run Stata
(autoload ’stata "~ /stata.el" "inferior stata mode" t)
(autoload ’stata-help "stata" "stata help mode" t)
(autoload ’stata-mode "~ /stata.el" "stata mode" t)
(if (assoc "\\.do$" auto-mode-alist) nil
(setq auto-mode-alist
(append
>(("\\.do$" . stata-mode)
("\\.ado$" . stata-mode))
auto-mode-alist)))

Version control If you are serious about your programming, you need to keep a history of
your work. For example, you may want to revert to the last-working-copy of a program
you are building. Version control allows you to track changes in a program over time
without keeping every version of the program in a separate file. And emacs has a fine
interface with several standard version control programs. I use RCS. You can read
more about it in emacs info or in the RCS man pages (man rcs)

4There are many modes available for emacs (and you can write your own). For example, a Matlab mode
is available from Mathworks, http://www-europe.mathworks.com/ftp/emacs_add_ons.shtml.

15

Manipulate rectangles of text One of the coolest things about emacs is that it will ma-
nipulate (cut, copy, paste, or erase) rectangles of text. The basic technique is to set the
mark at the upper-left corner of the rectangle that you want to move and then move
the cursor to the lower right corner of the rectangle you want to move. “Control-x r
k” will cut the rectangle and “Control-x r y” will paste it. Alternatively, “Control-x r
r R” will copy the rectangle to register R and “Control-x r i R will past the rectangle
from register R.

Spell-checking Emacs has a spell-checking facility. You can spell-check the entire doc-
ument with “Meta-x ispell-buffer” or a word with “Meta-x ispell-word”. The ispell
facility is pretty smart about BETEX codes and won’t ask you if they are misspelled
words.

diary Emacs can maintain a diary and warn you of upcoming appointments and anniver-
saries. I recommend reading the info section on the diary. My .emacs file (see Table
6 includes several commands that facilitate the use of the diary.

4.3 .emacs

You can customize emacs extraordinarily completely and easily by creating a .emacs con-
figuration file, called “dot emacs,” file in your home directory. The .emacs file contains
instructions that are executed every time you start emacs. For example, you may reassign
keys for your convenience, you may change the background color and the size of the font.

I am including my .emacs file in Table 6, fully commented, so that you can get an idea
of what’s possible. You may also copy my .emacs file to your home directory with

cp “mash/.emacs ~/.emacs

5 0Odds and Ends

5.1 less

The best way I know to look at files is the utility less, a riff on more with which you may
be more familiar. The usual way to invoke this command is less <filename>, but you can
also pipe output to it, e.g., finger @socrates | less.

The two best things about less are the ability to scroll smoothly backwards and forwards
and the ability to search for text. Some useful commands are printed in Table 7, but less
does a lot more. See help or man less for details.

5.2 Choice of shell

In unix, you can choose the shell, or the program that permits you to interact with the
operating system. You can use the shells interactively at the unix prompt or in shell-scripts.
The default shell is csh. I recommend changing to either the tcsh or bash shell. Both of

16

Table 6: Michael Ash’s .emacs file

; Comments are preceded by ;
; Be sure to include the next four lines in your .emacs

;; Define control-x 7 as help

(define-key global-map "\C-x?" ’help-for-help)

;; Define control-h as backspace

(define-key global-map "\C-h" ’backward-delete-char)

; Auto-fill (line-wrapping) in text-mode
(setq text-mode-hook ’turn-on-auto-fill)

; View of long lines to be wrapped, not truncated
(setq truncate-lines nil)

; Show line number in status-line

(setq line-number-mode ’on)

; Show column number in status-line

(setq column-number-mode ’on)

; Version control prompts for initial comment
(setq vc-initial-comment t)

; Show diary entries on start-up

(setq view-diary-entries-initially t)

; Show diary entries for today and tomorrow
(setq number-of-diary-entries 2)

; Load diary

(diary)

; Prepare diary to print in \TeX

(setq cal-tex-diary t)

; Highlight selected area
(transient-mark-mode t)

; Allow the downcase and upcase region commands
(put ’downcase-region ’disabled nil)

(put ’upcase-region ’disabled nil)

; Set background color to cyan

; (set-background-color "cyan")

17

Table 7: Getting started with less
invokes help.
quits from less.
scrolls backwards (space bar scrolls forwards as in more).
gives a prompt to search for text or a regular expression.
- toggles between case insensitive and case sensitive
searches. You can use this in the command line, less
-i <filename> or while viewing a file—don’t forget the

~T.o =

-S toggles between wrapping lines of text and letting them
stretch. Again, you can use this in the command line or
while viewing a file. This option is very useful for looking
at raw data.

Shift—-< jumps to the beginning of the file.

Shift—> jumps to the end of the file.

these shells allow you to edit the command line if you have made a mistake and to cycle
through commands you've given previously with the arrow keys. You can change the current
shell any time you want by entering tcsh or bash at the prompt. You can change your default
shell by entering chsh (change shell) at the command prompt. When prompted, enter your
password; then enter /bin/tcsh or /bin/bash.

5.2.1 .cshrc

You can give the computer a set of commands to customize your workspace by putting them
in your .cshrc file. My current, fully-commented .cshrc is reproduced in Table 8 and can
be copied from “mash/.cshrc.

5.3 unix input and output
> redirects the output of a command to a file that you name, e.g.,
% finger @socrates > whosonsocrates

will send the output of finger @socrates to the file whosonsocrates instead of to the
screen. The pipe symbol, |, redirects the output of a command to another command, e.g.,

% finger @socrates | less

will send the output of the command to the less file-viewing utility (see Section 5.1).

5.4 Regular Expressions

Regular expressions provide a mechanism to select specific strings from a set of character
strings. The tools for searching and replacing regular expressions are extremely powerful.

18

Table 8 Michael Ash’s .cshrc file

Pound sign (#) indicates comment line

source the standard .cshrc file

source /usr/local/skel/std.cshrc

set the path

set path = ($path ~/census /usr/etc)

set the prompt so it shows the current host and directory
set prompt = "Ym:% %% "

make ls show a symbol for directories/ and executables*
alias 1ls 1s -F

make lsmine give a full listing of only my files--useful in /tmp/
alias lsmine ’1ls -alF | grep $user’

make rm prompt before removing. \rm overrides

alias rm rm -i

make mv prompt before moving onto an existing file. \mv overrides
alias mv mv -i

make cp prompt before overcopying. \cp overrides

alias cp cp -1

make dvips put postscript file in /tmp (instead of straight to printer)
alias dvips ’dvips -o /tmp/\!#:$:r\.ps \!$’

make grelp search help files for string

alias grelp ’help- -1 | grep -i \!%’

use the old help facility

alias help ’help-’

make connection to socrates

alias socrates ’ssh socrates -1 maash’

alias desktop ’/usr/local/x11/1ib/xdm/Xsession.ow35&’

Choose editor emacs

setenv EDITOR emacs

Choose file viewer less

setenv PAGER less

Expand TEXINPUTS path

setenv TEXINPUTS ".:/usr/local/texmf/tex/INPUTS: “mash/tex"

19

The ability to manipulate regular expressions is incredibly helpful.

example.

Table 9: Example of replace-regexp in emacs

For example, if you are trying to convert SAS scripts into Stata do files,
you may want to change many instances of

if xxx = XXX then yyy = YYY ;
into
replace yyy = YYY if xxx == XXX

where xxx and yyy are variable names and XXX and YYY are numbers
that vary in each instance. With the replace-regexp function in emacs,
you can achieve this with few keystrokes. Invoke the function with
“Meta-x replace-regexp”. When prompted with “Replace regexp:”, en-

See Table 9 for an

ter

if \([a-z]+\) = \([0-9]+\) then \([a-z]+\) = \([0-9]+\)

Finally, when prompted with “with:”, enter

replace \3 = \4 if \1 == \2

I use them in four contexts: in perl scripts; in the less viewing program (see Section 5.1
for more about less); in emacs for search/replace commands; and from the command line.
Sources of terse, on-line information: man regexp, man perl, man grep.

5.5 Finding files

We typically use the 1s command to list the files in a directory. The du command is good for
this purpose when used with the -a flag but du also looks for files down the entire directory

tree.

% du -a

You can combine this technique with searching for regular expressions Section 5.4 and use a

construction such as:

% du -a | grep ’\.sas’

to find all sas files (all the files with the .sas extension) in your directory structure.

20

5.6 ghostview, acroread, and xv

The latest version of ghostview is invoked with gv and allows you to view and print both
PostScript and PDF files. Acroread is better for viewing and printing PDF files, e.g., the
hyperlinks are active for acroread but not ghostview. The program xv is good for viewing
and processing . jpeg or .gif graphics files.

5.7 psnup

Here is a way to pack more pages on a page when you are printing at the EML. Advantages:
fewer printed pages (save paper and money); view more material in front of you at once.
Disadvantages: smaller text, hard on eyes.

1. Begin with a PostScript file (which I will call oldpsfile.ps below). You may download
material from the web in PostScript; you may produce PostScript from LaTeX/dvi
files with dvips or from other programs; or you may choose a PostScript printer and
"print” PostScript files from various word processors, e.g., Word, WordPerfect. See
note 5 on converting PDF /Acrobat files to PostScript below.

2. Use psnup (Read: “ps” = PostScript “n up” = n pages on each page). You can read
the manual page on psnup with "man psnup,” but here’s a primer that contains all
you probably need. (You can substitute any name you want for newpsfile4 or newpsfile
2L. T use them below as mnemonics for 4 on a page, 2 on a landscape page.)

(a) To put 4 portrait pages on one 8.5”x11” portrait page (as in Figure 2), use the
command,

% psnup -n4 -p newpsfile4.ps oldpsfile.ps

Figure 2: Placing PostScript pages 4—up
1 2 |
1,2,3,4 —> | I
13 4 |

(b) To put 2 portrait pages onto one 117 x8.5” landscape page (as in Figure 3), use
the command,

% psnup -n2 -r -p newpsfile2L.ps oldpsfile.ps
NOTES: The -n<number> option tells psnup how many on a page. You can make this
number large, but the text will get smaller. The -r option in part 2b tells psnup to

use landscape format, which makes more sense if you are putting 2 portrait pages on
one page.

21

Figure 3: Placing PostScript pages landscape, 2—up

1,2 > |1 2|

3. (Optional) You can view your masterpiece with ghostview, invoked with the command
gv (also available on PC):

gv newpsfile4d.ps
gv newpsfile2L.ps

4. You can print from gv (see step 3) or with directly with the lpr command:

lpr newpsfiled.ps
lpr newpsfile2Ll.ps

5. (PDF/Acrobat) Lots of times you may download PDF files from the web, e.g., articles
from the JSTOR archive, NBER Working Papers. Typically you view these with
acroread. To print these several pages to a page, you must first convert them to
PostScript. The command below translates mypdffile.pdf to oldpsfile.ps, and then you
can use psnup (see steps 1-4 above) on oldpsfile.ps

% acroread -toPostScript -pairs mypdffile.pdf oldpsfile.ps

5.8 enscript

A good way to print text files on unix systems is with the enscript utility which has lots
of cool options. For example, -2r prints the named file in landscape with two columns and
the -G option prints a gaudy header with you name on it at the top of each page.

% enscript -2r -G filename

By default enscript sends the output straight to the printer. If you want to send the output
to a file instead (for examination by ghostview before printing), try

% enscript -2r -G -p /tmp/newfilename.ps filename

6 lynx and The Web

Lynx is a text-based web browser: no pictures, but it loads much faster than Netscape and
other gui browsers. I recommend trying it out if you are tired of waiting for Netscape to
load. (You can download pictures and view them with xv if you really want to see them.)

22

Here are some archives that our berkeley.edu domain makes available to us. These
sites would be extremely expensive otherwise and are often useful. My web site, http:
//socrates.berkeley.edu/ maash for the moment, contains links to many other text and
data archives.

http://www. jstor.org Complete, full-image collections of many
journals, economics and otherwise.

http://www.lexis-nexis.com/ Premier news and legal archive

universe

http://www.eb.com:180/ Encyclopaedia Britannica

http://webspirs. EconlLit

silverplatter.com/cgi-bin/
customers/ucb/ucb2b.cgi
Another useful web trick is that you can ftp (file transfer protocol, used here as a verb)
datasets within shell-scripts, make files (see Section 7), or SAS/Stata scripts. For example,
to do this in SAS, include the line:

x "ncftp -f emlab.berkeley.edu:/pub/data/89raw.txt.Z;" ;

to ftp the named file to the directory from which you launched SAS. By the way, I recommend
ncftp, which is a souped-up version of ftp, both interactively and in scripts.

7 make

The program make is a versatile project management tool. Make allows the user to specify
a series of “dependencies” among files so that you can be sure that your data and output
are up to date.’

Suppose that in the course of your research, you ftp several years of Current Population
Survey data from emlab.berkeley.edu to /scratch/public. You then read the data into
several SAS datasets. You then convert the SAS datasets into Stata datasets (see Section
9), merge it with some data that are already in Stata format, and perform some statistical
procedures in Stata. You don’t want to waste time (not to mention file access and bandwidth)
by repeating the particularly time-consuming parts of the process, e.g., the file transfers and
inputs of raw data.

Create a file called Makefile in your project directory. Makefile should contain dependency
lines and command lines. The dependency lines state that the file® to the left of the colon
depends on the files to the right of the colon. If the right-hand files are more recent than
the left hand files, then the set of commands in the block of command lines following the
dependency line will be executed. Note: each of the command lines must begin with a TAB
character.

If the Stata output has changed, extract and label the regression results

Smake was originally designed for software development, but I think that it meets the needs of empirical
economists extremely well.
6In more complicated uses, this is not limited to being a file.

23

with the homegrown perl scripts, run LaTeX on the extracted
results, and convert the .dvi file to a PostScript file.
final.ps : final.output labelvars.pl

stat2lat.pl < final.output | labelvars.pl > final.tex

latex2e final.tex

dvips -p/tmp/final.ps final.dvi

If either the
merged dataset or the do-file for the statistical procedures
has changed, run the statistical procedure in Stata.
final.output : final.do final.dta

stata -b do final.do

If any of the input data for the merged data file has changed,
rerun the merging do-file.
final.dta : cps79.dta cps89.dta otherdat.dta

stata -b do mergeall.do

If the do-file that creates the other data has changed,
recreate the other data.
otherdat.dta : otherdat.do

stata -b do otherdat.do

If the SAS program that reads the raw 1979 CPS data has changed, rerun
this program and convert the dataset to Stata format.
cps79.dta : cps79.sas

sas cps79.sas

sas2stata -f -r cps79.ssd01

If the SAS program that reads the raw 1989 CPS data has changed, rerun
this program and convert the dataset to Stata format.
cps89.dta : cps89.sas

sas cps89.sas

sas2stata -f -r cps89.ssd01

If the 1979 raw data has disappeared, e.g., because scratch has been
cleaned, ftp it from emlab again.
cps79.sas : 79raw.txt

ncftp -f emlab.berkeley.edu:/pub/data/79raw.txt

touch 79raw.txt

If the 1989 raw data has disappeared, e.g., because scratch has been

cleaned, ftp it from emlab again.
cps89.sas : 89raw.txt

24

ncftp -f emlab.berkeley.edu:/pub/data/89raw.txt
touch 89raw.txt

Now if you type make final.ps, make will read Makefile and perform only and all the
tasks required to produce an up-to-date version of final.ps, going all the way back to raw data
if necessary. Make is capable of much more than I’ve described. There is an excellent book on
make called Managing Projects with Make (Oram and Talbott 1991) published by by O’Reilly
and Associates” which costs about $20, and a very good document called “GNU Make”
(Stallman and McGrath 1988) available with the most current distribution of make from the
Free Software Foundation at http://www.gnu.ai.mit.edu/software/make/make.html.

8 A mailfilter

If you subscribe to active mailing lists, e.g., Statalist, you may want to sort your e-mail to
different inboxes.

1. Create a mailfilter file, e.g., .mailfilter, modeled on Table 10. The filtering based
on choosing a text string that will appear only in mail intended for a particular inbox,
e.g., “statalist”. Make this .mailfilter file executable with chmod +x .mailfilter

2. Edit your .pinerc file to identify all of your inboxes. Table 11 contains the portion of
.pinerc that must be modified.

3. Create a .forward file that pipes all of your mail to your mailfilter. Your file . forward
file should contain: |/accounts/grad/userid/.mailfilter

9 Database Conversion

1. The unix utility sas2stata on the EML will convert unix SAS datasets (*.ssd01) to
all-platform Stata (*.dta) datasets, keeping variable names, lengths, and labels intact.
Thus,

% sas2stata mydata.ssdO1

will create mydata.dta; For brief or detailed documentation, you can try respectively:

% sas2stata
% man sas2stata

"O’Reilly and Associates have many excellent books on some of the tools discussed in this document. In
particular, keep an eye out for their ...in a Nutshell series

25

Table 10: .mailfilter filters mail into 4 incoming folders

#!/bin/sh

PATH=/bin:/usr/bin:/usr/ucb

export PATH

user=mash

if ["‘whoami‘" != "$user"]; then
exit 1

fi

mailbox=/var/spool/mail/$user
home=/srv/accounts/grad/$user
penmail=$home/mail /penmail
stata=$home/mail/stata
datalist=$home/mail/datalist
tmp=$home/ . tmp

cat - > $tmp

if grep -s -i "lbo-talk" $tmp

then
sed -e ’2,$ s/ "From />From /’ $tmp >> $penmail
echo >> $penmail

elif grep -s -i "statalist" $tmp

then
sed -e ’2,$ s/"From />From /’ $tmp >> $stata
echo >> $stata

elif grep -s -i "sas-1" $tmp

then
sed -e ’2,$ s/ From />From /’ $tmp >> $datalist
echo >> $datalist

elif grep -s -i "saspac" $tmp

then
sed -e ’2,$ s/ "From />From /’ $tmp >> $datalist
echo >> $datalist

elif grep -s -i "labor-data" $tmp

then
sed -e ’2,$ s/"From />From /’ $tmp >> $datalist
echo >> $datalist

else
sed -e ’2,$ s/ "From />From /’ $tmp >> $mailbox
echo >> $mailbox

fi

rm -f $tmp

exit O

Table 11: Name incoming folders in .pinerc

incoming-folders are those other than INBOX that receive new messages.
Folder syntax: optnl-label {optnl-imap-hostname}folder-path
Use only if you filter incoming email into multiple files or receive
email on several different machines.
Example:
incoming-folders=Consulting {carson.u.washington.edu}filter/to-help,
Widget-Project{carson.u.washington.edu}filter/to-widget,
01d-Student-Acct {imap.berkeley.edu}inbox
Michael Ash’s incoming folders:
incoming-folders=penmail /srv/accounts/grad/mash/mail/penmail,

stata /srv/accounts/grad/mash/mail/stata,

datalist /srv/accounts/grad/mash/mail/datalist

26

Note that sas2stata runs both SAS and Stata as well as some of the classic unix utilities
like awk or sed in the process of writing the dataset. So you are limited to UNIX systems
that have BOTH applications, e.g., the EML but not socrates.berkeley.edu (SAS
but not Stata). I think that it sas2stata is available free from the RAND Corporation
if you want to install it on your own UNIX system.

. On the EML (or for PCs if you buy it), you can also use
% dbmscopy

an interactive utility that will do lots of cross-program dataset conversions, e.g., PC
SAS < unix SAS < Stata < Excel « Lotus 1-2-3, etc. After you run dbmscopy
interactively several times, you can learn the syntax to use dbmsnox, a conversion
program command-line that runs from the command line. For example,

% dbmsnox /tmp/mydata.dbf /tmp/mydata.statad

will convert dBase file mydata.dbf into Stata file mydata.dta.

. For PCs, you can buy Stat/Transfer, a utility sold (but not written) by Stata Corpo-
ration (http://www.stata.com). The academic price is low (c. $50), and it does lots
of cross-program dataset conversions. I think this is well worth it if you buy the Stata
package for the PC.

27

A psidcode.pl
#!/usr/local/bin/perl

psidcode.pl

michael ash

march 1997

Bug reports to mash@econ.berkeley.edu

* H B

Main use: Parses the data-center file created during the creation
of a PSID data set at \url{www.umich.edu/"psid} for

year, level (individual or family), and variable name (Vi#i#t###) .

Writes codebook for those variables.

NonEML users should make sure that the documentation directory

is properly specified.

Reads any input file with rows containing
Year Level Variable

in that order, e.g.,

1984 Family V10263

H#+ H OH

Reads "data-center" in current directory
Reads zipped PSID documentation in /archive/psid_all/documentation
Writes "codebook" in current directory

Glitches:
includes page breaks and page headers from the PSID codebooks.
Selecting the last variable in a year may cause too much output.

open(VLIST, "<$ARGV[0]") ;
open (CODEBOOK, ">codebook") ;

Read included variables and individual or family.
If family, read year too.

while ($line = <VLIST>) {

chop($line) ;

$line =" s/"\s+//

($year,$level, $vname,@junk) = split(/\s+/,$line) ;

$level =~ s/ \s+//

$level =~ s/\s+$//

$vname =~ s/"\s+// ;

$vname =~ s/\s+$//

$vname =~ s/°V//

if ($level eq "Individual") {
$flist{ind} = "unzip -c /archive/psid_all/documentation/68-92doc.zip |"
$vlist{ind} .= "$vname:" ;

}

elsif ($level eq "Family") {
if ($year >= 1968 & $year <= 1978) {

$£f1ist{fam6878} = "unzip -c /archive/psid_all/documentation/68-78doc.zip |"

$vlist{fam6878} .= "$vname:"
}
if ($year == 1979) {
$flist{fam79} = "unzip -c /archive/psid_all/documentation/79doctxt.zip |"
$vlist{fam79} .= "$vname:"
}
if ($year == 1980) {
$f1ist{fam80} = "unzip -c /archive/psid_all/documentation/80doctxt.zip |"
$vlist{fam80} .= "$vname:"
}
if ($year == 1981) {
$flist{fam81} = "unzip -c /archive/psid_all/documentation/81doctxt.zip |"
$vlist{fam81} .= "$vname:"

28

}

if ($year == 1982) {
$flist{fam82} = "unzip -c /archive/psid_all/documentation/82doctxt.zip
$vlist{fam82} .= "$vname:"
}

if ($year == 1983) {
$flist{fam83} = "unzip -c /archive/psid_all/documentation/83doctxt.zip
$vlist{fam83} .= "$vname:"
}

if ($year == 1984) {
$flist{fam84} = "unzip -c /archive/psid_all/documentation/84doctxt.zip
$vlist{fam84} .= "$vname:"
}

if ($year == 1985) {
$flist{fam85} = "unzip -c /archive/psid_all/documentation/85doctxt.zip
$vlist{fam85} .= "$vname:"
}

if ($year == 1986) {
$flist{fam86} = "unzip -c /archive/psid_all/documentation/86doctxt.zip
$vlist{fam86} .= "$vname:"
}

if ($year == 1987) {
$flist{fam87} = "unzip -c /archive/psid_all/documentation/87doctxt.zip
$vlist{fam87} .= "$vname:"
}

if ($year == 1988) {
$flist{fam88} = "unzip -c /archive/psid_all/documentation/88doctxt.zip
$vlist{fam88} .= "$vname:"
}

if ($year == 1989) {
$flist{fam89} = "unzip -c /archive/psid_all/documentation/89doctxt.zip
$vlist{fam89} .= "$vname:"
}

if ($year == 1990) {
$f1ist{fam90} = "unzip -c /archive/psid_all/documentation/90doctxt.zip
$vlist{fam90} .= "$vname:"
}

if ($year == 1991) {
$flist{fam91} = "unzip -c /archive/psid_all/documentation/91doctxt.zip
$vlist{fam91} .= "$vname:"
}

if ($year == 1992) {
$flist{fam92} = "unzip -c /archive/psid_all/documentation/92doctxt.zip
$vlist{fam92} .= "$vname:"
}

}
}
close(VLIST) ;

File loop: individual cross-year file and each family year file
foreach $j (sort(keys(%flist))) {

$curfile = $£flist{$j}

@Qvars = split(/:/,$vlist{$j}) ;

@varno = sort {$a <=> $b} @vars ;

print "\n\nRead $j: @vars\n" ;

print "Sorted $j: @varno \n\n" ;

Variable loop within file
$i =0
$curvar = @varno[$i] ;
open(CURFILE, "$curfile") ;

if ($j eq fam6878) {
while ($line = <CURFILE>){
CLABEL: {

29

while ($curvar<1100){
$curvar = @varno[$i] ;
if ($1line =~ /~\s*$curvar/) {
print "Found $curvar.\n";
$i++ ;
print CODEBOOK $line ;
$k=0;
until ((($1ine=<CURFILE>) =" /~\s{0,4}[0-91/) || ($k==1000)) {
print CODEBOOK $line ;

$k++ ;
}
goto CLABEL ;
}
$line = <CURFILE>
}
}
BLABEL: {
if ($i <= $#varno) {
$curvar = @varno[$i] ;
if ($line =~ /~\s*\($curvar\)/) {
print "Found $curvar.\n";
$i++ ;
print CODEBOOK $prevline
$k=0 ;
until ((($prevline=$line) && (($1ine=<CURFILE>) =~ /~\s{0,4}[0-91/) || ($k==1000))){
print CODEBOOK $prevline ;
$k++ ;
}
goto BLABEL ;
}
else {
$prevline = $line ;
$1ine=<CURFILE>
goto BLABEL ;
}
}
}

if ($j ne fam6878) {
while ($line = <CURFILE>) {
ALABEL: {
if ($i <= $#varno) {
$test = $line ;
$test="s/ V/ / ;
Check if codebook should include variable by comparing it to next in
the list of variables
if (($test ="/"\s+$curvar/) && (($test="/TLOC=/) ||
($test="/Name=/))){
print "Found $curvar.\n";
$i++ ;
$curvar = @varno[$i] ;
Read and write all codebook lines until reach the next variable
print CODEBOOK $line ;
$k=0 ;
until (((($line = <CURFILE>)="/TLOC=/) || ($line="/Name=/)) || ($k==1000)){
print CODEBOOK $line ;
$k++ ;
}
goto ALABEL ;

30

}

}

close (CURFILE) ;
}
close (CODEBOOK) ;

B stat2lat.pl

#!/usr/local/bin/perl

Parses Stata output writing regression results as LaTeX tables.
Michael Ash

20 June 1997

H*

stat2lat.pl [-al [-p][-t][-1] statalogfile > LaTeXfile

options
-a Write to align on decimal point, default is centered
-1 Write LaTeX longtables
-p Write p-values instead of standard errors
-t Search log file for table numbered TABLE 1 - TABLE N
If you want to sort your regressions into N different tex
tables, then in the logfile, in the line before each regression
that you want to keep, label the line TABLE i where i is the
table number to which you want to assign this particular
regression. (They don’t have to be in order, but there does
need to be a TABLE 1.) The script will use the rest of the
line after the first instance TABLE i as the caption for the
table i, e.g.
TABLE 1 Wage Regressions
reg lwage x1 x2
<output>
TABLE 2 Hour Regressions
xi: reg hour x1 x3 x4 i.x6
<output>
TABLE 1 This sentence gets ignored.
reg lwkwage x1 x3 x5
<output>

H O OH H O OHHHEHHHHE R R HHE R

require ’getopts.pl’ ;
&Getopts(":alpt")

print ("\\documentclass{article}[12pt] \n
\\usepackage{amstex,fullpage,geometry,longtable}
\%\\setlongtables

\%\\geometry{body={8in, 10in}}
\\begin{document}") ;

Regression marker
Put regressions in designated tables
if ($opt_t) {

$table = 1 ;
}
Else put all regressions in one table
else {
$regind = ’\..*reg’
}

$tableflag = 1 ;
while ($tableflag == 1) {
if ($opt_t) {
$regind = "TABLE $table";
}
open (LOGFILE, "<$ARGV[0]") ;

31

Initialize table
undef Qvars ;
undef %beta ;
undef %se ;
undef $R2 ;
undef $N ;
undef $Dpndt ;

$tableflag = 0 ;

$R2 = "\\\\[1mm] \\hline \\\\[1mm] \n\$R"2\$ " ;

$N = "\nN" ;
$reg = 0 ;

while ($line =
if ($line

<LOGFILE>) {
~ /${regind}["0-91/) {

chop($line) ;
if ($table >= 1) {
Include note with dependent variable
$tableflag = 1 ;
$note = $line ;

$note
$note
$note

}

$reg++ ;

~ s/ .*$regind//
~ s/"\s+//
~ s/\s+$//

$r2flag = 0 ;
$nflag = 0 ;
$listind = "" ;
Read in R2 and N from the regression output
until (($line = <LOGFILE>)=" /-{78}/) {
chop($line) ;
if (($line =~ /R-sq/) && ($line !~ /Adj/))A{

}

$r2flag = 1 ;

($junk,$r2) = split(/R-sq/,$line)
($junk,$r2) = split(/=/,$r2) ;
$r2 =" s/ //g ;

$r2 = sprintf("%2.2f",$r2) ;
if ($opt_a) {

$R2 .= " & \\multicolumn{2}{c}{$r2 }" ;
}
else {
$R2 .= " & $r2 " ;
}
if ($line =~ /Pseudo R2/ && $r2flag==0){
$r2flag = 1 ;
($junk,$r2) = split(/R2/,$line) ;
($junk,$r2) = split(/=/,$r2) ;
$r2 =~ s/ //g ;

}

$r2 = sprintf(LZZ.Zf",$r2);
if ($opt_a) {

$R2 .= " & \\multicolumn{2}{c}{$r2 }" ;
}
else {

$R2 .= " & $r2 " ;
}

if ($line =~ /Number of obs/) {

$nflag = 1 ;
($junk,$n) = split(/obs =/,$line) ;
$n =~ s/ //g ;
if ($opt_a) {
$N .= " & \\multicolumn{2}{c}{$n }" ;
}
else {
$N .= " & $n " ;
}

32

}

}

if ($r2flag == 0) {
if ($opt_a) {

$R2 .= " & \\multicolumn{2}{c}{---} " ;
}
else {

$R2 .= " g --- "
}

}
if ($nflag == 0) {
if ($opt_a) {

$N .= " & \\multicolumn{2}{c}{---} " ;
}
else {

SN .= Mg -
}

}

if (($line = <LOGFILE>) =~ /Robust/) {
$line = <LOGFILE>

}

chop($line) ;

$line =~ s/ \s+//

$line =" s/\I//

($dpndt,$junk) = split(/\s+/,$line) ;

$dpndt =" s/ //g ;

if ($opt_a) {

$Dpndt .= " & \\multicolumn{2}{c}{$dpndt$note} " ;
}
else {

$Dpndt .= " & $dpndt$note " ;
}

$line = <LOGFILE>
Read in variables, beta’s, se’s until the end of the regression
until (($line = <LOGFILE>)=" /-{60,}/) {

chop($line) ;

$line =~ s/~ \s+//

$line =~ s/\1//g ;

($ind, $beta,$se,$tstat,$pval,@junk) = split(/\s+/,$line) ;

if ($opt_p) {

$se = $pval ;
$error_type = "P-values" ;
}
else {
$error_type = "Standard errors" ;

}

Significant figures
$num = sprintf("12.3e",$beta)
$numa = sprintf("%12.3e",$se) ;
if (-1 < $num && $num < 1) {
($dec) = ($num =" /e-(\d+)/);
$dec = $dec + 2;
$beta = sprintf ("%7.${dec}f","$num");
if ($opt_p) {
$se = sprintf("%1.3£f","$numa");

}
else {

$se = sprintf ("%7.${dec}f","$numa");
}

if ($opt_a) {
$beta =~ s/\./\&./g ;
$se =" s/\./\&./g ;
}
$se = "($se)" ;
}
elsif ($num <= -100 || $num >= 100) {

33

$beta = sprintf ("%7.0f","$num");
if ($opt_p) {
$se = sprintf("%1.3","$numa");

}
else {

$se = sprintf ("%7.0f","$numa") ;
}

if ($opt_a) {
$beta = "$beta &" ;

$se = "($se &)" ;
}
}
else {
($dec) = ($num =~ /e\+(\d+)/) ;
$dec = 2 - $dec ;
$beta = sprintf ("%7.${dec}f", "$num");
if ($opt_p) {
$se = sprintf("%1.3","$numa");
}
else {
$se = sprintf ("%7.${dec}f", "$numa");
}
if ($opt_a) {
$beta =~ s/\./\&./g ;
$se =" s/\./\&./g ;
}
$se = "($se)" ;
}
Create the list of independent variables
$ind =~ s/_// ;

$ind =" s/*// ;
$listind .= $ind . ":" ;
if ($reg==1) {
push(@vars,$ind) ;
}
if new $ind, i.e., $beta{$ind} empty, then create and fill blanks
if ($beta{$ind} eq wny {
if ($reg>1) {

push(@vars, $ind) ;
}
for($i=1;$i<Preg;$i++) {
if ($opt_a) {
$beta{$ind} .= " & \\multicolumn{2}{c}{---} " ;
$se{$ind} .= " & \\multicolumn{2}{c}{ } "y
}
else {
$beta{$ind} .= " & -—— " ;
$se{$ind} .= " & "
}
}
}
$beta{$ind} .= "& $beta " ;

$se{$ind} .= "& $se " ;
}
put in filler for all existing $inds not included in this regression
foreach $j (keys(%beta)) {
if ($listind !~ m/$j:/) {
if ($opt_a) {

$beta{$j} .= " & \\multicolumn{2}{c}{-—- } " ;
$se{$jr .= " & \\multicolumn{2}{c}{ } "
}
else {
$beta{$jr .= " & -—— " ;
$se{$jr .= " & "3
}

34

Output table
if (($tableflag == 1) || ($regind !~ /TABLE/)) {

Longtable
if ($opt_1) {
print ("\\begin{longtablel}[c]{1");
}
Regular table
else {
print ("
\\begin{tablel} [htbp]
\\caption{$caption}
\\begin{center}
\\begin{minipage} [t]{\\textwidth}
\\begin{center}
\\begin{tabular}{1");
}

for($i=0;$i<$reg; $i++){
if ($opt_a) {
print ("r\@e\{\}1")

}
else {

print ("c");
}

}
print ("}\n") ;
if ($opt_1) {
print ("\\caption{$caption}") ;
}
print ("\\\\ \\hline\\hline \\\\[2mm]")
Longtable header material
if ($opt_1) {

print (" ",$Dpndt, " \\\\ \\\\ \n\\hline \\\\ \\endfirsthead \n") ;
print (" \\hline \\\\", $Dpndt, " \\\\ \\\\ \n\\hline \\\\ \\endhead \n") ;

print ("\\\\[2mm] \\hline continued \\endfoot\n") ;
print ("\\hline\\hline \\endlastfoot\n") ;

}
Regular table header material
else {
print (" ",$Dpndt, " \\\\ \\\\ \n\\hline \\\\ \n") ;
}

Body of table
foreach $j (@vars) {
$se{$j} =" s/\(+/(/g ;

print ("$j ", $beta{$j}, " \\\\ \n ", $se{$j}, "\\\\\%[2mm] \n") ;

}
print ($R2, " \\\\[2mm] \n") ;
print (N, " \\\\[2mm] \n") ;
Longtable end
if ($opt_1) {
print ("
\\end{longtable}\n
$error_type in parentheses.") ;
}
Regular table end
else {
print ("
\\\\ \\hline\\hline
\\end{tabular}
\\end{center}
\\end{minipage}

35

\\label{tab:reg$table}
\\end{center}
\\end{table}") ;
}
print ("\\clearpage\n\n") ;

close(LOGFILE) ;
$table++

}

print ("\\end{document}") ;

C joe.pl

#!/usr/local/bin/perl
joe.pl parses Job Openings for Economists
$num_apps = 0;

while($1line=<>) {

if (($1line =~ /~[A-Z]1[A-Z]1[A-Z]/ | $line =~ /U\.S\./) & $line '~ /~CONTACT/) {
$school = "\%$line" ;
&get_contact ;
if ($line =~ /°\.\./) {
&get_contact ;
}
if ($line =~ /°\.\./) {
&get_contact ;
}

sub get_contact {
print $school ;
print "\\textsc{\n";
until (($line=<>) =~ /CONTACT/) {
}
$num_apps++ ;
($junk,$address) = split(/CONTACT:/,$line) ;
until ((($line=<>) eq "\n") || ($line =~ /"\.\./)){
$address .= $line ;
}
&process_address
print "}\n\n" ;

sub process_address {
$address =~ s/\n/ /g ;

$address =~ s/ \s+//

$address =~ s/\s+$//

$address =" s/#/\\#/g ;

$address =" s/&/\\&/g ;

$address =~ s/\.$// ;

$address =~ s/\(.*x\)$//

$address =~ s/comments.+$//i ;

$address =~ s/,\s*x([A-Z] [A-Z]1) [\s\nl/ $1 /g ;
$address =" s/(.+) (Chair),./$1 $2\n/i ;
$address =~ s/, +/\n/g ;

36

$num_lines = ($address =~ tr/\n/\n/) ;
print ($address,"\n") ;

}

print "\n$num_apps\n\n" ;

References

Beebe, N. H. F.: December 1993, Bibliography prettyprinting and syntax checking, TUGboat
14(4), 395-419.

Diller, A.: 1993, E'TEXLine by Line, John Wiley and Sons.

Goossens, M., Mittlebach, F. and Samarin, A.: 1994, The BTEX Companion, Addison—Wesley
Publishing Company.

Knuth, D. E.: 1990, The TEXbook, Addison—Wesley Publishing Company.

Kopka, H. and Daly, P. W.: 1995, A Guide to E'TEX 2z, Addison—Wesley Publishing Com-
pany.

Lamport, L.: 1986, BTEX: A Document Preparation System, Addison—Wesley Publishing
Company.

Oram, A. and Talbott, S.: 1991, Managing Projects with make, 2nd Edition, O’Reilly.

Reckdahl, K.: 1997, Using Imported Graphics in BETEX 2¢. Available from
ftp://ftp.tex.ac.uk/tex-archive/info/epslatex.ps.

Stallman, R. M. and McGrath, R.: 1988, GNU Make, Free Software Foundation. Available
from http://www.gnu.ai.mit.edu/software/make/make.html.

37

