
1

Characteristics of Generalized Extreme Value Distributions

Michel Bierlaire, Institute of Mathematics, Swiss Institute of Technology
Denis Bolduc, Department of Economics, Laval University

Daniel McFadden, Econometrics Laboratory, University of California, Berkeley

March 2003

This note is concerned with joint probability distributions whose one-dimensional marginal
distributions are Extreme Value Type 1 (EV1); i.e., Prob(Uj # uj) = exp(-exp(:(uj-vj)), where the vj are
location parameters and : is a common scale factor.  Call these Generalized Extreme Value (GEV)
distributions.  GEV distributions have application in the study of discrete choice behavior, and were
initially studied by McFadden (1978,1981,1984,2001). 

Let C = {1,...,J}.  Let 1j denote the unit vectors for j 0 C, and for A f C, let 1A denote a vector with
components that are one for the elements of A, zero otherwise.  Define a GEV generating function
H(w1,...,wJ) on w = (w1,...,wJ) $ 0 to have the properties that it is non-negative, homogeneous of degree
: > 0, and differentiable, with its mixed partial derivatives for j = 1,...,J satisfying (-1)j

M
jH/Mw1...Mwj #

0.  A GEV generating function H is proper with respect to a subset A of C if H(1j) > 0 for j 0 A and
H(1C\A) = 0.  Let H

:
  denote the family of GEV generating functions that are homogenous of degree :,

and let H
:
(A) denote the subfamily that is proper with respect to A.  Let ( = 0.5772156649 denote

Euler's constant. 

Theorem 1.  If a random vector U = (U1,...,UJ) has a GEV distribution F(u) = Prob(U # u), then this
distribution has the form

[1] F(u) = exp(-H(exp(-u1 + v1),...,exp(-uJ + vJ))),

where (v1,...,vJ) are location parameters and H(w1,...,wJ) is a non-negative function of w $ 0 which is
homogeneous of degree : > 0 and satisfies H(1j) > 0 for j 0 C.  Conversely, a sufficient condition for
the function [1] to be a GEV distribution is that H 0 H

:
(C).   GEV distributions have the properties:

A. f(u) = MJF(u)/Mw1...MwJ $ 0, F(u) = f(u)du, and 0 # F(u) # 1.

 B. The Uj for j = 1,...,J are EV1 with common variance B2/6:2, means vj + :-1 log H(1j) + (/:, and
moment generating functions exp(tvj)H(1j)t/:'(1-t/:).

 C. U0 =   maxi=1,...,J Ui is EV1 with variance B2/6:2, mean (log H(exp(v1),...,exp(vJ))) + ()/:, and
moment generating function H(exp(v1),...,exp(vJ))t/:'(1-t/:).

 D. Letting Hj(w) = MH(w)/Mwj, the probability Pj that alternative j maximizes Ui for i 0 C satisfies

[2] Pj = exp(vj)"Hj(exp(v1),...,exp(vJ))/:H(exp(v1),...,exp(vJ)).
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Proof: Recursive mixed differentiation of F and the derivative property of H, plus its limits, establish result
A, so that F is a CDF.  Results B to D follow by direct computation, with the moment generating function
of the EV1 distribution in result C given by Johnson and Kotz  (1970, chap. 21).

Not every function H(w1,...,wJ) associated with a GEV distribution function via [1] and the inverse
mapping H(w1,...,wJ) = -log F(v1 - log w1,...,vJ - log wJ) is a GEV generating function, as the signed
derivative property (-1)j

M
jH/Mw1...Mwj # 0 for j = 1,...,J may fail.  For example, probability mixtures of GEV

distributions obtained from GEV generating functions are again GEV distributions, but these mixtures
have inverse mappings that can fail to satisfy the signed derivative property.

In application, interpret U as a vector of random payoffs or utilities for alternatives in C.  Then the
Pj given by [2] are choice probabilities from random utility maximization.  The closed form for these
probabilities facilitates computation.  The linear function H(w) = w1 + ... + wJ is a GEV generating
function; the vector U with the distribution function [1] for this H has independent extreme value
distributed components. The choice probabilities [2] for this case have a multinomial logit (MNL) form,

[3] Pj = exp(vj)/'i0Cexp(vi).

The next result gives operations on GEV generating functions that can be applied recursively to generate
additional GEV generating functions.

Lemma  2.  The family H
:
 of GEV generating functions is closed under the following operations:

 A. If H(w1,...,wJ) 0 H
:
(A), then H("1w1,...,"JwJ) 0 H

:
(B) for "1,...,"J $ 0 and B = {j0A|"j>0}.

B. If H(w1,...,wJ) 0 H
:
(A) and s $ 1, then H(w1

s,...,wJ
s)1/s 0 H

:
(A).

 C. If HA(w1,...,wJ) 0 H
:
(A) and HB(w1,...,wJ) 0 H

:
(B), where A and B are subsets of C, not necessarily

disjoint, then HA(w1,...,wJ) + HB(w1,...,wJ) 0 H
:
(AcB).

Proof:  Direct computation.

Note that the operations in Lemma 2 all apply to and preserve a common degree of homogeneity :;
the result in Theorem 1 giving a closed form for the choice probabilities requires this common scale factor
for the extreme value components Uj.  It is possible through the normalization  H(w1,...,wJ) =
H*(w1

1/:,...,wJ
1/:) to convert a family H* 0 H

:
 into a linear homogeneous family H 0 H1; however, the

literature on GEV models has adopted the case of general :.  An example of a GEV generating function
built up using operations B and C in Lemma 2 is a three-level nested MNL model generated by a function
H of the form
 

[4]  H(w1,...,wJ) = ,
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where the Amk partition C and sk,smN $ 1.  This form corresponds to a decision tree:  m indexes major
branches, k indexes limbs from each branch, and i indexes the final twigs.  The larger sk or smN, the more
substitutable the alternatives in Amk, and the more rapidly the choice probabilities will respond to
differences in the location parameters vi within partition sets.  If sk = smN = 1, this model reduces to a MNL
model.  The function [4] remains a GEV generating function when the sets Amk are not necessarily a
partition, and overlap.  In this case, the choice process can be described by a directed graph, with terminal
nodes j reached by one or more possible paths.

GEV families are closed under location shifts; this is the property established by operation A in
Lemma 2.  This property has particular application to a property of choice models estimated from stratified
samples and/or with analysis restricted to alternatives sampled from the full set faced by a subject..

Suppose choices j 0C and covariates z are distributed in a population with probability Pj(z,20)p(z),
where 2 is a parameter vector with true value 20, and that a sample is drawn in which a subject with
configuration (j,z) in the population has a probability R(j,z) of qualification.  For example, stratification
on j or z or a combination of the two, or attenuation that depends on (j,z), will produce a qualification
probability that varies over the configurations.  The qualification probability may reflect the composition
of subsamples drawn from various strata.  Important cases are exogenous stratification, with R(j,z)
independent of j, and choice-based sampling, with R(j,z) independent of z.  The subset of alternatives that
is sampled is denoted A(z) = {i0C|R(i,z)>0}. The joint probability of (j,z) in the sample, also termed the

sample data generation process, is Pj(z,20)p(z)R(j,z)/r(20), where r(20) = Pj(z,20)p(z)R(j,z).  Next

suppose that for an observation with configuration (j,z), the analyst draws a set B f A(z) with probability
S(B|j,z), and analyzes choice as if it were limited to B.  The reason for doing this is to limit data collection
and computation.   We will assume that any set B that is drawn with positive probability contains the
chosen alternative j, and at least one non-chosen alternative. We will also assume a positive conditioning
property that S(B|j,z) > 0 for the observed choice j implies S(B|i,z) > 0 for each i 0 B; i.e., B could have
been drawn conditioned on any of its elements as the observed choice.  In the presence of a sampling
protocol described by R(j,z), and analysis conducted as if choice were restricted to a set B drawn with
probability S(B|j,z), the joint probability of (j,z,B) is S(B|j,z)Pj(z,20)p(z)R(j,z)/r(20).  From this, the
conditional probability in the sample of j given z and B is

[5] Pr(j|z,B,2) = Pj(z,2)R(j,z)S(B|j,z)/'i0B Pi(z,2)R(i,z)S(B|i,z).

This probability describes the data generation process for the sample as observed and collected (including
the restriction of alternatives considered to the set B), and can be used as a basis for maximum likelihood
of the parameter vector 20.  Note that if R(j,z) or S(B|j,z) have multiplicative factors that depend only on
z, then these factors cancel out of [5].  Hence, it is sufficient for analysis to consider only the kernels of
R(j,z) and S(B|j,z) in which j and z interact.

Now suppose the choice probabilities Pj(z,20) are obtained from a GEV generating function
H(w1,...,wJ) of degree : and location parameters vj(z,20), so that [2] gives

[6]    Pj(z,20) = exp(vj(z,20))Hj(exp(v1(z,20)),...,exp(vJ(z,20)))/:H(exp(v1(z,20)),...,exp(vJ(z,20))).

Substituted into [5], this probability yields
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[7] Pr(j|z,20) = .

Define D(i,z) = 1/R(i,z) if R(i,z) > 0, and D(i,z) = 0 otherwise.   Similarly, define F(B|j,z) = 1/S(B|j,z) for
j 0 B, and  F(B|j,z) = 0 otherwise.  From Lemma 2, since H(w1,...,wJ) is a GEV generating function of
degree : that is proper with respect to C, the function

[8] H*(w1,...,wJ) = H(w1D(1,z)F(B|1,z),...,wJ D(J,z)F(B|J,z))

is a GEV generating function that is proper with respect to B f A(z).  Consider the choice probabilities
generated by H* with location parameters vj(z,2) + log R(j,z) + log S(B|j,z) for j 0 B.  These are

[9] P*j(z,20) 

= 

= 

= ,

where the second equality follows from homogeneity of degree : and the last equality from the
construction of H*.  Then, P*j(z,2) = Pr(j|z,2), and the conditional probability of j given z in the sample
is of GEV form on the apparent choice set B, which may be a proper subset of C, with the shifted locations

[10] v*j(z,2) = vj(z,2) + log R(j,z) + log S(B|j,z),    j 0 B.

Then, maximum likelihood methods for GEV choice probabilities in simple random samples can also be
applied to non-random samples characterized by qualification probabilities R(j,z) and alternative selection
probabilities S(B|j,z) simply by incorporating location shifts log R(j,z) + log S(B|j,z) into the model for
choice from the sampled choice set B.  If the location functions vj(z,2) that determine the GEV population
choice probabilities Pj(z,2) are linear and additive in functions of j and z, with coefficients that are
components of  2, and the location shift log R(j,z) + log S(B|j,z) is contained in the subspace spanned by
these functions, then the effect of the sampling and selection is absorbed by the coefficients on these
functions.  In this simple case, the population GEV model [2] and the sampling-adjusted GEV model [9]
are identical except for shifts in coefficients of functions that enter as explanatory variables, and all
corrections for sampling can be made by first estimating the GEV model as if the sample were random
(with choice set B), and then correcting the resulting estimates for the effects of the location shifts in [10].



5

The property that the family of choice probabilities obtained from GEV generating functions is closed
under the effects of stratification and sampling of alternatives with positive conditioning allows analysis
of stratified samples in which the qualification probabilities vary with interactions of j and z as well as
with j alone.  It also allows R(j,z) to contain unknown parameters, provided restrictions on vj(z,2) and
R(j,z) are sufficient to identify the parameter vector 2 and parameters embedded in R(j,z).  In the case of
no selection of alternatives, or uniform conditioning where S(B|j,z) is the same for every j 0 B, the
correction term log S(B|j,z) drops out of [9], and in the case of exogenous or pseudo-exogenous sampling
where R(j,z) is independent of j, the correction term log R(j,z) drops out of [9].
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