15. Panel Data

Chapter 15
PANEL DATA

The analysis of panel data in economics has become increasingly important in recent years as the number of such
datasets has grown along with econometric techniques to analyze them. The term "panel data" usually refers to data
where the unit of observation varies in two or more dimensions. For example, you might have a sample of the same
individuals observed at several points in time, or a set of time series, each for a different firm or country. Such data can
be handled rather easily in TSP, although the inherent complexity of the data structure requires you to think a little
harder about how to set things up.

This chapter provides some guidance on how to analyze panel data in TSP, and discusses several styles of research using
such data. We begin with a few basic rules for setting up your data input, depending on the nature of the problem you
are analyzing. Then we discuss the PANEL command, which produces total (pooled), between, within (fixed effects
or conditional), and variance components (random effects) estimates for panel data. Finally we discuss how to estimate
more complicated models in short panels using the minimum distance estimator in LSQ or GMM. This is a powerful
methodology that can be used to estimate linear, nonlinear, and dynamic factor models with panel data, using the method
of moments estimator to obtain asymptotically efficient estimates.

In the first part of this chapter we use the example of data on the patenting and R&D spending of a large number of
firms, for three years each (see Hall, Griliches, and Hausman 1986; we use three years of data for simplicity, more
would be needed to obtain real answers). Although the underlying patent data are application counts, we confine the
analysis here to large firms so we can treat the patents as a continuous rather than discrete variable.

We are interested in the relationship between R&D spending (possibly lagged) and the resulting patent applications.
The specification of the model that seems to have the most stable properties is to regress the log of patents on
contemporaneous and lagged logs of R&D expenditures. However, as will become clear in the example, we expect a
fixed difference in the propensity to patent across firms (because of differing technological characteristics of the
industry and other reasons), and we expect that this propensity may be correlated with the level of R&D expenditure.
This leads us to use many of the panel data techniques described in this chapter.

15.1. The basics of using panel data
15.1.1. Reading in panel data

The first decision to make when dealing with time series-cross section data is how to organize it. Usually, you are
willing to assume conditional independence in one direction, but not in the other. For example, you may be willing to
assume that observations on firms are conditionally, independently, and identically distributed, but not that there is no
serial correlation within a set of observations on a single firm. If this is the case you should order the data so that the
slowest varying index is the index of the dimension in which the data are independent. In the example of patents and
R&D, use the order

FIRM TIME PERIOD VARIABLE

1 74 Patents, R&D for firm 1 in year 74
1 75 Patents, R&D for firm 1 in year 75
1 76 Patents, R&D for firm 1 in year 76
2 74 Patents, R&D for firm 2 in year 74
N 74 Patents, R&D for firm N in year 74
N 75 Patents, R&D for firm N in year 75
N 76 Patents, R&D for firm N in year 76

This order facilitates the construction of estimators that include serial correlation. It also allows you to regroup the
datafile easily so that there is one cross section unit per observation with all the variables for all years (by reading in
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a different format), for using the robust short panel methods of section 3.1. For example,

FIRM VARIABLES

1 Patents, R&D for year 74; Patents, R&D for year 75;...
2 Patents, R&D for year 74; Patents, R&D for year 75;...
N Patents, R&D for year 74; Patents, R&D for year 75;...

Here are two READ commands that read the identical dataset into TSP in the two formats shown above:

SET NOBS = 3*N ;

SMPL 1 NOBS ;

FREQ(PANEL,T=3, ID=@ID) ;

READ (FILE=PATDATA.DAT') @ID PATENTS LRND ;

Compare to the second method:

SMPL 1N
READ (FILE='PATDATA.DAT') @ID PAT74 LRND74 @ID PAT75 LRND75
@1D PAT76 LRND76 ; ? Only the value of @ID for 1976 will be stored.

There are situations where you want the data one observation per firm-year (the PANEL command and AR1 with the
TSCS option) and situations where you want the data one observation per firm (when using complex lag structures or
GMM methods); thus the data should be set up with this in mind. We refer to the first format as the pooled format and
the second format as the panel format. The key factor that determines your choice between them is the statistical
assumption of conditional independence: in general, when you assume that observations are independent (conditional
on your model) across both dimensions, you will want the data in pooled format, and when you assume independence
only in one direction (with the possible exception of simple first order serial correlation), the panel format.

15.1.2. Unbalanced panels

An unbalanced panel is one where there are a different number of observations for each cross section unit (or vice
versa). These observations may be contiguous, or there may be holes in the data. That is, for the example dataset, we
may have four years of data for one firm (1973 to 1976), three years for another (1973, 1975, 1976) and two years for
a third (1975 and 1976). It is essential to use the FREQ(PANEL,ID=/D variable); command with an unbalanced panel,
to identify an /D variable that indicates when one firm stops and the next one starts. You can also use the
FREQ(PANEL) command with balanced panels, or to identify a time variable, the time series frequency of the data, etc.

Many, but not all, of the estimators described in this chapter can be used with unbalanced panels. For example, the
PANEL procedure, which assumes independence across time series and cross section units will work just the same
whether the data are balanced or unbalanced. All command which use lags and leads recognize the /D variable, so that
lags and leads will refer only within a single individual. One implication of this is that you can use a command like

SELECT MISS(IDV(-1)); ? when IDV is the ID variable
to choose the first observations for all individuals. The AR1 command also recognizes the ID variable, so it will apply
the special transformation to the first observation of each individual and avoid using any lags that would refer from one
individual back to the previous individual.
In the panel format, unbalanced panels can be "balanced" by including missing data codes for the missing observations.

Some of the methods described in section 15.3.1 may not work very well with unbalanced panels. This is in the nature
of the data and the current state of econometric methodology; it is not necessarily a limitation of the program.
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15.2. Random and Fixed Effects models -- the PANEL procedure

PANEL obtains estimates of linear regression models for panel data (several observations or time periods for each
individual). The data may be unbalanced (different number of observations per individual). PANEL can also compute
means by group and perform F tests between groups. To define the models estimated, assume we have observations
on i=l,...,N individuals for each of t=1,...,T years. The dependent variable is denoted by y, and the independent
variables by X,. The basic pooled or TOTAL regression model is

Vi = X oty

where o is the overall intercept and u, is i.i.d. This model assumes a single set of slope coefficients for all the
observations.

The fixed effect or WITHIN model assumes that there are common slopes, but that each cross section unit has its own
intercept, which may or may not be correlated with the Xs:

Yie = X + o+ uy
The BYID model assumes that both the slopes and the intercepts vary across cross section units:
Yie = Xy + o Huy

The BETWEEN model specifies the same relationship between the individual means:

yi =X Bt+a+u
where
Y =2y /T

The random effects or VARCOMP model resembles the WITHIN model, but it assumes that the intercepts are drawn
from a common distribution with mean o and variance 6,2. Unlike the WITHIN model, the estimates for this {¢;} model
will not be consistent if the individual intercepts are correlated with the independent variables. Because of this, it is
important to test for correlation. PANEL reports the Hausman test statistic for the difference between the fixed effects
and random effects estimates, along with its p-value.

The VARCOMP estimator is computed by estimating the relative importance of between and within variation of the
disturbance o; + u; and using this estimated ratio to combine the within and between estimators optimally. Under the
null of uncorrelated intercepts, the VARCOMP estimator is asymptotically efficient, since it is a generalized least
squares estimator. There are additional options for VARCOMP to control the actual variance components. Small or
large sample formulas may be used, or you can supply the values directly. If negative variances are computed using the
small sample formula, the program switches over to the large sample formulas, which always result in positive values.

All or some of these models can be estimated by a single PANEL statement. The basic PANEL statement is like the
OLSQ statement: first list the dependent variable and then the independent variables. C is optional; an intercept term
is central to these models and will be added if not present. Here is an example for the sample dataset:

PANEL LPAT CLRND ;

This command will produce estimates of the TOTAL, WITHIN, BETWEEN, and VARCOMP models, together with
the value of an F-statistic for the hypothesis that all the intercepts are equal.

The observations over which the models are computed are determined by the current sample. Lags, leads, and missing
values are handled properly.

Your data must be set up with all the time periods for each individual together (the pooled format). You must also
specify when the data ends for one individual, and begins for the next. The best method is to provide an ID variable
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series in the FREQ(PANEL) command that takes on different values for each individual, as we did in the sample dataset.
If your data are balanced (the same number of time periods for every individual), the T= option can be used. Other
options are also available (see the Reference Manual). 1f the data are not in this order, the SORT command can reorder
them (you can also use SORT to reorder the data so that you can do variance components in the other (time) dimension).
See Section 6.4 for an example.

At present, PANEL does not automatically generate dummies for the time periods (although they can be included) or
do variance components in the other dimension. To generate a set of time dummies for the sample dataset, use the
TREND and DUMMY commands:

TREND(PER=3,START=74) YEAR ; ? Makes a series = 74,75,76,74,75,76,... (for balanced data)
LIST YRDUM YEAR74-YEART76 ;
DUMMY YEAR YRDUM ;

This creates three variables YEAR74, YEAR7S, and YEAR76 with the following values:

OBS YEAR74 YEAR75 YEAR76
1,1 1 0 0
1,2 0 1 0
1,3 0 0 1
2,1 1 0 0
2,2 0 1 0
and so forth

If you had loaded a variable YEAR (which is essential in the unbalanced case), you could have just used the DUMMY
command directly, without using TREND.

This next example estimates all models including the individual firm regressions, and prints individual means:
PANEL(MEAN,BYID) LPAT C LRND YEAR75 YEAR76 ;

The output for this command will include F-statistics for the hypothesis that the slope coefficients are equal and for the
joint hypothesis that both the slopes and intercepts are equal.

The following estimates VARCOMP only, using large sample formulas (note the use of year dummies with the
intercept):

PANEL(NOTOT,NOBET,NOWITH,NOVSMALL) LPAT C LRND YEAR75 YEART76;

15.3. Robust estimation with panel data

This section discusses how to obtain asymptotically efficient estimates of panel data models without imposing
conditional homoskedasticity or independence over time on the disturbances of the model. The methods and estimators
described here are due largely to Chamberlain (1982) and MaCurdy (1981a and 1982), although many others have
contributed to their development. They are closely related to the GMM estimator proposed by Hansen and Singleton
(1982) and the GMM command in TSP will compute some of them.

The estimators described here are minimum distance estimators that use an asymptotically optimal weighting matrix.
In particular, they use the sample covariance of the distance measures (such as orthogonality conditions or residuals)
as the weighting matrix. The key to understanding the computation of the estimators described here is to recognize that
the SUR procedure (which computes multivariate regressions without imposing a diagonal covariance structure) can
also compute a set of estimates of second moments or functions of second moments, along with a robust estimate of
their variance-covariance matrix. This estimate is heteroskedastic-consistent and does not impose independence across
the disturbances in each equation, where equation here refers to the moment equation.

This enables you to construct the optimal weighting matrix for many of these estimators easily, without special
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programming. Using this matrix, which we call OMEGA, we can construct a minimum distance estimator for the second
moments as functions of the parameters of interest using the SUR procedure again, but this time with only one
observation (since the second moments and the estimated OMEGA are sufficient statistics for the problem).

This methodology can be applied to two different panel data estimation problems: the problem of describing the
relationship between a set of endogenous variables (Y) and a set of exogenous variables (X), where the reduced form
IT matrix is a sufficient statistic for the problem (Chamberlain's problem), and the problem of describing the relationship
between a set of endogenous variables (Y) and a set of unobservable variables ("factors"), where the second moments
of Y are a sufficient statistic. Obviously, the two types of models could be combined, but the presentation is simpler
if they are treated separately.

15.3.1. The PI matrix method

Chamberlain (1982) showed that one way to estimate a whole range of panel data models was to summarize the data
by regressing all the endogenous variables on all of the exogenous variables, obtaining an estimate of the reduced form
matrix II; and then to test various restrictions on this matrix implied by the models of interest (actually Chamberlain
focused on the conditional expectation interpretation of regression so that the estimator in question was for the
expectation of the Ys conditional on the Xs). If you use the minimum distance estimator

argmin (1-f(8)) Q! (n-£(5))

together with an appropriate estimate of Q to estimate the restricted parameter set d, then the resulting estimates of &
are asymptotically efficient. The optimal estimate of Q in this case is given by the sample covariance of w;, where

w; = (y-IIx) ®S " x;

and S, is the sample variance of the Xs. Note that this formula does not imply independence within each observational
unit, nor does it impose homoskedasticity.

Using SUR, it is easy to estimate Il and its associated covariance Q in TSP. For the sample dataset:

DOT 74-76 ;
FRML PIEQ. LPAT. = PL.74*LRND74 + PL.75*LRND75 + PL.76*LRND76 ;
PARAM PI1.74-P1.76 ;
MSD (NOPRINT) LPAT. LRND. ; ? Removing all the year means.
UNMAKE @MEAN PMEAN RMEAN ;
LPAT. =LPAT.-PMEAN ; LRND. = LRND.-RMEAN ;

ENDDOT ;

SUR (HCOV=R) PIEQS ; ? Note the robust option.

COPY @COEF PI; ? Save the computed PI matrix and its
COPY @VCOV OMEGA ; ? covariance estimate.

Removing the means of the data before forming the estimated II simplifies things, because it implies that you do not
have to carry around the X variable corresponding to the intercept. This two part strategy for estimation does not affect
the asymptotics (MaCurdy 1982).
Now suppose the class of restricted models of interest have the following form:

Vi = Bixi + Bzxi,t-l LR A VR
where «; is the firm effect, which may be correlated with the x's:

0= X+ Ay

For the sample data, with three ys and three xs, the I matrix has the following form:
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M= B, +v7hs Y74hss Y7ahss
By + Yoshsy B+ YsAss Yrshs
By + Yoshs Ba + Yr6hss By + Yrshss

There are nine elements in II and nine coefficients to be estimated, but there is one normalization restriction (y,,=1),
so there is one over-identifying restriction. If there are no correlated effects, the ys and As will be zero and there will
be six over-identifying restrictions.

With the estimated II and Q matrices obtained above, you can test for the two levels of restrictions implied by this
model:

1) a stable lag structure and correlated firm effect.
2) a stable lag structure and uncorrelated firm effects.

Here is how to do it using the minimum distance procedure (LSQ or SUR):

? Define the lists of PI coefficients and equations.
(?

LIST PILIST P17474-P17476 P17574-P17576 P17674-P17676 ;
LIST PIEQLIST PIEQ7474-PIEQ7476 PIEQ7574-PIEQ7576 PIEQ7674-PIEQ7676 ;

LENGTH PILIST NPT ; ? Find out how many elements in PI matrix.

UNMAKE PI PILIST ; ? Unmake the estimated PI matrix into its individual elements.
CONST PILIST ; ? Treat the estimated PI coefficients as data below.

SUPRES COVU W COVT REGOUT; ? Reduce the output for Minimum Distance estimation

9

? Define the equations that express Pl as a function of the underlying delta parameters (beta, lambda, and gamma)
? which are to be estimated.

9

FRML PIEQ7474 P17474 = BETA1 + LAM74*GAM74 ;
FRML PIEQ7574 P17574 = BETA2 + LAM74*GAMT7S ;
FRML PIEQ7674 P17674 = BETA3 + LAM74*GAM76 ;
FRML PIEQ7475 P17475 = LAM75*GAM74 ;
FRML PIEQ7575 P17575 = BETA1 + LAM75*GAMTS ;
FRML PIEQ7675 P17675 = BETA2 + LAM75*GAM76 ;
FRML PIEQ7476 P17476 = LAM76*GAM74 ;
FRML PIEQ7576 P17576 = LAM76*GAMTS ;
FRML PIEQ7676 P17676 = BETA1 + LAM76*GAMT76 ;

CONST LAM74-LAM76 GAM74-GAM76 ; ? Starting values for model with

PARAM BETAI1 1 BETA2 0 BETA30; ? uncorrelated Xs (only betas to be estimated).
CONST LAM74 1 ; ? Free normalization.

SMPL 1,1 ; ? In effect we now have one observation on each element of PI.
SUR(WNAME=OMEGA) PIEQLIST ;

LENGTH @RNMS NOPAR ;

SET DF = NPI-NOPAR ; ? Degrees of freedom for constrained model.
CDF(CHISQ,DF=DF) @TR ; ? Test constraints.

PARAM LAM74-LAM76 GAM75 GAM76 ;  ? Starting values for model with correlated Xs.
SUR(WNAME=OMEGA) PIEQLIST ; ? Estimation.

LENGTH @RNMS NOPAR ;

SET DF = NPI-NOPAR ;

CDF(CHISQ,DF=DF) @TR ; ? Test the single constraint remaining,

The "TRACE OF MATRIX" criterion printed out by SUR after convergence is precisely the Chi-squared statistic for

136



15. Panel Data

the over-identifying constraints (with degrees of freedom equal to the number of elements of II less the number of
parameters being estimated). Note that changing the sample size to one is essential if you want standard error estimates
to have the correct size (assuming OMEGA has been computed as shown).

With a larger number of Ys, Xs, or observations in the time dimension, the number of models that might be nested in
this way becomes very large and the TSP program correspondingly larger. Using DOT loops and other shortcuts can
make programming easier and streamline your program so that it is easier to read and debug. See the examples earlier
in this chapter for ideas.

15.3.2. Dynamic factor models with panel data

An example of how to estimate a fairly complex dynamic factor model using SUR is available in the examples on the
TSP web site. The example is drawn from Hall and Hayashi (1989).

15.3.3. GMM Estimation of panel data models.

A series of recent papers (Keane and Runkle 1992, Arellano and Bond 1991, Ahn and Schmidt 1992) have advocated
the use of the GMM methodology for the estimation of dynamic panel models or panel data models with predetermined
rather than exogenous right-hand side variables. These estimators are straightforward to implement in TSP using the
GMM estimation command together with a MASK option that chooses the instruments you wish to use for each
equation.

As an example, consider the one-variable model of y on x, with 3 years of data for each y, but 6 years, including 3 lags
for each x. With this much data, it is possible to test not only for strong exogeneity of the x's, but also for weak
exogeneity of lag order 0, 1, or 2, either unconditionally or conditional on the presence of individual effects. That is,
you can test for whether there is zero correlation between the first-differenced disturbances and future x's and also for
whether there is zero correlation between the first-differenced disturbances and current x's, or x's lagged once. As the
number of lags of x variables that are not assumed to be exogenous increases, the number of moment restrictions
imposed decreases. A simple TSP run that performs these tests conditional on individual effects is shown below:

? Equations of the model.

FRML UEQ86 Y86 - BETA1*X86-BETA2*X85-BETA3*X84 ;
FRML UEQ87 Y87 - BETA1*X87-BETA2*X86-BETA3*X85 ;
FRML UEQS88 Y88 - BETA1*X88-BETA2*X87-BETA3*X86 ;
? First-differenced versions.

FRML DUEQ87 UEQ87-UEQ86 ;

FRML DUEQ88 UEQ88-UEQ87 ;

DOT 87 88 ;
EQSUB DUEQ. UEQ86-UEQS8S ;
ENDDOT ;
LIST XLIST X83-X88 ; ? List of potential instruments.
READ (NROW=6,NCOL=2) M1 ; ? Mask for lag 1 and greater instruments.

111111010000

GMM (HETERO,INST=XLIST,MASK=M1) DUEQ87 DUEQ88 ;

COPY @GMMOVID TRACEI ; ? Chi-squared statistic for estimated model.
COPY @NOVID DF1; ? actual number of moment restrictions imposed.
READ (NROW=6,NCOL=2) MO ; ? Mask for lag 0 instruments (weak exog).

111111110100
GMM (HETERO,INST=XLIST,MASK=MO0) DUEQ87 DUEQ88 ;

COPY @GMMOVID TRACEO ;
COPY @NOVID DFO ;
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? Strong exogeneity: no MASK means all instruments are used for all equations.
GMM (HETERO,INST=XLIST) DUEQ87 DUEQSS8 ;

COPY @GMMOVID TRACES ;

COPY @NOVID DFS;

? Compute Test Statistics.
SET TEST0 = TRACEO-TRACE1 ; SET DFR = DF0-DF1 ;

CDF(DF=DFR,CHISQ) TESTO ; ? Test lag 0 instruments, maintaining lag 1.
SET TESTS = TRACES-TRACEQ ; SET DFR = DFS-DFO0 ;
CDF(DF=DFR,CHISQ) TESTS ; ? Test strong exogeneity, maintaining weak.

Note that the first model estimated in this example is the least constrained model; all the others will be tested relative
to this one.

Modifying this example to perform the test without allowing for individual effects is straightforward: simply use the
level equations UEQ86-UEQS8 and modify the M1 and MO matrices accordingly. For example, if the order of the
equations is UEQ86 UEQ87 UEQ88, the mask M1 should be the following matrix:

— — —
—_—— —
— — —

011
001
000

The TSP web page www.tspintl.com contains more examples of estimating a panel data model using both the GMM and

PI matrix techniques. There are also examples of performing LM tests for serial correlation as in Arellano and Bond
(1991), and computing the one-step covariance matrix estimate recommended by Blundell and Bond (1995).
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