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ABSTRACT: We estimate random-parameter logit models of anglers ' choice of fishing site. The

models generalize logit by allowing coefficients to vary randomly over anglers rather than being

fixed. The models do not exhIbit the restrictive "independence from irrelevant alternatives property

of logit and can represent any substitution pattern. Estimation explicitly accounts for the fact that

the variation in coefficients over anglers induces correlation in unobserved utility over trips by the

same angler. Willingness-to-pay for improved fish stock and the value to anglers of specific sites are

calculated from the models and compared with the estimates obtained from a standard logit model.



I. Introduction

Recreation demand models are used to forecast demand for recreational activities as well as to

determine the value that recreators place on the various factors that affect their choices. A prominent

example is fishing models , 1 which describe anglers ' choices of whether to take a fishing trip during

a given period (e. , week), which species of fish to target, and/or where to go fishing (i. , the site).

The models relate an angler s choices to the characteristics of the available options (such as the time

and cost of traveling to each site, the availability of fish at each site, the availability of campgrounds

and so on) and to the characteristics of the angler (such as age, gender, and income.) The models

provide estimates of anglers ' willingness to pay for changes in site attributes, such as increased fish

stocks or reduced contaminants at specified sites, as well as the value of individual sites themselves?

Recreational demand models have usually been specified as logit or nested logit models.3 These

specifications have several advantages, including simplicity of estimation. However, they impose

several well-known restrictions (McFadden 1973, 1978; Train 1986.) First, the coefficients of

variables that enter the model are assumed to be the same for all people. This assumption implies that

different people with the same observed characteristics have the same value (i.e.

, "

tastes ) for each

factor entering the model. Second, logit and nested logit exhibit the "independence from irrelevant

alternatives" (iia) property. (Logit exhibits this property for all alternatives , and nested logit exhibits

it within each nest.) Because of this property, the models necessarily predict that a change in the

attributes of one alternative changes the probabilities of the other alternatives proportionately. This

substitution pattern can be unrealistic in many settings. Third, in situations with repeated choices over

time , logit and nested logit assume that unobserved factors are independent over time for each

decision-maker. In reality, however, one would expect unobserved factors that affect a
decision-maker to persist, at least somewhat, over time.

In the current paper we estimate recreation demand models with a specification that is a

generalization oflogit and avoids these limitations. In particular, we estimate a random-parameters

logit (RPL) model4 of fishing site choice. RPL generalizes logit by allowing that the coefficients of



observed variables to vary randomly over people rather than being fIXed. With this generalization, the

model does not exhibit the iia property with its restrictive substitution patterns. In fact, any pattern

of substitution can be represented arbitrarily closely by an RPL (McFadden and Train 1997). The

variation in coefficients over people implies that the unobserved utility associated with any alternative

is necessarily correlated over time for eac~ decision-maker. This correlation is incorporated into the

estimation when there are observations on more than one choice situation for each person. The

specification and estimation of RPL are described in the following section. The application to fishing

site choice is described in section III.

II. Random-Parameters Logit

RPL models have taken different forms in different applications; their commonality arises in the

integration of the logit formula over the distribution of unobserved random parameters. The early

applications (Boyd and Mellman 1980, and Cardell and Dunbar 1980) were restricted to situations

in which explanatory variables do not vary over decisionmakers , such that the integration, which is

cornputationally intensive, is required for only one "decisionmaker" using aggregate share data rather

than for each decisionmaker in a sample. Advances in computer speed, as well as greater

understanding of simulation methods to approximate integration, have allowed estimation of models

with explanatory variables varying over decisionmakers. Examples include Erdem (1995), Ben-Akiva

and Bolduc (1996), Bhat (1996a b), Brownstone and Train (1996), Mehndiratta (1996), and Revelt

and Train (1996). The form of the RPL that we utilize in our investigation is described as follows.

An angler chooses among J possible sites each time he/she takes a fishing trip. The utility that angler

n would obtain from site j in trip t is Unjt = Pn ~jt njt where ~jt is a vector of observed variables, 

is a vector of coefficients that is unobserved for each n and varies randomly over anglers representing

each angler s tastes, and Enjt is an unobserved random term that is distributed lid extreme value

independent of Pn and ~jt.

This specification is the same as for logit, except that now the coefficients Pn vary in the population



rather than being fIXed. The variance in Pn induces correlation in utility over sites and trips. 

particular, the coefficient vector for each angler, Pn, can be expressed as the sum of the population

mean, b, and individual deviation, TJn' which represents the angler s tastes relative to the average tastes

in the population of all anglers. Utility is Unjt = b' njt + TJn njt njt. The researcher estimates b (see

below) but does not observe TJn for each angler. The unobserved portion of utility is therefore

TJn ~jt+Eujt. This term is correlated over sites and trips due to the common influence of1ln. That is,

the same tastes are used by the angler to evaluate each site; since the researcher does not observe

these tastes completely (i. , does not observe TJn)' the portion of utility that the researcher does not

observe is correlated over sites. Similarly, the same tastes are used by the angler for each trip; since

the researcher does not observe these tastes completely, the portion of utility that is not observed by

the researcher is correlated over the trips made by a given angler.

Because the unobserved portion of utility is correlated over sites, RPL does not exhibit the

independence from irrelevant alternatives property of standard logit. Very general patterns of

correlation over sites, and hence very general substitution patterns, can be obtained through

appropriate specification of variables and parameters. As stated above, it has been shown (McFadden

and Train 1997) that any random utility model, representing any subsitution patterns, can be

approximated arbitrarily closely by an RPL.5

Because the unobserved portion of utility is correlated over trips for a given angler, RPL differs from

standard logit which assumes that unobserved utility is uncorrelated over trips. However, the

correlation over trips is of a specific type, which might not be appropriate in all situations. In

particular, we do not subscript Pn by t; that is, tastes vary over anglers but not over time for each

angler. This specification is consistent with the notion that an angler has particular tastes that stay

with the angler. In general, however, an angler s tastes may change over time, and in particular may

change in response to previous trip experiences (e. , the angler s value of trip cost may rise after

the angler has taken a number of expensive trips.) Our specification can be generalized to allow for

these possibilities; this is an important direction for future work.



We now derive the choice probabilities. If we knew the angler s individual tastes , that is , if we knew

the value of Pn, then we could easily calculate the angler s probability of choosing a given site. Since

nit is lid extreme value, as in a standard logit model, the probabilties are logit given the value of Pn.

In particular, if Pn were known to take the value P, the probability that angler n chooses site i for trip

t would be standard logit:

e P'x"it
nit =

Ie 

P'X njt (1)

We do not, however, know the angler s individual tastes. Tastes vary in the population with density

denoted f(PI8*), where 8* are the parameters of this distribution (representing, for example, the mean

and standard deviation of tastes in the population of anglers. ) Since the researcher does not observe

the angler s actual tastes , the probability that the researcher ascribes for the angler is the integral of

equation (1) over all possible values of P weighted by the density of p. That is, the actual probability

for the angler s choice of site is:

Qnit(8*) = fLnit(P) f(PI8*) dp

For maximum likelihood estimation we need the probability of each sampled angler s sequence of

choices (unless we only observe one trip for each angler. ) We obtain this probability in a manner

similar to that above for one trip. If we knew Pn, then the probability of the angler s choices for

several trips would be the product oflogit formulas. In particular, let i(n t) denote the site that angler

n chose in trip 1. If Pn=P, then, since Enit is lid over trips , the probability of angler n s observed

sequence of choices is:

(P) = n Lni(n,t)t(P)
(2)

Since we do not know Pn, the actual probability is the integral of (2) over all values of p:

(8*) = (P) f(PI8*) dp (3)



Note that there are two concepts of parameters in this description. The coefficient vector Pn is the

parameters associated with angler n, representing that angler s tastes. These tastes vary over anglers;

the density of this distribution has parameters 8* representing, for example , the mean and covariance

of P in the population of all anglers. The goal is to estimate 8* , that is , the population parameters that

describe the distribution of individual p~ameters.

The log-likelihood function is LL(8)= lnP (8). Exact maximum likelihood estimation is not

possible since the integral in (3) cannot be calculated analytically. Instead, we approximate the

probability through simulation and maximize the simulated log-likelihood function (see e.

Hajivassiliou 1993 , and Hajivassiliou and Ruud 1994, for a discussion of simulation methods in

estimation.) In particular, P (8) is approximated by a summation over randomly chosen values of p.

For a given value of the parameters 8 , a value of p is drawn from its distribution. Using this draw of

p, S (P) -- the product of standard logits -- is calculated. This process is repeated for many draws

and the average of the resulting S (P)'s is taken as the approximate choice probability:

(8) = (1/R) Lr=l""' R S
(prl6

where R is the number of repetitions (i. , draws of P), prl6 is the r-th draw from f(PI8), and SP (8)

is the simulated probability of angler n s sequence of choices. By construction SP (8) is an unbiased

estimator ofP (8) whose variance decreases as R increases. It is smooth (i. , twice-differentiable)

which helps in the numerical search for the maximum of the simulated log-likelihood function. It is

strictly positive for any realization of the finite R draws, such that the log of the simulated probability

is always defmed.

The simulated log-likelihood function is constructed as SLL(8) = In(SP (8)), and the estimated

parameters are those that maximize SLL. Lee (1992) and Hajivassiliou and Ruud (1994) derive the

asymptotic distribution of the maximum simulated likelihood estimator based on smooth probability

simulators with the number of repetitions increasing with sample size. Under regularity conditions

the estimator is consistent and asymptotically normal. Furthermore, when the number of repetitions



rises faster than the square root of the number of observations , the estimator is asymptotically

equivalent to the maximum likelihood estimator. We use a thousand repetitions in our application

below. 10

We estimate models with normal and log~normal distributions for elements of P; other distributions

are of course possible. The distributional assumptions for the model are described in the next section

after the data are discussed.

III. Application

We estimate a model of anglers ' choice among river fishing sites. This model is a component ofthe
more complete angler-behavior model developed by Desvousges, Waters, and Train (1996) which

describes anglers ' choices of whether to take a fishing trip in each given week , and, for each trip,

whether the trip is to a lake or river, the lake site for lake trips , the river site for river trips, and the

duration of the trip. We concentrate on the river site component to illustrate the concepts of RPL;

this component contains the parameters that are most central to estimation of anglers ' willingness to

pay for improved fish stocks in rivers.

A random sample of Montana anglers was obtained through random telephone solicitation and

screening. For each sampled angler, records were obtained for each fishing trip taken from July 1992

through August 1993, including the location at which fishing occurred. Data were obtained on a total

of 962 river fishing trips taken by 258 anglers. A total of 59 possible river fishing sites were defmed

based on geographical characteristics and other relevant factors. Each site contains one or more of

the stream segments used in the Montana River Information System (MRIS). Variables that relate

to the sites were obtained from MRIS and other sources. In particular, the following variables enter

the model for each site:

1. Fish stock, measured in fish per 1000 feet of river (from the 1994 MRIS data, calculated as the
weighted average over the MRIS stream segments within each site , with weights proportional to
segment length.) In estimation, we rescale this variable to represent 100 fish per 1000 feet of stream.



2. Aesthetics rating, measured on a scale of 0 to 3 , with 3 being highest (from MRIS with category
4 combined with category 3 for a rating of 3 , averaged over stream segments. 11

3. Log of size of each site, in US Geological Survey (USGS) blocks (from USGS maps.) This variable
captures the fact that the angler has the option of many locations within the site, and the number of
locations increases with the size of the site. The variable enters in log form as indicated by a nested
logit structure with location choice belo~ site choice (McFadden 1978; Train 1986).

4. The number of campgrounds per USGS block in the site.

5. The number of State Recreation Access areas per USGS block in the site. These areas are indicated
by a sign on the road designating access to fIShing sites.

6. Indicator that the Angler s Guide to Montana lists the site as a major fishing site.

7. Number of restricted species at the site , such that catching and keeping these species is illegal
during certain times of the year (from Montana fishing regulations, 1992-

8. Travel cost. For each angler, the cost of travelling to each site was calculated, including both the
variable cost of driving (i. , gas , maintenance , tires , and oil) and the value of the time spent driving
(with the value of time taken to be one-third of the angler s wage.

Extensive information on the sample, site defmitions , and variable construction are provided by

Desvousges et al. (1996) and Desvousges and Waters (1995).

Table 1 presents a standard logit model estimated on these data. The coefficients of fish stock, trip

cost, aesthetics, log(size), and restricted species enter with the expected signs. Number of

campgrounds and number of access areas could logically take either sign: some anglers might prefer

to have campgrounds and access areas that they could use, while other anglers might prefer the

privacy that comes from there not being campgrounds and access areas nearby. Similarly for the

major-site indicator: being listed as a major site in the Angler s Guide could deter some anglers who

prefer privacy, while other anglers fmd the Guide s assessment as an inducement to go there

It is doubtful that all anglers place the same value on each of these site attributes. It is also doubtful

that the iia property of logit models holds across the 59 sites. We specify an RPL model to account

for these issues. In particular, we estimate a model in which the coefficients of fish stock, trip cost



and aesthetics have coefficients that are distributed log-normal in the population; the coefficients of

campgrounds, access areas , major-site , and restricted species are normally distributed; and the

coefficient oflog(size) is fixed. The log-normal distribution assures that each angler in the population

has a positive coefficient for the variable, whereas with the normal distribution, some anglers in the

population necessarily have negative signs while others have positive signs (the share of the

population with each sign is determined by the mean and standard deviation of the distribution, which

are estimated.) The coefficients offish stock and aesthetics are expected to be positive for all anglers

such that they are given log-normal distributions. The trip cost coefficient is expected to be negative

for each angler; in estimation, the negative of trip cost is entered such that its log-normally distributed

coefficient is negative for all anglers. 14 Campgrounds , access areas , and being listed as a major site

in the Angler s Guide could be negative or positive factors for different anglers; giving their

coefficients a normal distribution allows the estimates to indicate the share with each sign. The

presence of restricted species would be expected to have a negative impact during the periods of

restriction; however, during unrestricted fishing periods , the impact could be positive. This variable

is therefore given a normal distribution. The coefficient of log(size) is a measure ofthe correlation

in unobserved utility across locations within each site (see footnote 12 above); under this

interpretation, it is constant, rather than varying over anglers.

Let m denote an element of P that has a normal distribution. This coefficient is calculated as Pm = b

+ s l1m, where 11m is an independent standard normal deviate. The parameters bm and sm' which

represent the mean and standard deviation of Pm' are estimated. Each element of P that has a log-

normal distribution is expressed Pk = exp(bk + Skllk)' where the parameters b k and Sk' which represent

the mean and standard deviation of In(Pk)' are estimated. The median , mean, and standard deviation

of Pk are: exp(b ), exp(b +(s /2)), and exp(b +(s /2))* J (exp(s 1), respectively. Note that in this

specification, the coefficients are independent; correlated coefficients are considered later.

Table 2 gives the estimated parameters of this RPL model. The estimated standard deviations of

coefficients are highly significant, indicating that parameters do indeed vary in the population. 15 Also

the likelihood ratio index rises substantially compared to the logit model, indicating that the



explanatory power of the RPL model is considerably greater than with standard logit. All of the

parameters are significantly different from zero at 99% confidence, except for the mean of the

campground coefficient. The standard deviation of the campground coefficient is , however, significant

and fairly large. Taken together, the results for the campground coefficient imply that campgrounds

do indeed affect anglers ' choices , with sqme anglers preferring sites with campgrounds and other

anglers preferring sites without campgrounds; the mean is not significantly different from zero

because the different tastes regarding campgrounds tend to balance out in the population. The point

estimates for the coefficient of access areas imply that about thirty percent of the population prefer

having numerous access areas while the other seventy percent prefer having the privacy associated

with fewer access areas. The Angler s Guide listing is estimated to constitute a positive inducement

for about two-thirds of the population and a negative inducement for the other third.

The point estimates for the parameters for the log-normal distributions imply the following:

Median Mean Std. dev.

Fish stock 0563 0944 1270

Aesthetics 0.4519 6482 6665

Trip cost 0906 1249 1185

The model in Table 2 specifies the coefficients to be independently distributed while they could in

reality be correlated. For example, customers who are especially concerned about fish stock might

also be highly concerned about aesthetics. For the estimation of willingness to pay for improved fish

stock, we are particularly concerned with the possibility that the coefficients of fish stock and trip

cost are correlated. To investigate these possibilities, we specify the log-normally distributed

coefficients to be correlated. For computational convenience (i. , to prevent the introduction of

numerous covariance parameters), we maintain independence for the normally distributed coefficients.

In particular, letting P represent the vector of coefficients for fish stock, aesthetics and trip cost, we

specify log(P)~ N(b,Q) for general Q. The coefficient vector is expressed p=exp(b+L/l) where L is



a lower-triangular Choleski factor of Q , such that LL' =0 , and /l is a vector of independent standard

normal deviates. The top part of Table 3 gives the estimates of band L, and the bottom part gives

statistics for the coefficients implied by the point estimates of band L. The elements of L are all

significant at the 95% confidence level, indicating that there is indeed correlation among the three log-

normally distributed coefficients. The co~relations are positive, indicating that anglers who place a

higher-than-average value on fish stock also tend to place higher-than-average values on aesthetics

and trip cost. Essentially, the positive correlations among the three factors imply that these factors

tend to be valued as a group relative to the other factors.

We now calculate willingness-to-pay estimates from the RPL models and compare them with those

from standard logit. Given p, the change in consumer surplus (or, more precisely, the compensating

variation) that is associated with a change in site attributes is calculated the same as for standard logit

(see, e. , Parsons and Kealy 1995):

(P) =( InLj exp(p'x * njt) - InLj exp(p'x

** 

J / pc (4)

where X njt represents the original attributes , x** njt the new attributes , and pc is the cost coefficient.

The compensating variation for person n and trip t is therefore CV (P) f(PI8*) dp , and the

average compensating variation is the average of CVnt over all trips by all sampled anglers.

We first calculate the compensating variation associated with increasing the fish stock at each site

by 100 fish per 1000 feet of river. The results are given in the fIrst row of Table 4. The logit model

gives a compensating variation of $1.40 per trip. This, of course, is simply the ratio of the fish stock

coefficient to the trip cost coefficient in Table 1 (since the fish stock coefficient represents the change

in utility associated with a 1 unit change in the fish stock variable, which is scaled in units of 100 fish

per 1000 feet of river.) The RPL with uncorrelated coefficients (the model of Table 2) gives an

estimated compensating variation of $1.44, which is practically the same as from the standard logit.

The model that allows correlations among coefficients (Table 3) provides a lower estimate of 0.93.



We next estimate the compensating variation associated with a doubling of the fish stock at each site

given in the second row of Table 4. The estimated compensated variation is higher for a doubling

of the fish stock at all sites than for adding 100 fish per 1000 feet of river at each site. There are two

reasons. First , the average fish stock in the base situation is 180. The average fish stock therefore

rises more when the stock is doubled t~an when it is increased by 100. Second, doubling stocks

increases the range of fish stocks while adding a fIXed amount to each site does not. Greater variety

allows for greater matching of sites with anglers ' tastes. In comparing across models, the RPL

without correlation gives a higher estimate than the standard logit, and the RPL with correlation gives

a lower estimate. 

As a third scenario, we calculate the change in consumer surplus that arises from eliminating the

Madison River sites from anglers ' choice sets. This value is calculated by not including the sites in

the second summation in equation (4) while holding x** njt =x* njt for all other sites. The third row of

Table 4 gives the average over all trips of the compensating variation associated with the elimination

of the Madison River sites. Twenty-four ofthe 962 sampled trips were to the Madison River. Since

only these trips are affected by the elimination of the Madison River sites , the compensating variation

can also be expressed in terms of loss per trip to the Madison. These figures are given in the fourth

row, calculated simply as the estimate in the third row (which is the average over all trips) times 962

sampled trips , divided by 24 trips to the Madison. The figures, which range from $22 for the RPL

with correlations to $30 for the RPL without correlations, represent estimates of the amount that

anglers must be compensated for each trip that they would take to the Madison for the lower utility

that they obtain from taking the trip to another site instead. The RPL without correlations gives a

higher estimate than the logit model, and the RPL with correlations gives an estimate that is nearly

the same as the logit model.

In all three scenarios, the compensating variation from the logit model is between those from the two

RPLs. Bhat (1996a) found that the estimated willingness to pay for travel attributes were somewhat

but not greatly different in an RPL than a logit. These results might suggest that the logit model is

fairly robust with respect to estimating compensating variations. However, these results are
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undoubtedly situation-specific. Bhat (1996b), in a different situation, found large differences between

a logit and an RPL in estimated willingness to pay for travel mode attributes. Revelt and Train (1996)

found that estimated willingness to pay for appliance attributes differed between a logit and RPL for

some attributes and were similar for others. There is probably no general answer to whether logit

obtains reliable estimates of compensating ~ariations; to answer the question for any specific situation

estimation of an RPL is needed for comparison.
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Footnotes

1. E. , Bockstael et al. 1989; Wegge et al' 1991; Parsons and Needelman 1992; Parsons and

Kealy 1992; Morey et al. 1991 , 1993 , 1995; Hausman et al. 1995; Desvousges et al. 1996).

2. See Bockstael, McConnel, and Strand 1991 , for an overview of the use of recreation

demand models for assessment of attribute values. The cites in note 1 provide specific

examples.

3. E. , all the fishing models cited above; the general lake recreation model of Caulkins et

a11986; the swimming choice model ofBockstael et al1987; the boating, swimming and lake

viewing models of Parsons and Kealy 1992; and the boating, hunting, and hiking/viewing

models of Hausman et a11995.

4. These models are also called "mixed logit" (Bhat 1996a; McFadden and Train 1997; Train

1997), "random-coefficients logit" (Bhat 1996b), and "error-components logit" (Brownstone

and Train 1996).

5. An analog to nested logit is obtained by defming a dummy variable for each nest , with the

dummy taking the value of one for all alternatives in the nest and zero for alternatives outside

the nest. Allowing the coefficient of each nest-specific variable to vary randomly induces

correlation in unobserved utility among alternatives within each nest, while not inducing

correlation across nests. As such, RPL can represent a nested logit. RPL can also allow other

coefficients to vary, such that the correlation pattern over alternatives is potentially richer than

that provided by nested logit. In some situations , however, nested logit is easier to estimate

than RPL and can be preferred on those grounds, especially if the richer correlation patterns

that RPL allows are not needed to adequately represent the choice process.



6. As suggested by a reviewer, the change in tastes over time for each angler could be

specified as a Markov chain with a complete connection between the angler s current tastes

and the other sites that the angler has previously visited and in what order (or, for a more

tractable specification, to the number of previous trips to other sites without referencing the

sequence.

7. It is important to note that estimation of RPL does not require observations on more than

one trip for each angler. In fact estimation is faster with only one trip per angler. However

for most recreational demand data (including the data we use), repeated choices are observed

for each sampled recreator.

8. Even though Enit is independent over trips, the unobserved portion of utility is correlated

over trips , as discussed above. The correlation over trips is induced by Pn, such that if Pn

were known, the remaining error term would be uncorrelated over trips.

9. The simulated probabilities for a sequence of choices sum to one over all possible

sequences. Similarly, simulated choice probabilities for each trip (that is , simulated versions

of i8)) sum to one over alternatives , which is useful in forecasting.

10. Software to estimate RPLs, written in GAUSS with users manual and sample runs, can

be downloaded (free of charge) from the author home page 
http://elsa.berkeley.edu/-train.

11. A rating of 4 is given to a "stream of national renown" while the rating of 3 is given to a

stream of outstanding natural beauty in a pristine setting. " We combined the two ratings to

avoid the possibility that the difference between a 3 and a 4 was based on the quality of

fishing at the stream, rather than aesthetic quality per se.



12. To be precise: if the choice of site and location within site is a nested logit , and there are

no observed differences in utility across locations within each site (though there are

unobserved differences in utility that vary randomly), then the expected utility associated with

the locations within each site is the log of the number of locations within the site.

13. Since the listing as a major site usually indicates high quality fishing, there is the possibility

that its estimated coefficient captures some of the effect of fish stock. When the model is

estimated without the major site dummy, the coefficient offish stock rises by 15%.

14. When the model is estimated with normal distributions for the fish stock, aesthetics , and

cost coefficients, the estimated mean for each coefficient is between the median and mean that

are estimated with the log-normal distribution.

15. Part of this variation in tastes could perhaps be captured by characteristics of the anglers,

which are not included in the model. In a RPL model of appliance choice , Revelt and Train

(1996) found considerable variation remaining after including demographic variables

indicating that tastes vary considerably more than can be explained by observed characteristics

of people.

16. To interpret the estimates for these scenarios it is important to distinguish increases in fish

stock from increases in the number of fish that angler catch. Morey et al. (1995), for

example, fmd sharply decreasing returns of catch rate to fish stock.



TABLE 

Standard Logit Model

Coefficient Standard error

Fish stock

Aesthetics

1061

5654

0756

0.3718

1380

0.4592

0.3084

5847

0264

0628

0022

1339

2230

1661

0542

0764

Trip cost

Guide lists as major

Campgrounds

Access areas

Restricted species

Log(Size)

Likelihood ratio index

Log-Likelihood at
convergence

.4324

- 2201.2965



TABLE 2

RPL Model

Parameter Standard error

Fish stock Mean of In( coefficient) 876 6066

Std. dev. of In(coefficient) 1.016 2469

Aesthetics Mean of In( coefficient) 7942 2287

Std. dev. of In(coefficient) 8493 1382

Trip cost (neg. Mean of In( coefficient) 2.402 0631

Std. dev. ofln(coefficient) 8012 0781

Guide lists major Mean of coefficient 1.018 2887

Std. dev. of coefficient 195 3518

Campgrounds Mean coefficient 1158 0.3233

Std. dev. of coefficient 1.655 0.4350

Access areas Mean coefficient 9499 3610

Std. dev. of coefficient 1.888 3511

Restricted species Mean coefficient 0.4989 1310

Std. dev. of coefficient 8989 1640

Log(size) Coefficient 9835 1077

Likelihood ratio
index

5018

Log-likelihood at
convergence

1932.3348



TABLE 3

Model with Correlations Among Log-normal Coefficients

I. Estimated means and Choleski factor of covariance matrix of Ln(coefficients)
Standard errors in parentheses

Fish stock Aesthetics Trip Cost

Mean 1641
(0. 6401)

7128
(0.2171)

2.3743
(0.0682)

Choleski Factor

1.5157
(0.2539)

0.3715
(0. 1785)

5315
(0.0788)

8489
(0. 1799)

2074
(0. 1051)

6501
(0.0627)

ll. Statistics for coefficients

Fish Stock Aesthetics Trip Cost

Median 043 0.493 093
Mean 131 773 137
Standard deviation 321 924 152

Correlation Matrix

236

0.404 0.365



TABLE 4

Compensating Variation in Dollars per Trip

Logit RPL with RPL with
uncorrelated correlated
coefficients coefficients

Increase fish stock at all
sites by 100 fish per
1000 feet of river 1.40 1.44

Double fish stock at all
sites

Eliminate Madison
Rives sites:
per trip to any site
per trip to Madison 23. 30. 22.


