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Abstract: The simulation variance in the estimation of mixed logit parameters is found, in our
application, to be lower with 100 Halton draws than with 1000 random draws. This finding
confirms Bhat’s (1999a) results and implies significant reduction in run times for mixed logit
estimation. Further investigation is needed to assure that the result is not quixotic or masking
other issues.

I. Introduction

Choice probabilities in mixed logit models take the form of a multidimensional integral over a

mixing distribution (see, e.g., Brownstone and Train, 1999). The integral does not have a closed

form in general, and so it must be evaluated numerically. In applications, the integral has been

approximated though simulation using random draws from the mixing distribution. A large

number of draws is usually needed to assure reasonably low simulation error in the estimated

parameters. The large number of draws translates into long computer run-times. Estimation can

require 2-3 hours for moderately sized models, and run-times of 10-20 hours are not

uncommon.

Numerous procedures have been proposed in the numerical analysis literature for taking

“intelligent” draws from a distribution rather than random ones (see, e.g., Sloan and

Wozniakowski, 1998; Morokoff and Caflisch, 1995.) The procedures offer the potential to

                                                
1 Acknowledgements: The data for this analysis were collected by the Electric Power Research Institute (EPRI.)  I

am grateful to Ahmad Faruqui and EPRI for allowing me to use the data and present the results publicly.
Andrew Goett and Kathleen Hudson, who had previously used these data, provided me datafiles in easily
useable form, which saved me a considerable amount of time. I am also grateful to Chandra Bhat for sharing
with me his GAUSS code for creating Halton sequences.
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reduce the number of draws that are needed for mixed logit estimation, thereby reducing run

times, and/or to reduce the simulation error that is associated with a given number of draws. In

the only application of these procedures to mixed logits to my knowledge, Bhat (1999a)2 tested

Halton sequences for mixed logit estimation and found their use to be vastly superior to random

draws. In particular, he found that the simulation error in the estimated parameters was lower

using 100 Halton numbers than 1000 random numbers. In fact, with 125 Halton draws, he

found the simulation error to be half as large as with 1000 random draws and smaller than with

2000 random draws.

In this paper, we examine Halton sequences in another application of mixed logit. Our results

confirm Bhat’s and illustrate the reasons for the improvement. In our application, simulation

variance in the estimated parameters is found to be considerably smaller with 100 Halton

numbers than 1000 random draws. The reasons for the improvement are twofold. First, the

Halton numbers are designed to give fairly even coverage over the domain of the mixing

distribution. With more evenly spread draws for each observation, the simulated probabilities

vary less over observations, relative to those calculated with random draws. In our application,

variance over draws in the simulated probability for an observation is half as large with 100

Halton draws than 1000 random draws, and is a third as large with 125 Halton draws than 1000

random draws. Second, with Halton sequences, the draws for one observation tend to fill in the

spaces that were left empty by the previous observations. The simulated probabilities,

therefore, become negatively correlated over observations (even when the data for each

observation are the same.) This negative correlation reduces the variance in the log-likelihood

function. In our application with 125 Halton draws for each observation, we obtained a

correlation of -0.44 between the simulated probability for one observation and that for the

immediately previous observation, while the correlation using random draws is essentially

zero.3

                                                
2 Another paper by Bhat (1999b) also uses Halton draws in mixed logit estimation but does not describe his tests

against random draws.
3 GAUSS code to estimate mixed logits using Halton draws is available from my website at

http://elsa.berkeley.edu/~train.
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II. Mixed Logit

Mixed logit models take the form:

Pin= ∫ Lin(β) f(β|�)dβ

Lin(β) = exp(β′xin) / ∑jexp(β′xjn).

where Pin is the choice probability for observation n and alternative i, Lin(β) is the logit formula

evaluated with coefficients β, and f(β|�) is the density of β, which has parameters �.

Essentially, the mixed logit is a mixture of logits with f as the mixing distribution. The goal is

to estimate the parameters � of the mixing distribution.

In different applications, the parameters �  take on different meaning. The most common

interpretation is based on random coefficients: Utility is specified as Uin = βn′ xin + ein with

agent-specific coefficients βn that represent that agent’s tastes. The researcher does not observe,

and cannot estimate, the coefficients for each agent but knows that the coefficients vary in the

population, with density f. For example, the coefficients may be distributed normally in the

population, with mean �1  and variance �2. In this case, the goal is to estimate the mean and

variance of  tastes in the population.

The choice probabilities are evaluated numerically through simulation. Take R draws from

density f, and label these draws βr, r=1,...,R. For each βr, calculate the logit formula. The

simulated probability is the average of these calculated logits:

SPin= (1/R) ∑r=1,...,R  Lin(βr) .

SPin is an unbiased estimate of Pin whose variance decreases as R rises. The simulated log-

likelihood function is created from the simulated probabilities, SLL(�)=∑n ln(SPin) where i

denotes the chosen alternative for each observation n. The estimated parameters are those that
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maximize SLL. Properties of this estimator, based on smooth simulated probabilities, are given

by Lee (1992) and Hajivassiliou and Ruud (1994.) Due to the non-linearity of the log

transformation, ln(SPin) is not an unbiased estimate of ln(Pin), such that the estimator based on

maximizing SLL is biased. However, the bias decreases as the number of draws increases, and

when the number of draws rises as fast as the square root of the number of observations, the

estimator is consistent and equivalent to the classical maximum likelihood estimator.

In all previous applications of mixed logits to my knowledge, random draws have been used for

the simulation. While the same draws could be used for each observation (see, e.g., Lee), the

use of  different draws for each observation allows simulation errors to cancel-out over

observations. (This was the essential insight in McFadden’s 1989 paper on method of simulated

moments.) For our investigations in section V below, the models that are estimated with

random draws use a different set of draws for each observation. The application of Halton

sequences for simulation is described in the following section.

III. Halton Sequences

Halton sequences are best understood through an example. Start with a number that defines the

sequence. For illustration, consider the number 3. A Halton sequence for number 3 is

constructed as follows. Take the unit interval (0,1) and divide it into 3 parts. The dividing

points become the first two elements of the Halton sequence: 1/3 and 2/3. Now take each of the

three parts and divide them into 3 parts. The dividing points constitute the next elements in the

Halton sequence: 1/9, 4/9 (which is 1/9 above 1/3), 7/9 (which is 1/9 above 2/3), and 2/9, 5/9

(which is 2/9 above 2/3), and 8/9 (which is 2/9 above 2/3). The unit interval has now been

divided into nine parts. Divide each of these nine parts into thirds. The dividing points are 1/27,

10/27, 19/27, 4/27, 13/27, 22/27, 7/27, 16/27, 25/27 (which are 1/9 added to zero and the

previous numbers) and  2/27, 11/27, 20/27, 5/27, 14/27, 23/27, 8/27, 17/27, 26/27 (which are

2/9 added to zero and the previous numbers.) Each of the 27 spaces are then divided into three

parts, and so on for as many numbers as needed in the sequence.  Similar sequences are defined

for other numbers, such as 2 (1/2, 1/4, 3/4, 1/8, 5/8, 3/8, ...) and 5 (1/5, 2/5, 3/5, 4/5, 1/25, 6/25,

11/25, ...).
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Draws for mixed logit estimation are created as follows. Using prime numbers, create a Halton

sequence for each dimension of the mixing distribution. For example, if the mixing distribution

describes the distribution of three random terms, create three Halton sequences. Base these

Halton sequences on prime numbers, since the Halton sequence for a non-prime number

divides the unit space the same as each of the primes that constitute the non-prime. For each

element of each sequence, calculate the inverse of the cumulative mixing distribution that is

appropriate for that dimension.4 For example, if the mixing distribution is normal, take the

inverse cumulative normal of each element of each sequence. The resulting values are the

Halton draws from the mixing distribution.

The length of each sequence is determined by the number of observations and the numbers of

draws that the researcher decides to use. With N observations and R draws per observation,

sequences of length (N*R)+10 are created. The first 10 elements of the sequence are discarded,

since the early elements have a tendency to be correlated over Halton sequences with different

primes. (For example, the first four elements of the sequences for 5 and 7 are 1/5,2/5,3/5,4/5

and 1/7, 2/7, 3/7, 4/7, which are highly correlated.) After discarding the first ten elements, use

the next R elements for the first observation, the next R for the second observation, and so on.

As illustration, consider a mixed logit that is specified as containing three normally distributed

coefficients. Halton sequences are created for the first three primes: 2, 3 and 5. A sequence of

triplets is then created from these three sequences, where the first term is the Halton sequence

for the first prime, the second term is the Halton sequence for second prime, and the third is the

Halton sequence for third prime:

                                                
4 As when taking random draws, the mixing distribution is re-expressed in terms of standardized, independent

distributions; the inverse of these standardized distributions (one for each dimension of the original mixing
distribution) are taken. For example, suppose f is N(b,W), meaning that the coefficients of the logit function are
distributed normally with mean b and covariance W. The coefficients are re-expressed as b+Se where S is the
Choleski factor of W and e consists of iid standard normal deviates. The inverse cumulative standard normal of
the Halton sequences gives draws of e. Since this re-expression is necessary with random draws, it is not an
extra task when using Halton draws.
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< 1/2,  1/3,  1/5 >

< 1/4,  2/3,  2/5 >

< 3/4,  1/9,  3/5 >

< 1/8,  4/9,  4/5 >  ...

The inverse cumulative standard normal is evaluated at each element to obtain a sequence of

draws from the three-dimensional normal mixing distribution:

<    0.0 ,  -0.43,  -0.84 >

<  -0.67,   0.43,  -0.25 >

<   0.67,  -1.22,   0.25 >

< -1.15,   -0.14,   0.84 > ...

Discard the first 10 triplets, and use the others in groups of R for each of the observations.

IV. Application

For our investigations we use a mixed logit model of residential customers’ choice of energy

supplier. Surveyed customers were presented with conjoint-type choice experiments. In each

experiment, the customer was presented four alternative suppliers with different prices and

other characteristics. The suppliers differed on the basis of price (fixed price at a given cents

per kWh, time-of-day prices with stated prices in each time period, or seasonal prices with

stated prices in each time period), the length of the contract (during which the supplier is

required to provide service at the stated price and the customer would need to pay a penalty for

leaving the supplier), and whether the supplier was their local utility, a well-known company

other than their local utility, or an unfamiliar company. The data were collected by Research

Triangle Institute (1997) for the Electric Power Research Institute and have been used by Goett

(1998) to estimate mixed logits with random draws. We utilize a similar specification to

Goett’s, eliminating or combining variables that he found to be insignificant. Details on the

data and survey design are provided by these authors.
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Table 1 gives the estimation results for a model estimated with 125 Halton draws for each

observation.5 There are six explanatory variables, and five of them are specified to have

normally distributed coefficients. The price coefficient is specified to be fixed, such that the

distribution of willingness to pay for each nonprice attribute (which is the ratio of the

attribute’s coefficient to the price coefficient) is normally distributed.6

The estimated price coefficient is negative and highly significant. The estimated means of the

coefficients of nonprice attributes are all highly significant. All but one of the estimated

standard deviations of the coefficients are highly significant, and the one that is not highly

significant nevertheless has a t-statistic over 1. These results imply that there is considerable

heterogeneity in customers’ preferences for energy suppliers, such that a mixed logit is a

significantly more realistic representation than a standard logit. The estimated parameters

imply:

•  The average customer is willing to pay about a quarter-cent per kWh in higher price in

order to have a contract that is shorter by one year. Stated conversely, a supplier that

requires customers to sign-onto a four-year contract must discount its price by one cent to

attract the average customer.

•  There is considerable variation in customers’ attitudes towards contract length, with 27% of

customers preferring a longer contract to a shorter contract. A long-term contract

constitutes insurance for the customer against price increases, with the supplier being

locked into the stated price for the length of the contract. However, the contract prevents

                                                
5 The standard errors in Table 1 are based on the robust formula H-1G H-1, where G is the outer product of the

gradient and H is the Hessian (calculated as the second derivative of the log-likelihood function.) As McFadden
and Train (1997) point out, this formula correctly incorporates simulation noise, unlike the commonly used (and
easier to calculate) G-1.

6 There are several reasons for keeping the price coefficient fixed. (1) As Ruud (1996) points out, mixed logit
models have a tendency to be unstable when all coefficients are allowed to vary. Fixing the price coefficient
resolves this instability. (2) If the price coefficient is allowed to vary, the distribution of willingness to pay is the
ratio of two distributions, which is often inconvenient to evaluate. With a fixed price coefficient, willingness to
pay for an attribute is distributed the same as the coefficient of the attribute. (3) The choice of distribution to use
for a price coefficient is problematic. The price coefficient is necessarily negative, such that a normal
distribution is inappropriate. With a lognormal distribution (which assures that the price coefficient is always
negative), values very close to zero are possible, giving very high (implausibly high) values for willingness to
pay.
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the customer from being able to take advantage of reductions in market prices, since the

customer is locked into the stated price. Apparently, a considerable share of customers

value the insurance against higher prices more than they mind losing the option to take

advantage of potentially lower prices.  The degree of customer heterogeneity implies that

the market can sustain different lengths of contracts, with suppliers making profits by

writing contracts that appeal to segments of the population.

•  The average customer is willing to pay a whopping 2.5 cents per kWh more for its local

supplier than for an unknown supplier. Hardly any customers are willing to pay more for an

unknown supplier than their local utility (a phenomenon that could occur if customers

greatly dislike their current local utility.) This finding has important implications for

competition. It implies that entry in the residential market by previously unknown suppliers

will be very difficult, particularly since the price discounts that entrants can potentially

offer in most markets are fairly small. The experience in California, where only 1% of

residential customers have switched away from their local utility after more than a year of

open access, is consistent with this finding.

•  The average customer is willing to pay 1.7 cents per kWh for a known supplier relative to

an unknown one. Note, however, that the average willingness to pay for a known supplier is

only 0.8 cents less than for the local utility. Furthermore, the estimated standard deviations

imply that a sizeable share of customers would be willing to pay more for a known supplier

than for their local utility, presumably because of a bad experience or a negative attitude

toward the local energy utility. These results imply that companies that are known to

customers -- such as their long distance carriers, local telecommunications carriers, local

cable companies, and even retailers like Sears and Home Depot  -- can be expected to be

relatively successful in attracting customers for electricity supply, particularly compared to

companies that were unknown prior to their entry as an energy supplier. To enhance

competition, regulators might take steps to encourage entry by telecommunications and

cable companies rather than preventing or delaying it.

•  The average customer evaluates the TOD rates in a way that is fairly consistent with TOD

usage patterns. The mean coefficient of the dummy variable for the time-of-day (TOD)

rates implies that the average customer considers these rates to be equivalent to a fixed

price of 9.8c per kWh. Note that 9.8c is the average price that a customer would pay under
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the TOD rates if 80% of its consumption occurred during the day (between 8AM and 8PM)

and the other 20% occurred at night. These shares, while a little high for the day, are not

unreasonable. The estimated standard deviation is highly significant, reflecting

heterogeneity in usage patterns and perhaps in customers’ ability to shift consumption in

response to TOD prices. The estimated standard deviation is larger than reasonable,

however, implying that a non-negligible share of customers treat the TOD prices as being

equivalent to a fixed price that is higher than the highest TOD price or lower than the

lowest TOD price. (This anomaly is one of the drawbacks of specifying distributions, like

the normal or lognormal, that have unbounded support.)

•  The average customer seems to avoid seasonal rates for reasons beyond the prices

themselves. The average customers treats the seasonal rates as being equivalent to a fixed

10c per kWh, which is the highest seasonal price. An possible explanation for this result

relates to the seasonal variation in customers’ bills. Consumption is usually highest in the

summer, when air-conditioners are being run. Energy bills are therefore higher in the

summer than in other seasons, even under fixed rates. The variation in bills over months,

without commensurate variation in income, makes it harder for customers to pay for their

summer bills. In fact, nonpayment for most energy utilities is most frequent in the summer.

Seasonal rates, which apply the highest price in the summer, increase the seasonal variation

in bills. Customers would rationally avoid a rate plan that exacerbates an already existing

difficulty. If this interpretation is correct, then seasonal rates combined with bill-smoothing

(by which the supplier carries a portion of the summer bills over to the winter) could

provide an attractive arrangement for customers and suppliers alike.

V. Investigation of Simulation Variance

We investigated the properties of the simulated probabilities as follows. We took the first

observation in the data set and simulated its probability 1000 times. We based the simulations

on the estimated parameters from Table 1. We first simulated the probability using random

draws. We then simulated the probability using Halton draws, as if the 1000 simulations were

for 1000 observations. That is, we created Halton sequences of length (R*1000)+10, where R is

the number of draws used for each observation, discarded the first 10, and used the rest in
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groups of R to simulate the probability 1000 times. As in estimation of Table 1, we used the

primes 2, 3, 5, 7, and 11 for the Halton sequences.

Tables 2 and 3 give statistics for the simulated probability using various numbers of random

and Halton draws. The second row of each table gives the variance of the simulated probability

over the 1000 simulations. The variance is lower with 50 Halton draws than 100 or 500 random

draws, and the variance with 100 Halton draws is less than half that with 1000 random draws.

This improvement is presumably due to the fact that Halton sequences are constructed to

provide fairly even coverage along each dimension for each observation.

With random draws, the variance decreases at a rate of approximately 1/R, where R is the

number of draws. With the Halton draws, the rate of decrease is faster: doubling the number of

draws decreases the simulation variance by a factor of about three. This difference is expected

(see the discussion in Bhat, 1999a, and Morokoff and Caflisch, 1994) and reflects the fact that

coverage with Halton draws becomes more even as the number of draws increases, such that

the advantage of having more draws is accentuated by having them more evenly placed.

The third row in each table gives the covariance between each simulated probability and the

immediately previous simulated probability. Recall that the simulated probabilities using

Halton draws were calculated as if the 1000 simulations were for a sample of 1000

observations. (Each of these 1000 “observations” has the same data so that correlations in data

over observations do not mask the correlation due to the simulation procedure). For random

draws, the covariance is small and, for any number of draws, is either positive or negative

depending on the particular outcome in that situation. The correlation with random draws never

exceeds 0.002 in magnitude. With the Halton draws, the covariance is consistently negative.

This negative covariance reflects the tendency of the Halton draws for one observation to fill in

the empty spaces that were left with previous observations.

As expected, the negative covariance with Halton draws decreases in magnitude as the number

of draws increases. This reduction is attributable to two factors. First, the variance decreases as

the number of draws rises.  Second, with more Halton draws for each observation, coverage is
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better for each observation, leaving less opportunity for filling in the empty spaces from

previous observations. The correlation coefficient accounts for the first of these factors (since

the correlation is the covariance as a proportion of the variance). As shown in the fourth row of

Table 3, the correlation is highly negative for all numbers of draws. It decreases slightly in

magnitude as the number of draws rises, though the pattern is not strong. This highly negative

correlation (which also occurs for the log of the simulated probability) provides an advantage in

model estimation because it reduces the simulation error in the log-likelihood function.

As expected, the average of the simulated probabilities is essentially the same for both types of

draws and each number of draws.7 The average of the log of the simulated probability

decreases as the number of draws increases. This reduction reflects the reduction in the bias

that arises from taking the log transformation. With Halton draws, the reduction occurs only in

the fifth digit when 100 or more draws are used, suggesting perhaps that bias is small with this

number of Halton draws.

Consider now the estimated parameters of the mixed logit model. The model of Table 1 was

estimated repeatedly using 100 Halton draws, 125 Halton draws, and 1000 random draws. For

each type and number of draws, the model was estimated five times using a different sets of

draws each time. With random draws, different sets of draws were obtained by using a different

seed for the random number generator. For the Halton draws, we obtained different sets of

draws by cycling the order of the primes, starting with 2,3,5,7,11, then 3,5,7,11,2, and so on.

Tables 4 and 5 give the means and standard deviations, respectively, of the estimated

parameters over the five sets of draws for each of the three procedures. Examining the means

provides us information about bias. As discussed above, the maximum simulated likelihood

estimator based on random draws is biased due to the log transformation of the simulated

probabilities, with the bias decreasing as the number of draws increases. The systematic nature

of the Halton draws can potentially induce bias both in the estimated probabilities and their

                                                
7 Interestingly, this average differs over numbers of draws in the third digit for random draws and only in the fifth

digit for Halton draws, due to the lower variance in the simulated probabilities using Halton draws.
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logs. As shown in Table 4, the means of the estimated parameters are very similar with 100

Halton draws as 1000 random draws. A t-test on the difference between the means indicates

that the hypothesis of no difference cannot be rejected for any of the coefficients at any

reasonable level of significance. These results suggests that either (i) bias is negligible in both

cases, or (ii) the extent of bias with 100 Halton draws is essentially the same as that with 1000

random draws. Similar results occur with 125 Halton draws.8

Consider now the standard deviations in Table 5. Using 100 Halton draws, the standard

deviations are lower for all but one coefficient than with 1000 random draws. For eight of the

eleven coefficients, the standard deviations are half as large. This finding confirms the results

that Bhat obtained in his Monte Carlo study. Given that both sets of draws give essentially the

same means, the lower standard deviations with the Halton draws indicates that a researcher

can expect to be closer to the expected values of the estimates using 100 Halton draws than

using 1000 random draws. An even stronger statement is possible. Label the mean estimates

using 1000 random draws (i.e., the first column in Table 4) as b1000r. With one exception,9 the

root mean squared error against b1000r is lower for the estimates using 100 Halton draws than

for the estimates using 1000 random draws. This result can be interpreted as following.

Suppose a researcher is considering using 1000 random draws; there is some expectation of this

estimator over different random draws. Our results suggest that the researcher can expect to be

closer to this expectation using 100 Halton draws than 1000 random draws.

An interesting, and perplexing, phenomenon occurred in the estimations using 125 Halton

draws. Column 3 gives the standard deviations for the estimated parameters using the cycle of

primes described above (that is, cycling the order of 2, 3, 5, 7, and 11). These standard

deviations are generally higher than those obtained with 100 Halton draws, contrary to

expectations. (They were nevertheless lower than those based on 1000 random draws.)

                                                
8 The fact that the means are similar with 125 Halton draws as with 100 would seem to suggest that the bias using

these numbers of Halton draws is negligible, since one would expect the bias to decrease as the number of draws
increases. However, more extensive testing is needed in this regard, particularly given the issue, discussed
below, about the two cycles of 125 Halton draws.

9 The exception is the estimated standard deviation of the coefficient for “known supplier.”
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Examination of the individual runs indicated that the first four runs obtained very similar

estimates but that the fifth run obtained considerably different estimates. For example, the

estimated price coefficient in the first four runs was 0.862, 0.865, 0.863, and 0.864,

respectively, while the fifth was 0.911. We reestimated this fifth run using prime 13 instead of

11. The results were similar to those in the first four runs. The standard deviations using this

estimate, instead of the original fifth estimate, are given in the last column of Table 4. These

statistics conform to expectations, in that the standard deviations are lower with 125 draws than

100.

The question remains, however, of what caused this anomalous result. We tried several

different starting values under the concept that perhaps the aberrant estimate was a local

maximum; however, the same estimate was obtained from all different starting values. We also

examined the effect of outliers among the Halton draws in this run, but found that the estimate

did not change appreciably when outliers were truncated.

It is perhaps fitting to close this paper with a recognition of the anomaly, since it emphasizes

our limited understanding of Halton sequences for estimation. Our results indicate that Halton

draws provide substantially better simulations for mixed logit than random draws. However,

much remains to be investigated. For example, there is a potential relationship between the

number of draws that are used for each observation and the primes that are used for the Halton

sequences. With primes of 2 and 3 for two-dimensional integration, a type of cycling of the

Halton numbers occurs every 6 draws. Is it desirable or undesirable in this situation to set the

number of draws to a multiple of 6? With primes of  2, 3, 5, 7, and 11 for five-dimensional

integration, cycling of the five Halton sequences occurs every 2310 draws. Is it desirable or

undesirable to have the number of draws be an integer fraction of 2310, such as 231? We

discarded the first 10 draws from the Halton sequences. Is the number that should be discarded

related to the primes that are used and the number of draws for each observation? These and

other questions warrant investigation as we start to use Halton and other “intelligent” draws in

estimation.
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Table 1: Mixed Logit Model of Customers’ Choice Among Energy Supplier
Simulation based on 125 Halton draws.

Variable Estimate Standard
error

t-statistic Willingness
to pay

Price, in cents per kWh, for fixed rates
(zero for seasonal and time-of-day
rates.)
           Fixed coefficient    -0.862      0.104 8.32 -1.00
Length of contract, in years
           Mean coefficient
           Standard deviation in coefficient

   -0.197
    0.318

     0.033
     0.079

6.02
4.03

-0.229
0.369

1 if supplier is local energy utility,
0 otherwise.*
          Mean coefficient
          Standard deviation in coefficient

    2.125
    0.886

     0.256
     0.882

8.32
1.01

2.46
1.03

1 if supplier is a well-known company
(other than local utility),
0 otherwise.*
          Mean coefficient
          Standard deviation in coefficient

     1.437
     0.857

     0.185
     0.419

7.78
2.04

1.67
0.99

Dummy for time-of-day rates:
    11c/ kWh 8AM-8PM and
    5c/kWh 8PM-8AM.**
         Mean coefficient
         Standard deviation in coefficient

    -8.440
     2.552

     1.144
     0.603

7.38
4.23

      -9.79
2.96

Dummy for seasonal rates:
    10c/kWh in summer,
    8c/kWh in winter, and
    6c/kWH in spring and fall.**
         Mean coefficient
         Standard deviation in coefficient

    -8.651
     1.888

     1.244
     0.651

6.96
2.90

     -10.0
2.19

Number of observations: 4308. Log-likelihood at convergence: -4944.32. Likelihood ratio index: 0.1721
* Base for comparison is “An unfamiliar company supplies electricity.”
** In the conjoint-type experiments, only one time-of-day and one seasonal plan was offered, with no
variation in the rates. The dummy variables identify these plans, and the coefficients reflect customers’
preferences for these particular plans with their specified rates.
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          Table 2: Statistics for Simulated Probability using Random Draws

Draws   100             500            1000

Simulated probability
    Mean
    Variance * 1000
    Covariance * 1000
    Correlation
Simulated log of probability
    Mean
    Variance * 1000
    Covariance * 1000
    Correlation

   0.413878     0.414079    0.413901
   0.828779     0.163057    0.081277
   0.012513    -0.002996    0.000159
   0.015104    -0.018360    0.001952

  -0.884613    -0.882173   -0.882364
   4.884061     0.952550    0.474979
   0.088126    -0.017148    0.000546
   0.018050    -0.017989    0.001150

Table 3: Statistics for Simulated Probability using Halton Draws

Draws          50   75       100              125       200

Simulated probability
    Mean
    Variance * 1000
    Covariance * 1000
    Correlation
Simulated log of probability
    Mean
    Variance * 1000
    Covariance * 1000
    Correlation

    0.413875    0.413855    0.413840    0.413836    0.413841
    0.119541    0.093428    0.035200    0.028625    0.011843
   -0.048179   -0.046457   -0.008545   -0.012548   -0.005192
   -0.402697   -0.496987   -0.242782   -0.437699   -0.438208

   -0.882541   -0.882513   -0.882376   -0.882367   -0.882308
    0.703250    0.548890    0.205749    0.167306    0.069146
   -0.282532   -0.272518   -0.050015   -0.073341   -0.030289
   -0.401423   -0.496226   -0.243102   -0.437717   -0.437872



18

Table 4: Means of Parameter Estimates

1000 random
draws

100 Halton
draws

125 Halton
draws (cycle A)

125 Halton
draws (cycle B)

Price
Contract length
  Mean
  Std. Dev.
Local supplier
  Mean
  Std. Dev.
Known supplier
  Mean
  Std. Dev.
TOD rates
  Mean
  Std. Dev.
Seasonal rates
  Mean
  Std. Dev.

-0.8607

          -0.1955
  0.3092

2.0967
          1.0535

1.4310
0.8208

-8.3760
  2.4647

-8.6286
  1.8492

-0.8588

-0.1965
  0.3158

 2.1142
 1.0236

 1.4419
 0.6894

-8.4149
  2.5466

-8.6381
  1.8977

-0.8731

-0.2002
  0.3227

2.1478
 1.0106

1.4572
 0.8449

-8.5653
  2.6087

-8.7916
  1.9534

-0.8584

-0.1957
  0.3134

2.1121
 0.9358

1.4310
 0.8115

-8.3946
  2.5225

-8.6159
  1.8760

Table 5: Standard Deviations of Parameter Estimates

1000 random
draws

100 Halton
draws

125 Halton
draws (cycle A)

125 Halton
draws (cycle B)

Price
Contract length
  Mean
  Std. Dev.
Local supplier
  Mean
  Std. Dev.
Known supplier
  Mean
  Std. Dev.
TOD rates
  Mean
  Std. Dev.
Seasonal rates
  Mean
  Std. Dev.

0.0310

0.0093
0.0222

0.0844
0.1584

0.0580
0.0738

0.3372
0.1578

0.4134
0.2418

0.0169

0.0045
0.0108

0.0361
0.1180

0.0242
0.1753

0.1650
0.0696

0.1789
0.0679

0.0210

0.0071
 0.0162

0.0555
0.0943

0.0390
0.0454

0.2543
0.1414

0.2585
0.1303

0.0120

0.0029
 0.0050

0.0248
 0.1057

0.0200
 0.0406

0.1281
 0.0588

0.1426
0.0742


