Advanced Methods

Chapter 11
ESTIMATION USING TIME SERIES DATA

The analysis of discrete time series data is central to econometrics, particularly macroeconometrics. The name TSP itself
(Time Series Processor) recognizes this fact. All procedures in TSP are designed to operate on time series as well as
on other kinds of data. This chapter describes the procedures in TSP specific to time series data, and gives some hints
on working with such data.

You have already encountered the simplest of such procedures in AR1: the Almon and Shiller distributed lag variables,
and the Durbin-Watson and Durbin (1970) test procedures for autocorrelation of the disturbances of a regression model.
This chapter describes many more; identification, estimation, and simulation of a simple time series process using
Box-Jenkins techniques, estimation of a vector (the VAR procedure), estimation of GARCH-M (Generalized Auto-
Regressive Conditional Heteroskedasticity with a conditional Mean term) models, estimation with a Kalman Filter, and
testing for unit roots and cointegration (COINT/UNIT).

We first review the basics of time series in TSP (such as operations on lags and leads), and then discuss methods for
estimating a single time series process using the Box-Jenkins (ARIMA) methodology. This is followed by descriptions
of two other models that have recently been widely used in the estimation of time series models: the GARCH-M model,
which allows for conditional heteroskedasticity of the disturbances, and the Kalman Filter model, which is a form of
time-varying parameter model. We then discuss the use of vector autoregressions (VARSs) to estimate dynamic linear
relationships among several time series variables. The last subject is unit root and cointegration testing.

11.1. Techniques for time series data

Chapter 3 introduced the basic features that make time series data easy to handle in TSP: the FREQ command and
lagged variables. This section reviews these concepts and gives a bit more information on using time series in TSP.

FREQ, which specifies the frequency of time series data, enables you to specify observations using a convenient date
format such as 75:4 for the 4th quarter of 1975 (rather than having to use the sequence number of the observation).
Currently, TSP allows the use of annual, quarterly, monthly, weekly or undated data. A frequency is a characteristic
permanently attached to each time series (and stored with the series in any databank), so that TSP can always check that
you are using series that conform (are of the same frequency) to the current working FREQ and SMPL you have
specified. You can convert series from one frequency to another with the CONVERT command (see Section 11.1.1).

It is easy to lead or lag a variable in TSP. The notation X(-1), X(-2), etc. means the observation on X is one, two, or
more periods prior to the current one. In computing this, the current SMPL is ignored. That is, if the SMPL is 1960 to
1972, 1976 to 1990, the value of X(-1) in 1976 is that for 1975, not that for 1976. In this case, if you specify X(-1) and
the observation for 1975 is missing, you will receive a warning for some procedures and an error for others. This can
cause some confusion, since the missing observation is outside the current sample.

The notation X(+1) or X(1) denotes the observation on X one period after the current one. Missing values are handled
in the same way as for lags. One feature of TSP you may find useful if you want to include many lags in a regression or
other procedure is the ability to specify a variable list with lags. For example, the expression X(-1)-X(-16) means all the
variables X(-1) X(-2) X(-3) ...X(-15) X(-16). See LIST in the Reference Manual for more on specifying variable lists.

11.1.1. Changing the frequency of a series: CONVERT

Sometimes data is organized as monthly observations but the best frequency for analysis is quarterly. Or perhaps some
of your series are quarterly but one series is available only annually. The CONVERT procedure can change a series
frequency to a new frequency. It uses one of several methods: averaging the data (the default); choosing the first, last,
or middle observations; or summing the data. Each method is appropriate for different kinds of data. A flow variable
such as investment would be summed to obtain the total investment in the new longer period, but a stock variable might
be averaged or the first or last observation chosen depending on the importance of timing in your use of the variable.
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11. Estimation Using Time Series Data

To convert a sales series from monthly to quarterly, use the following sequence of commands:

FREQ Q ; SMPL 75:1 82:4 ;
CONVERT (SUM) SALES ;

SALES was a monthly series running from 75:1 to 82:12 ; We specified the sample as quarterly and gave the new range
in terms of quarters so the CONVERT procedure would know that we wanted to convert from monthly (the frequency
of SALES) to quarterly (the current frequency). Because it would be confusing to mix frequencies in a series, CONVERT
ignores the current sample range and converts the whole series no matter what you have specified as the SMPL.

If you want to preserve the old version of the series and save the new one, use this form of CONVERT:
CONVERT(SUM) SALESQ = SALES ;

Be aware, however, that you will not be able to use the old series SALES in other procedures after the new frequency
has been specified. Series with different frequencies cannot be mixed in the same procedure ( except for CONVERT)..

When converting from a lower frequency, straight line interpolation can be used to compute the intervening points. Use
the INTERPOL option. The other convert options (SUM, etc.) can also be used.

FREQM ; SMPL 75:1 82:12;
CONVERT(INTERPOL) SALESM = SALES ;

FREQ W (weekly) can be converted to quarterly, but not to monthly, because TSP does not have a built-in calender.

11.2. Box-Jenkins (ARIMA) models

One disadvantage of using structural econometric models for forecasting is that you need to know a great deal about the
variables being modeled. In particular, to obtain a simulation over several periods in the future, you need to know the
values for all the exogenous variables in the model over the forecast period. For this and other reasons, some forecasters
use the ARIMA (AutoRegressive Integrated Moving Average) or Box-Jenkins forecasting method. This method only
uses a series’ own lagged values to forecast its future values. If the series follows a stationary stochastic process without
too much drift or noise, this method can work well, at least over a short term forecast. (See Section 11.6 for discussion
of testing for unit roots in the process.) ARIMA models can be thought of as a sophisticated extrapolation method.

In this section, we discuss how TSP obtains univariate ARIMA forecasts. We strongly recommend that users who are
interested in this technique refer to one of the standard references for further details. The basic reference on the subject
is Box and Jenkins (1976). Two other elementary books that focus on this method are Nelson (1973) and Van Daele
(1983). The Pindyck and Rubinfeld text is also recommended; Section 3 is entirely devoted to time series models.

Box-Jenkins forecasting is traditionally divided into three parts: identification (determining the form of the time series
process the variable follows), estimation (estimating the parameters of the process), and forecasting (extrapolating the
process beyond the estimation period using the estimated parameters). In TSP these three steps correspond to the
procedures BJIDENT, BJEST, and BJFRCST. Because these procedures have most of the same options, and share their
values, once you have specified a set of options for BJIIDENT, they are automatically assumed for any subsequent
Box-Jenkins procedure, unless explicitly changed.

11.2.1. Identification: BJIDENT
Suppose you have a product’s monthly sales data from 1978 through the middle of 1987, and you assume that whatever
time series process generated the data is stationary (at least after differencing). To look at some characteristics of this

process, you can use a BJIDENT command to display the autocorrelations and partial autocorrelations of the series:

BJIDENT (NDIFF=1,NSDIFF=1,NLAG=12,NLAGP=12) MSALES ;
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Since you suspect that the original series may not be stationary, the NDIFF option specifies that the correlations be
computed for the first differenced series, as well as for the original series. Similarly, the NSDIFF option specifies that
seasonal differencing is to be performed. BJIDENT determines the periodicity of the seasonal factor from the frequency
of your current sample; in this case the FREQ is monthly, and observations 12 periods apart would be differenced. If
you have not specified a FREQ as part of your SMPL, you will have to supply the seasonal span as the NSPAN option
on the BJIDENT command.

NLAG and NLAGP options specify the number of autocorrelations and partial autocorrelations to be computed, that is,
the length of the lag over which they are to be computed. The default value is 20.

BJIDENT's output consists of plots of the series, both differenced and undifferenced, followed by a printout of
autocorrelations and partial autocorrelations, their standard errors, and Q-statistics (Ljung-Box statistics, see Harvey
(1993), p. 212) for the hypothesis that all autocorrelations of higher order are zero. Correlations are also plotted in what
is called a correlogram and a partial correlogram. These can be quite useful in trying to determine the form of the
process. Consult Box and Jenkins or Nelson for examples of the correlograms associated with various time series
processes. The autocorrelations, partial autocorrelations, and inverse autocorrelations are also stored under the names
@AC, @PAC, and @IAC.

The output of BJIDENT is given in Example 11.1. In our example, the series appears to be nonstationary in levels but
stationary in first differences. There does not appear to be a seasonal effect; in fact, spurious correlations were introduced
at the eleventh lag by seasonal differencing. The correlogram for the first differenced series suggested that the data be
fit by a first order moving average error process, since there were no significant autocorrelations after the first.

11.2.2. Estimation: BJEST

Using the results of BIIDENT as a guide to the specification of the model, you can then estimate the parameters of this
model with BJEST. For our example, the appropriate command might be

BIJEST (CUMPLOT,NBACK=5,NMA=1,NSDIFF=0,NDIFF=1) MSALES ;

This specifies a first-order moving average model on first differenced data, with no seasonal components. Note that you
do not need to specify any options that remain the same from a previous BJ command; in this case we did not need to
set NDIFF to 1 if this command followed the BIIDENT command given above.

The NBACK option specifies the number of backforecasted residuals that should be used to start the process and
generate the initial conditions; since we are using a moving average process of order one here, only the first will be
nonzero, so NBACK can be set to a small number. In the case of autoregressive or mixed processes, you should use a
much larger value. Other options control the behavior of the iteration process and the appearance of the output; consult
the Reference Manual to learn more about them.

In BJEST's output, the usual TSP estimation results are shown for the residuals from the fitted model, along with a table
of parameter estimates (only one in this case, the moving average parameter 0, followed by some statistics concerning
the variable in question). This is followed by a plot of the cumulated periodogram of the residuals so you can see how
well the white noise assumption of the model is satisfied. In our example, both the periodogram and the Q-statistics for
serial correlation suggest that the residuals are not white noise, although they are close.

11.2.3. Forecasting: BJFRCST

Immediately following a Box-Jenkins estimation, you can perform a forecast based on the estimated time series model
using the BJFRCST command. This forecast will be computed starting in any time period or range of time periods you
specify; it will go forward for the number of periods given by the NHORIZ option. Confidence bounds will also be

computed for the forecast. An example for the series we modeled above is:

BJFRCST (NHORIZ=10,0RGBEG=87:6,0RGEND=87:7) MSALES ;
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11. Estimation Using Time Series Data

This computes two 10-month forecasts, starting in June and July of 1987. Unless requested not to, BJFRCST will also
plot the forecasts and their standard error bounds.

The output from this BJFRCST is shown on the following pages in Example 11.1. The final model for the variable
MSALES is

(1-L) MSALES, = (1-.78L) e,

as shown, and this model is used to generate the forecasts, using the actual value in June 1987 as an initial condition for
MSALES(-1). Note the 95% confidence bounds that are printed out. As may be expected, the information contributed
by this model, roughly a random walk with a large measurement error, is very small, and the standard errors are
correspondingly large.

If you do a forecast based on some previously estimated time series process, you can also supply the parameters of the
model directly to BIFRCST. Consult the Reference Manual for further details on the notation (which is that of Box and
Jenkins). An example for a simple moving average process is:

BJFRCST (NMA=1, NSDIFF=0, NDIFF=1, NHORIZ=12, ORGBEG=84:1, ORGEND=84:3)
SALES S 4.021 THETA(1) -.802 ;

11.3. Auto-Regressive Conditional Heteroskedasticity

The ARCH model originated by Engle, and its many elaborations, are widely used in econometrics to estimate models
of time series processes where the variance of the disturbance is dependent in a simple way on the behavior of the
preceding observations, but the conditional mean of the disturbance is still equal to zero. ARCH processes appear to
describe well many observed macroeconomic data series, such as exchange rates and stock market returns.

ARCH will estimate not only the basic ARCH model, but also more complicated models which allow the variance of the
disturbance to follow both an autoregressive and a moving average process and to be conditional on other series. This
latter feature makes ARCH suitable for heteroskedastic data of any kind, not just time series. In addition, the conditional
mean of the dependent variable can depend on the standard deviation of the variance of the disturbance (the full
GARCH-M model). These models are more fully discussed in Engle (1982, for ARCH), Bollerslev (1986, for GARCH
and its identification), and McCurdy and Morgan (1988, for GARCH-M). A fuller discussion of models TSP can
estimate is given in the Reference Manual (under the ARCH command).

Here is an example of simple ARCH model estimation of an index of stock prices, where there are no independent
variables, and the variance of the disturbance is assumed to follow an autoregressive process of order 3:

ARCH(NAR=3)RM C;
It estimates the following model by maximum likelihood (denoting the stock price series RM by y,):

Y= Mot &
€.~ N(0,h)
h =a,+a, e%-l T, e%-z oy E%_;,

The coefficients estimated by this command are 7, the average stock return, and «,, &, ¢,, &5, the parameters of the
ARCH process. These coefficients are labeled ALPHAO, ALPHAL, etc. in the output. Because the estimation of ARCH
models can be prone to numerical problems arising when estimated variances are negative, zero, or very large, ALPHAO
is constrained to be nonnegative, and the other ALPHASs are bounded between zero and one. See the Reference Manual
for details on the methods used to achieve these constraints.

ARCH models can also have regressors; that is, the conditional mean of the dependent variable can be a function of other

variables, just as in ordinary linear regression. For example, consider a market beta model where the return on a stock
(R) is a function of the return on the market (RM), and the variance of its return follows an ARCH process:
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Current sample: 1978:7 to 1987:b

Box-Jenkins procedures
Procedure BJIDENT

Autocorrelations
D 2 0
Series (1-B) (L-B ) MSALES
Mean = b.3533574
Standard Error = D0.25485519
Lags
Autocorrelations D.754 D.-b13 D.538 D.543
Standard Errors - 4 D.9k2E-01 O.14l 0D.1k3 0.1749
R-statistics k3.1 105- 138. 17e-
Autocorrelations D.54k 0D-5L5 0.505 0-44k
Standard Errors 5- 8 D.194 D.208 D.219 0D.230
R-statistics 20k - 237. 2k7. 290.-
Autocorrelations D.3k7 D.3k0 D.-417 D.5kL&
Standard Errors 9-12 D.237 D.243 D.244 D.254
R-statistics 307- 322- 344. 384.
1 2 D
Series (1-B) (L-B ) MSALES
Mean = 0-700b0792E-02
Standard Error = 0.17201304
Lags
Autocorrelations -0.242 -0.129 -0.142 -0.230E-01
Standard Errors - 4 0D.9k7E-01 O.L02 0.104 0.105
R-statistics k.45 4.30 10.-b 10.-b
Autocorrelations D.579E-01-0.403E-0L O-934E-01 O.1L4LE-0L
Standard Errors 5- 8 D.10b D.10b D.10b 0.107
R-statistics 11.0 1L.2 2.2 2.2
Autocorrelations -0.1k7 -0.117 -0.135 D.-b4d
Standard Errors 9-12 D0D.107 0.109 0.110 0.112
R-statistics 15.5 17.2 19.4 70.9
Partial Autocorrelations
1] 2 0
Series (1-B) (1L-B ) MSALES
Standard Error of Autocorrelations = 0-9k225045E-01
Lags
Partial Autocorrs 1- 4 D.754 D0D.103 0.107 0D.203
Partial Autocorrs 5- 8 D.118 0D.-288E-0L 0.997E-01-0.k52E-01
Partial Autocorrs 9-12 =-0-109 0.794E-01 O.1kOD 0.3a2
1 2 0

Series (1-B) (L-B ) MSALES
Standard Error of Autocorrelations = 0-9kb73E49E-01

Lags
Partial Autocorrs 1- 4 -D0.242 -0.199 -0.252 -0.198
Partial Autocorrs 5- & -D-10b -0.1k3 -0.-181E-01 D-489E-02
Partial Autocorrs 9-12 =-0-193 -0.287 -0.511 0.345

0 e D
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11. Estimation Using Time Series Data

Autocorrelation Function of the series (1-B) (1-B ) MSALES
-1.00 -0.33 p0-33 1.00
- ===t = —————— + -
1 + + R 0.753k0
2 + + R D.b1l2kE
3 + + R D-537kL&
L] + + R D.54307
5 + + R D.54b22
b + + R D.51510
? + + R D0.5049k
-] + R D.uu5ae
9 + R+ 0-3k709
10 + R + D.3k0D03
11 + R+ D-41700
12 + + R D.5821
—tm———————— tm===[m———t e ————— +=
-1.00 -0.33 D.33 1.00
0 12 0
Partial Autocorrelation Function of the series (1-B) (1-B ) MSALES
-1.00 -0.33 D.33 1.00
—tm———————— tm===[m———t e ————— +=
1 + + R D.753k0
2 + R+ 0-1034k
3 + R+ D.1D071k
I + R D.20348
5 + R+ D.11780
b + + D-0287kb
? + + D.D099730
8 + R + -0.0L5198
b | +R + -0.10843
10 + + 0-079371
1L + R+ D.1lkD25
12 + + R D-381493
- ===t = —————— + -
-1.-00 -0.33 p0-33 1.00
1 12 D
Autocorrelation Function of the series (1-B) (1-B ) MSALES
-1.00 -0.33 p0-33 1.00
- ===t = —————— + -
1 R+ + -0.-24219
2 +R + -0.1290k
3 +R + -0-1415k
L] + + -0.022954
5 + + D-057947
b + R + -0.04029L
? + + 0-.093379
-] + + D.DL45EL
9 +R + -0-1bbkk5
10 +R + -0.11E93
11 +R + -0.13541
12 + + R D.bU47?kEE
—tm———————— tm===[m———t e ————— +=
-1.00 -0.33 D.33 1.00
1 12 0
Partial Autocorrelation Function of the series (1-B) (1-B ) MSALES
- - ~output omitted .. -
Example 11-.1: (Continued. p-. 2)
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Box-Jenkins procedures

Procedure

BJEST

Working space used: 13

VALUE

F= -u4l.49k
F= -u4.053
F= -u44.053

THETAL

0.24219
FNEW= -42.
FNEW= -4y.
FNEW=  -44.

CONVERGENCE ACHIEVED AFTER

40 FUNCTION

Dependent

EVALUATIONS.

0 STEP= 1-0000
0 STEP= 1.0000

31
STARTING VALUES
823 ISRZ=
053 IS@zZ=
053 IsSQZ=

20 ITERATIONS

0 STEP= 1-0000

Results of Box-Jenkins Estimation

variable: MS

Current sample: 1978:7
Number of observations: 10

Mean of

Std. dev. of
Sum of squared
Variance of

Std. error of regression

Adjusted

LM het. test
Durbin-Watson
Log likelihood

dep- var.
dep. var-.
residuals
residuals

R-squared
R-squared

St

Parameter Estimate
THETAL -b40y5? -0

Standard Errors computed from

ALES

to 1987:kb
=

-700L0&E-D2
-172013
2-74978
-025941
-1b10E3
-1k&253
-1bké253
2.1bbb? [.L4L1
L.57358
44.0535

andard

Error t-statistic P-value
k7Y 8.57kkEA [L.0D001

first derivatives (Gauss)
Autocorrelations of the Residuals

Autocorr
R-stat
P-value

Autocorr
R-stat
P-value

Autocorr
R-stat
P-value

Autocorr
R-stat
P-value

L
0-19782
4.30575

y
-0-13902
L4.E4857

0-0021430

=
0-0L1k7?7?
15.02421
0-0200k9

10
-0-17599
26 .02k03

0-00D09443b

=
-0-12400
b.D1375
0-0L4195

5
-0.0339kk
L4.78048
0-0051788

8
-0.10021
lk.20722
0.023289

11
0-.092015
29.054kb

0-.0012209

3
-0.2397kb
l2.-4k029

0-0019k92

b
-0.0444L7
15.00830
0.-010327

q
-0.2k0A0
24.301489

0-.0020393

12
0.-b2773
77.43045
4.b2274D-12

CRIT= L.5934
CRIT= D.974&5E-04
CRIT= 0-58730E-04

quadratic form of analytic
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11. Estimation Using Time Series Data

Normalized Cumulative Periodogram of Residuals
Expected CP plotted with (.) Actual CP plotted with (x)
Band (+) marks the 10% Kolmogorov-Smirnov limits

Period
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Current sample: 1978:7 to 1989:b

Example 11-.1: (Continued. p- 4)
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Box-Jenkins procedures
Procedure BJFRCST

TIME SERIES:MSALES

STANDARD ERROR OF THE DISTURBANCE = D-1lklO0b

THETA(B)
L - D.-b404L B
PHI(B)
L - B
FORECAST STANDARD ERRORS AND PSI WEIGHTS
STD ERR PSI
1 D.1bLDk D.3595Y4
= 0-1711b 0-.35954
3 D.L&80k19 D.3595Y4
4 0-18974 0-.35954
5 D.19838 D.3595Y4
b 0.20kkb 0.35954
? D.214k2 D.3595Y4
8 0.22230 0-.35954
g pD.22972 D.3595Y4
10 0-.23k90 0-.35954

Forecasts and 95% Confidence Bounds (Origin = 1987:hk)

Lowr Bnd Forecast Uppr Bnd
1987:b b.b9481L b.b9481L b.b9481L
1987:7 L.309u42 L.k2501 L.qu4077?
1987:8 b.289k3 b.b25019 b.9k605k
1987:9 L.27095 L.k2501 L.97924
1987:10 b.25321 b.b25019 b.99L98
1987:1L L.23k27 L.k2501 7-.01391
1987:12 b.22005 b.bk25019 7.03014
1988:1 L.2044y L.k2501 7-0u457y
1988:2 b.L8940 b.bk25019 7.0b079
1988:3 b.1748k L.k2501 7.07533
1988:4 b.LkD77 b.b25019 7.08941
Actual Error
1987:b b.b9481L D.000DD
L987:7 b.4234L -0.201kL4
1987:8 b.28953 -D0-3355k
1987:9 L.50847 -0.1lkk2
1987:10 b.EE708 D.041991
1987:1L E.71113 D.08L039
1987:12 b.E91519 D.0bk49Y
1988:1 b.b24Uk -0.000L2954
19a88:2 b.58714 -0-03795k
1988:3 L.31028 -0.31.481
1988:4 b.5b541 -0-059L87

Example 11-.1: (Continued. p-. 5)
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11. Estimation Using Time Series Data

The Series is plotted with "A"
The Forecast is plotted with "F"
MINIMUM MAXIMUM
5.8L0ODOS 7.09995
e e -
198k:b A
198k:7 A
198k: 8 A
198k:9 A
198L:10 A
198b: 1) A
198k: 12 A
1987:1 A
19487:2 A
1987:3 A
1987:4 A
1987:5 A
1987:b A
1987:7 x A F X
1987:8 Ax F X
1987:9 X A F X
1947:10 X FA X
1987:11 X F A X
19487:1e X FA X
1988:1 X AF X
L1988:2 X AF X
1988:3 x A F X
1988:4 X AF X
o e m e e -
5.8L005 ?7.09995
MINIMUM MAXIMUM

Example 11-.1: (Continued. p- k)

ARCH(NAR=3) RCRM ;

Because of ARCH's ability to estimate a model where the variance of the disturbance depends on a set of regressor
variables, ARCH can also be used to estimate an ordinary weighted least squares model by ML, even when there is no
dependence across the observations. For example, consider a model with size-related heteroskedasticity:

Ye = Mo T MiXye 7 MaXp T €
e, ~N(O)
h,=a, +ag,

where g, is the size of the t™ observation.
ARCH can estimate this model (called OLS-W by the program) with the command
ARCH (GT=G) Y C X1 X2 ;
G denotes the series that contains the size variable. The GT option is used to specify a list of series that will enter into

the regression function for the variance h,. Note that the constant (C) is automatically included in this list via the a,
parameter, so you should not include it.

11.4. The Kalman Filter (KALMAN)

Strictly speaking, the term Kalman Filter refers to an estimation method commonly used to estimate "state-space" models,
rather than the model itself. This class of models consists of two parts: the transition equation, which describes the
evolution of a set of state variables, and the measurement equation, which describes how the data actually observed is
generated from the state variables. Its importance in economics is partly due to its ability to model time-varying
parameters in an intuitively appealing way.
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In addition, the Kalman Filter estimation method is an updating method that bases the regression estimates for each time
period on last period's estimates plus the data for the current time period; that is, it bases estimates only on data up to
and including the current period. This makes it useful for investigating structural change in parameters or constructing
forecasts based only on historical data.

As with many time series methods economists use (such as ARIMA models), State Space Models originated in the
engineering literature (Kalman 1960) and were imported into economics by Rosenberg (1968) among others. A good
reference is Harvey (1981); there is also a special issue of the Annals of Economic and Social Measurement (October
1973) on time-varying parameters. A more elementary reference is Maddala (1977), Chapter 17.

Using the notation in Harvey (1981), the model KALMAN estimates can be written in the following way (assuming a
single dependent variable for simplicity):

Yo =Zo, + &
o =T, +n
£ ~N(0,0%)

T]t ~ N(anth)
0o ~ N(a0902P0)

y, is the dependent variable and there are m independent variables Z,. The first equation is an ordinary regression
equation with time-varying parameters. The second equation defines the evolution of these parameters. Note that
matrices S, and R, in Harvey's notation have been set to identity matrices and matrix T, to a constant matrix in this use
of the Kalman Filter.

When estimating this model in TSP, you can optionally supply the matrices T (the transition matrix BTRANS), Q, (the
variance of the transition equation VTRANS), P, (the variance of the prior distribution on the parameter vector
VBPRIOR), and the vector a, (the prior on the coefficients BPRIOR). If you fail to supply any of them, reasonable
defaults will be used.

For example, the simplest KALMAN command looks like this:

KALMAN CONS CGNP;
The above command estimates the regression of consumption on GNP in a recursive manner, allowing the coefficient
of GNP and the constant to evolve as random walks (with a signal-to-noise ratio of 1). These coefficients are the model's

"state" variables, and consumption is the measured variable. The intercept and GNP series are treated as known fixed
constants. In Harvey's notation, the model is

yl = Zlat + Et
(xl = (xl-l + T]t
1, ~N(0,0°)

o, will be estimated from the first m data observations, where m is the number of coefficients in ¢,.

A slight generalization of this random walk parameter model is the Cooley-Prescott (1973) adaptive regression model,
which has had some success in forecasting. You can estimate this model with the command

KALMAN(VTRANS=SIGMAV) CONS C GNP ;

SIGMAYV corresponds to Cooley and Prescott's 2, the variance of the errors in the transition equation. In the absence
of specific prior information on the form of this matrix, they suggest using a diagonal matrix whose elements represent
the relative variability of the regression's different coefficients. This idea could also be used to mix time-varying
parameters with constant parameters (by setting their variances to zero) in the same regression.

KALMAN always calculates recursive residuals; these residuals can also be obtained with OLSQ when the

REGOPT(CALC) RECRES; command is in effect. However, KALMAN can also print the evolving coefficients of the
recursive model:
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KALMAN(NOETRANS,PRINT) CONS C GNP ;

The Reference Manual discusses the KALMAN procedure further; useful features of the KALMAN command not
discussed here but described in that manual include the stochastically convergent parameter model, the use of priors in
estimating Kalman Filters, and the ability to estimate several measurement equations simultaneously.

11.5. Vector Autoregressions (VAR)

A vector autoregression model is the unconstrained reduced form of a dynamic simultaneous equations model; that is,
it expresses a vector of endogenous variables as linear functions of their own and each other's lagged values.
Contemporaneous and lagged exogenous variables may also be included in the system. This style of simultaneous
equation modeling was introduced into econometrics by Sims (1980) and is now widely used for small to medium-sized
macroeconometric models, particularly for forecasting,

Estimation of an unconstrained vector autoregression is quite straightforward, even in the presence of contemporaneous
correlation of the disturbances. Consider the following VAR:

Y, =B, Y, +B, Y, * ..+ GX, +E,

where Y, is an n by 1 vector of endogenous variables, the B's are n by n matrices of coefficients, G is an n by m matrix
of coefficients, X, is an m by 1 vector of exogenous variables, and E, is an n by 1 vector of disturbances. Because the
same list of right-hand side variables (all the lags of the Y,) appear in the n equations, this set of equations can be
estimated consistently and efficiently by ordinary least squares; there is no need for joint estimation.

Although you could use OLSQ to estimate a VAR model one equation at a time (listing all the relevant lagged variables
for each estimation), TSP also provides the VAR command to automate this process. VAR also provides some
regression output specific to the VAR methodology, such as impulse response functions and forecast error variance
decompositions. For example, suppose you wish to estimate the vector autoregression for the six variables money, real
GNP, unemployment, wages, price level, and import prices described in the Sims paper. You would use:

VAR(NLAGS=4) M,RGNP,U,W.P.PM ;

The above command produces as output the regression coefficients for the six ordinary least squares regressions of each
dependent variable on four lags each of M, RGNP, U, W, P, and PM (24 coefficients for each equation), along with the
log of the likelihood function under the multivariate normal assumption on the disturbances. In addition, the program
will display (and store under the name @IMPRES) the response of each endogenous variable to Choleski-factored shocks
in the given order over ten periods (the impulse response function).

Exogenous variables may be included in the vector autoregression, and calculation of the impulse response function can
be modified with options. For example, the command

VAR(NLAGS=2,NHORIZ=5,SHOCK=UNIT) M GNP | C CONS P ;

specifies that M and GNP are regressed on the lagged variables M(-1), M(-2), GNP(-1), GNP(-2), the constant, CONS,
and P. The impulse response function will be calculated for only five time periods and a unit shock to the endogenous
variables will be used. Except for computation of the impulse response, the VAR command above is equivalent to:

OLSQM M(-1) M(-2) GNP(-1) GNP(-2) C CONS P ;
OLSQ GNP M(-1) M(-2) GNP(-1) GNP(-2) C CONS P ;

VAR automatically computes block exogeneity tests to see if lags of the other endogenous variables enter a given
equation significantly. In the bivariate example above, these are Granger causality tests (F tests) for GNP(-1) and

GNP(-2) in the M equation, and for M(-1) and M(-2) in the GNP equation.

A common use of VARS is as a base case for more restricted structural models of lag relationships of a set of endogenous
variables. With TSP's ANALYZ procedure it is possible to calculate an asymptotic test statistic for a joint hypothesis
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on the reduced form VAR coefficients. This hypothesis can be linear or nonlinear. For example, suppose you wish to
test that the coefficients on the lagged Ms and GNPs are proportional in the two VAR equations given above. You could
use the following set of commands to perform the task:

VAR(NLAGS=2) M GNP |CCONS P ;

UNMAKE @COEF B11-B14 G11-G13 B21-B24 G21-G23 ; ? Give the estimated coefficients names
FRML PREQI1 B11/B21 - B12/B22 ; ? Proportionality constraints

FRML PREQ2 B12/B22 - B13/B23 ;

FRML PREQ3 B13/B23 - B14/B24 ;

ANALYZ PREQI1-PREQ3 ; ? Test with 3 degrees of freedom

11.6. Testing for Unit Roots and Cointegration: COINT

Simply stated, the test for a unit root in a time series y, is the test that a regression of y, on y,_, yields a coefficient of one.
This test is complicated by several features arising from the nonstationarity of y, under the null hypothesis: 1) The
ordinary t-statistic does not have the usual distribution, so you cannot use tables of t-statistics to find its p-value. 2) The
correct distribution depends on nuisance parameters in the regression, in particular, whether the constant or the time trend
is included.

In a well-known paper, Dickey and Fuller (1979) suggest a method for computing a test for a unit root in a time series,
and present critical values for their proposed tests with and without a trend variable included. The method consists of
running the stationary regression y,-y,, on y,, either with or without a constant and time trend and testing whether the
coefficient of y, , is zero. They provide the appropriate critical values for such a test in a table. Since the distribution
of the resulting t-statistic generally depends on the value of the intercept in the model unless a time trend is included,
most researchers choose to include both a constant and a time trend and then use the tables appropriate for that case.

Since then, a large literature on unit root tests has appeared, describing many alternative tests (some of which are
variations of the above). The COINT command in TSP can compute 3 different types of unit root tests: the Dickey-
Fuller (tau), Phillips-Perron (Z, "nonparametric"), and Weighted Symmetric. Each allows for various exogenous
variables like time trends and seasonal dummies/trends, and each allows for a series of "augmenting" lags to control for
additional serial correlation. See the references and the Reference Manual under COINT for further information.

For example, suppose you want to test whether the logarithm of consumption in Chapter 3's Illustrative Model has a unit
root (is integrated of order 1). The following set of statements will perform the (augmented) Weighted Symmetric and
Dickey-Fuller tests and print their approximate (asymptotic) P-values:

SMPL 49 75 ;
COINT LCONS;

In this example, COINT chooses 2 augmenting lags for the WS test and 10 lags for the DF; the P-values are .68 and .74
respectively, so the null hypothesis of a unit root would not be rejected at the .05 level.

Alternately, the Dickey-Fuller test could be computed "by hand"!

SMPL 50 75 ;
DCONS = LCONS-LCONS(-1) ;
OLSQ DCONS LCONS(-1) C TIME;
CDF(DICKEYF) @T(1) ;

This example assumes that there is no further serial correlation since it does not add lagged y differences to the model.
The resulting statistic was -1.84 with a corresponding asymptotic P-value of .69, so the null of a unit root is accepted
at the .05 level. Note that if we had used the conventional t-table to evaluate this P-value, we might have rejected this
hypothesis. Options for CDF allow you to compute the P-values without assuming the presence of a trend or constant.
See the references and the Reference Manual for further details. Also be aware that the residuals from the Dickey-Fuller
regression should be serially uncorrelated for the test to be valid, although they do not generally need to be
homoskedastic (Phillips 1987). The Weighted Symmetric test is recommended over the Dickey-Fuller test, because it
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has (sometimes only slightly) higher power (see Pantula, Gonzalez-Farias, and Fuller 1994). That is, the WS test is more
likely to reject the unit root (null hypothesis) when it is in fact false. The Phillips-Perron test is a variant of the Dickey-
Fuller which tackles the problem of additional serial correlation in the residuals by using a GMM-type method to
compute a residual variance that is "robust"” to autocorrelation.

The cointegration of time series is a methodology pioneered by Engle and Granger (1987). Two or more time series are
said to be cointegrated if a linear combination of them is 1(0) (is stationary, or has all roots outside the unit circle) even
though individually they are each I(1). Thus the hypothesis of cointegration consists of two parts: tests for I(1) of the
individual series and 1(0) of a linear combination. Usually the term cointegration testing refers only to the second part
of the hypothesis; the test is performed conditional on the fact that each component series is I(1). Although this
hypothesis sounds different from the hypothesis of a unit root, the practice of testing for cointegration is quite similar.
TSP gives the P-values for the Engle-Granger versions of these tests in the CDF procedure under the DICKEYF option.

As an example, consider testing that logarithms of real consumption and real GNP from the Illustrative Model are
cointegrated. It is easy to establish that each is I(1) separately (with asymptotic P-values of .69 and .66). The TSP
commands to evaluate the second part of the hypothesis are the following:

SMPL 49 75 ;
COINT(ALLORD) LCONS LGNP; ? this also performs the individual unit root tests at the same time

When LCONS is the dependent variable of the cointegrating regression, COINT chooses 2 augmenting lags, and obtains
a test statistic of -1.65, which has a P-value of .89 . When LGNP is the dependent variable, 10 augmenting lags are
chosen, and the test statistic and P-value are -1.29 and .95 respectively. So the null hypothesis of a unit root in the
cointegrating regression cannot be rejected at the .05 level in either test. We can conclude that the linear combination
of LCONS and LGNP is not I(0), so they are not cointegrated (at this significance level).

If done manually (without augmentation, and only shown for LCONS as the dependent variable) the COINT test would
look like this:

SMPL 49 75 ;

OLSQ LCONS LGNP C TIME ; ? the cointegrating regression

SMPL 50 75 ;

DRES = @RES-@RES(-1) ;

OLSQ DRES @RES(-1) ; ? Engle-Granger test

CDF(DICKEYF,NVAR=2) @T ; ? (Dickey-Fuller test on residuals from the cointegrating regression)

In the above example, consumption is regressed on a constant, time, and GNP to obtain the cointegrating vector, residuals
are constructed, and then the first-differenced residuals are regressed on the lagged residual. Under the hypothesis of
stationarity, the coefficient on this variable should be -1; the t-statistic for this hypothesis is the Engle-Granger statistic.
One complication is that the actual value of the Engle-Granger statistic (although not its distribution) will be affected
by the choice of left-hand variable in the first regression (consumption or GNP); COINT with the ALLORD option
computes both tests.

To compute the asymptotic P-value manually for the Engle-Granger statistic, use the DICKEYF option of the CDF
procedure with the NVAR option to specify the number of cointegrating variables used in computing the test statistic.
TSP provides P-values for cointegrating regressions with up to 6 variables, using the response surface estimates given
by MacKinnon (1990, 1994). For this example, the value of the statistic was -3.07, with a P-value equal to .23. If we
had put GNP on the left-hand side of the original regression, the corresponding value of the statistic would have been
-3.29, with a P-value of .16. The null hypothesis of a unit root in the cointegrating regression would not be rejected at
the .05 level, so we could not conclude that these variables are cointegrated. Note that these P-values are much lower
than the more correct ones given above, which include augmentation (correction for serial correlation of the residuals
of the cointegrating relationship). Note also that the test can be sensitive to the estimation sample. If 50,75 is used for
the cointegrating regression, the unaugmented P-values are .00097 and .029, which would lead to the conclusion that
cointegration does exist.

A second type of cointegration test performed by the COINT command is the Johansen-Juselius (maximum likelihood)
test. This involves testing for a particular restriction on the coefficient matrix of lagged dependent variables in a VAR.
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It is actually estimated by running two VARs and obtaining the eigenvalues for a function of their joint residual
covariance matrix. Then likelihood ratio tests (with finite sample corrections) are made to check for the number of
cointegrating vectors of the original system. The Johansen-Juselius test is often "oversized" (i.e. a P-value of .01 may
be printed when the true rejection frequency should be .10 or so), implying that "too much” cointegration (or too many
cointegrating vectors) tend to be found. For example:

SMPL 58:2 84:3;
COINT(JOH,SEAS,NOTREND,NOEG,NOUNIT,MAXLAG=1,MINLAG=1) Y1-Y4;

This command computes the trace tests for the Finnish data from the Johansen-Juselius(1990) paper. Note that COINT
computes the tests with the finite sample adjustment, but this doesn't affect the results much (at least in this case of
autoregressive order 2). In this case, we would conclude at the .05 level that there are 2 cointegrating vectors (because
the first 2 nulls are rejected and the third is accepted). The P-values are interpolated from Osterwald-Lenum(1992) Table
1.1* (because a constant term is included, and Table 1.1* is more conservative that Table 1).

eigenvalue  null hypothesis trace test w/o adj. test w/ adjustment P-
value
31 =0 76.13 70.28 .0003
23 r<1 37.65 34.75 .023
.073 r<2 11.00 10.16 43
.029 r<3 3.11 2.87 44
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