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__________________________________________________________________________________

LOGIT (CASE=var, COND, NCHOICE=n, NREC=var, SUFFIX=list, nonlinear options)
dependent variable   independent variables ; 

or 
dependent variable    conditional variables  |  multinomial(alternative) variables ;

        
__________________________________________________________________________________

Function:

LOGIT is used to estimate a conditional and/or multinomial logit model.  The explanatory variables in the model may
vary across alternatives (choices) for each observation or they may be characteristics of the observation, or both.  There
is no limit on the number of alternatives. 

Usage:

There are three types of logit model: those where the regressors are the same across all choices for each observations,
i.e., they are characteristics of the chooser, those where the regressors are characteristics of the specific choice, and mixed
models, which have regressors of both kinds.  In the first case (multinomial logit), a separate coefficient for each
regressor is estimated for all but one of the choices. In the second case (conditional logit), the regressors change across
the choices, and a single coefficient is estimated for each set of regressors. 

1. Binary or multinomial logit -- just like OLSQ or PROBIT:

LOGIT dependent variable    multinomial variables    (chooser characteristics);
     LOGIT Y C X1 X2 ... XK;

Y can be 0/1 or 1/2 or any integral values. If Y takes on more than 2 values, the model is multinomial logit. The names
of the coefficients are determined by appending the values of Y for each choice to the names of the explanatory variables.
The coefficients are normalized by setting the coefficients for the lowest choice to 0. If Y is 0/1, the coefficients  C1,
X11, X21,..., XK1 would be estimated, with C0, X10, X20,..., XK0 normalized to zero. If Y is 1/2/3, the coefficients
C2, X12, X22,..., XK2 and C3, X13, X23,..., XK3 would be estimated, with C1, X11, X21,..., XK1 normalized to zero.

LOGIT (NCHOICE=2) Y C X1 X2 ... XK;   

causes TSP to check the range of Y to make sure there are only 2 choices.  The model estimated has K+1 coefficients
and K+1 variables.

The multinomial logit procedure checks for "univariate complete and quasi-complete separation", which prevents
identification of the coefficients.

2. Conditional logit:

LOGIT (COND,NCHOICE=n)   dependent variable    conditional variables    (choice characteristics) ; 

For example, 

LOGIT (COND,NCHOICE=2) Y X Z;

looks for the variables X1,X2,Z1,Z2 corresponding to the 2 choices. The coefficients X and Z would be estimated.  C
is not allowed as a conditional variable (since it does not vary across choices, it is not identified).  For a choice-specific



LOGIT

2

set of dummies, use C as a multinomial variable in mixed logit.  In this case, the example shown becomes

LOGIT (COND,NCHOICE=2) Y X Z | C;

The CASE option allows you to use data organized with one choice per observation rather than with one case per
observation.  For example,

LOGIT (CASE=V) Y X Z;  

where the variable V is a case ID which is equal for adjacent observations which belong to the same case.  In this case,
the variable names X and Z are used directly (not X1,X2, etc.).  There need not be an equal number of observations per
case.  Only the first Y for each case is examined for a valid choice number.

For multiple observations per case datasets, you can also use

LOGIT (NREC=W) Y X Z;  

In this case, W specifies the number of records per case and you do not need to supply an ID variable with the CASE
option.

3. Mixed logit:

The general form of the command is now

LOGIT (COND,NCHOICE=n)   dependent variable    conditional variables | multinomial variables ;

For example, 

LOGIT (COND,NCHOICE=3) Y ZA ZB | XA XB XC;

Y takes on the values 1,2, and 3. TSP looks for the conditional variables ZA1,ZA2,ZA3, ZB1,ZB2,ZB3 corresponding
to the 3 choices.  XA,XB,XC are the multinomial variables. The coefficients ZA,ZB, XA2,XB2,XC2, XA3,XB3,XC3
would be estimated, with XA1,XB1,XC1 normalized to zero.

Options:  

The standard options for nonlinear estimation are available:  see the NONLINEAR section in this manual.  Note that
HITER=N, HCOV=N are the defaults for the Hessian approximation and standard error computations.  In addition, the
following options are specifically for the LOGIT procedure:

CASE=case series for multiple observations per case. This variable holds a case identification which is equal for adjacent
observations that belong to the same case.  Note that any such variable may be used; it does not necessarily have to be
the case identification.

COND/NOCOND for conditional or mixed models versus pure multinomial estimation (see the Usage section).  If
CASE= or NREC= is used, COND is assumed and need not be specified.

NCHOICE=number of choices can be supplied when the number is equal for all observations.  The program then checks
to make sure the data satisfy this constraint.  This is not used with CASE= or NREC=, since then it is valid to take the
first choice every time.

NREC=choice count series for multiple observations per case.  This variable specifies the number of observations in each
case.  Usually the number is repeated in each observation, but only the count in the first observation for each case is used.
You cannot say NREC=3, but you can say NCHOICE=3.
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SUFFIX=list  is an alternative way of selecting a subset of the choices.  For example, NCHOICE=2 is equivalent to
SUFFIX=(1,2).  A SELECT command can also be used to do this; this option has not seen much testing.

Examples:

NOSUPRES @DPDX ;
LOGIT Y C X ;

See the usage section for other examples of how to use this procedure.

Output:

The printed output of the LOGIT procedure is similar to that of the other nonlinear estimation procedures in TSP.  A title
is followed by a table of the frequency distribution of the choices.  Then the starting values and iteration-by-iteration
printout is printed; the amount is controlled by the PRINT and SILENT options.  This is followed by a message indicating
final convergence status, the value of the likelihood and a table of parameter estimates and their asymptotic standard
errors and t-statistics.  The variance-covariance matrix of the estimates is also printed if it has been unsuppressed.  The
@DPDX or @DPDZ matrices (described below) are printed unless they have been SUPRESed. The following are also
stored in data storage:

Name Type Length Variable Description

@RNMS list #params Parameter names.

@LOGL scalar 1 Log of likelihood function.

@IFCONV scalar 1 Convergence status (1 = success).

@LR scalar 1 Likelihood ratio test for zero slopes.

@SRSQ scalar 1 Scaled R-squared for multinomial logit.

@RSQ scalar 1 Squared correlation between Y and @FIT for binary logit.

@SSR scalar 1 Sum of squared residuals (Y-@FIT) for binary logit.

@GRAD vector #params Gradient of likelihood function at maximum.

@COEF vector #params Estimated values of parameters.

@SES vector #params Standard Errors of estimated parameters.

@T vector #params T-statistics.

%T vector #params p-values for T-statistics.

@VCOV vector #par*#par Estimated variance-covariance of estimated parameters.

@DPDX matrix #vars* #choices Mean of probability derivatives for multinomial variables. 
This matrix is invariant to the set of coefficients which are
normalized to zero (as are the differences between sets of
coefficients).

@DPDZ matrix #vars* #choices Mean of probability derivatives for conditional variables
(#vars = #condvars* #choices).  This matrix consists of
NCHOICE submatrices of dimension (NCOND x
NCHOICE) stacked vertically, and it is block-symmetric. 
Not calculated if NCHOICE varies by case.

@FIT matrix or
series

#obs* #choices or
#obs

Matrix of fitted probabilities when NCHOICE>2 and there is
one observation per case.  (NOB x 1) series when
NCHOICE=2 or when there are multiple observations per
case.  If NCHOICE=2, @FIT will contain the probabilities
for the highest choice only (just like binary PROBIT).

Method:

If Ct is the choice set for the tth observations, and observation t chooses the ith alternative out of Ct, then the expression
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for the choice probability is

     Pr(i is chosen from Ct|Z) = exp(Ztib) / E exp(Ztjb)
          j

and the likelihood function is

     Log L = -E log [E exp((Ztj-Zti)b)]
        t

       j

The coefficient vector to be estimated is b.  If some of the Zs do not vary across the choices, these equations would apply
to an expanded Z vector formed by taking the Kronecker product of the fixed Zs with an identity matrix of order of the
number of choices (less one for a normalization). The actual implementation does not expand the Zs, but treats the
conditional and multinomial variables differently to conserve space.

Newton’s method is used to maximize this likelihood function with respect to the parameter vector b.  The global
concavity of the likelihood function makes estimates fairly straightforward to obtain with this method.  Zero starting
values are the default, unless @START is supplied.  See the NONLINEAR section in this manual for more information
about TSP’s nonlinear optimization procedures in general.

The evaluation of the EXP() functions in the likelihood function and derivatives has been written to avoid floating
overflows and zero divides.  When these conditions might occur, the appropriate limit is taken instead. This may result
in some slight inaccuracy in the likelihood function, but it is certainly preferable to halting the estimation.  Observations
subject to these problems can be identified by exact 0 and 1 values in @FIT.

Before estimation, LOGIT checks for univariate complete and quasi-complete separation of the data and flags this
condition.  (The model is not identified in this case.)  Without this check, one or more RHS variables perfectly predict
Y for some observations, and their coefficients would slowly iterate to + or - infinity.

The scaled R-squared is a measure of goodness of fit relative to a model with just a constant term; see Estrella(1998).
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