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CHAPTER 2

ALTERNATIVE STRUCTURES FOR THE ESTIMATION AND

FORECASTING OF URBAN TRAVEL DEMAND

Introduction

The preceding chapter introduced a model of the "comprehensively
rational" decision-making household, where location of residence and job, auto
ownership, frequency of trips for various purposes, destination, time-of-day of
travel, and mode were all the result of choice of an overall lifetime plan.  This
model is unrealistic in two respects, one practical and one behavioral.  The
practical difficulty is that description and forecasting of lifetime household
decisions would require data and a system structure of a level and complexity
greatly exceeding current modeling capacity.  The behavioral difficulty is that
everyday experience and experimental evidence indicate that individuals find it
impossible or impractical to process the information required to form
comprehensive overall decisions.  They instead use "boundedly rational"
rules-of-thumb for decision-making on various pieces of their overall decision
problem, without full integration of the pieces into a whole, or feedback to ensure
complete compatibility of various decisions.  Similarly, the multiple-person
household typically fails to operate as an "organic" decision-maker, instead
decentralizing many decisions.

Behavioral realities may, on one hand, help simplify the problem of the
transportation demand modeler. To the extent that decisions such as residential
location, auto ownership, and mode choice are made in isolation, or with weak
feedback, the analyst can hope to model these aspects of choice separately,
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reducing the complexity of the model system to manageable proportions.  On the
other hand, there is no comprehensive theory of "boundedly rational" behavior to
guide the development of demand models.  In particular, the important role of
expectations and perceptions in a world where information and calculating
capacity are limited is poorly understood.

The demand analysis in this volume takes an intermediate position
between the classical model of full rationality and thorough consideration of
decision-making with limited information and processing.  The overall decision
problem of the household is broken into pieces that have a plausible
correspondence to divisions of decisions that households utilize.  On the other
hand, choice within a particular sphere is assumed to conform to the classical
rational model with decision-makers reacting to the objective attributes of the
available alternatives.  This approach has several important practical
consequences. First, the complexity and range of a particular decision is reduced
to a level compatible with the limitations of data collection, statistical analysis,
and forecasting.  Second, model structure is relatively straightforward, leading to a
definition of utility that allows "trade-offs" between attributes of alternatives, and
hence model sensitivity to the degree to which individuals will, in response to
transportation policy shifts, be willing to substitute one attribute for another.
Third, the approach provides a direct "causal" link from objective environmental
variables to behavior, without requiring the definition or direct measurement of
intervening variables such as expectations or perceptions.  This is particularly
important for practical forecasting, where the presence of any variables in the
model that require direct measurement or monitoring at the level of the individual
make the prediction process much more expensive, cumbersome, and
time-consuming.

A final remark on the modeling strategy adopted here is that the final
demand  models are consistent with more broadly defined, and less "rational"
behavioral rules than the classical decision theory used to motivate their structure
would suggest.  In particular, although we use the classical economic model of the
utility-maximizing consumer to derive choice models, the resulting models are
also consistent with "random utility" models from psychology, in which
considerable scope for "irrational" behavior in the classical economic sense exists.
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Components of Travel Demand

The range of transportation decisions identified in the preceding chapter
included the locations of residence and job, automobile ownership, frequency of
trips for various purposes, destination of trips, scheduling of trips, and mode of
travel.  These components of travel demand can be pictured in a structure such as
that depicted in Figure 2.  When the decisions in the figure are made jointly, the
"feedbacks" denoted by dotted lines are strong.  The more "boundedly rational" is
behavior, and the less well integrated different decisions, the weaker the
feedbacks.

The pattern of primary and secondary links may be different from that
described in Figure 2.  For example, mode-choice may "precede"
destination-choice and trip-scheduling, in the sense that the mode-choice decision
is largely determined by higher level decisions, and destination and
trip-scheduling decisions are made conditional on mode-choice, with little
feedback to the level of the mode-choice decision.  Or, these decisions may be
truly joint.  The question of an appropriate model structure is empirical--the
presence of feedback can be tested, and the goodness-of-fit of alternative
structures to observations provides a way of eliminating unrealistic structures. 
However, model structure must also be guided by the practicalities of available
data.
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Factorization of the Demand System

We have stressed "bounded rationality" as a motivation for the division of
the overall transportation decision into manageable sub-choices.  However, "tree"
decision structures can also be derived within the classical framework of utility
maximization by postulating a separable utility structure.  Domencich and
McFadden (1975, p. 39) discuss the method of factoring the transportation
demand function into manageable components by postulating separable entities;
the following paragraphs are extracted from their book:

�To examine this method, let us consider the hypothetical question: 'If you
were making a round trip from home to  γ  at time  β  on day  π  , what mode
would you use?'  Our hypothesis is that the answer to this question depends only
on the attributes of the different available modes and is independent of the time of
day the trip is made, the destination of the trip or the number of trips that are made
for this purpose each day.  By this we mean that for the given purpose, the choice
of mode depends on the comparison of times and costs of travel by the different
modes (the attributes of the modes), while the evaluation of a given minute of
travel time or dollar of cost is independent of when or where the trip is made or
the number of trips that are made for that purpose each day. We hypothesize that it
is also independent of other prices in the economy.  (However, we would expect
the answer to depend on socioeconomic characteristics like income, family size,
and auto ownership.)

"We assume that attribute vectors of alternatives can be used to index
consumption activities directly. ...

... Thus utility  U(x,s)  is expressed as a function of a vector of
socioeconomic characteristics  s  and a vector  x  of attributes of each alternative,
with a set  B  of available alternatives.  Suppose the hypothetical question above
has two possible responses, modes  a  and  b  .  The vector of attributes  x  can be
partitioned into subvectors  x(1)  and  x(2)  , such that  x(2)  is the same for the
choices  a  and  b  , while    and    differ.  The factorization hypothesizedx a

(1) x b
(1)

above requires

 (3.3)U(x a
(1),x(2),s) � U(x b

(1),x(2),s) ,

if and only if



�1When there are three or more subvectors of  x  , each with the independence property above, additive
separability is also necessary.  See Debreu (1960b, theorem 3, p. 21).  The function  ψ  must be monotone
increasing.
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(3.4)U(x a
(1),x

�

(2),s) � U(x b
(1),x

�

(2),s) ,

A sufficient condition for this property is that  U  have the additively separable
form1

(3.5)U(x a
(1),x(2),s) � ψ(�1(x(1),s) � �

2(x(2),s)) .

Then,   a   is chosen over   b   if

(3.6)�
1(x a

(1),s) > �
1(x b

(1),s) .

Since  x(1)  is a "relatively short" vector, and the set of alternative  x(1)  subvectors
for  x  in  B  is "relatively small," this structure greatly simplifies econometric
analysis.

"We would not expect the additivity hypothesis to hold strictly.  For
example, the relative utility associated with  a  and  b  may differ depending on the
commitment of family vehicles specified in  x(2) , or on levels of fatigue resulting
from other trips specified in  x(2) .  Further, the effects of varying transport time
and cost on the consumer�s expenditure and time budget constraints will, in
general, introduce interaction effects in the demand functions, even when the
utility function is separable.  Despite these exceptions, additive separability seems
a good general working hypothesis.

"The assumption that the marginal rates of substitution between modal
attributes are constant for a given trip purpose, regardless of the time of day, trip
destination or travel frequency seems quite plausible.  One can, for example,
envision a traveler evaluating the trade-off between a minute spent waiting for a
bus and a minute of bus line-haul time differently in the peak as compared to the
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off-peak, but the difference would probably stem from the uncertainty associated
with waiting and perhaps the greater need to be punctual in the peak.  However, if
this were the case, the list of modal attributes should also include measures of the
need to be punctual (e.g., schedule delay), in which case there would no longer be
reason to expect the weights assigned to each attribute to be different for the two
time periods.

"With regard to the effect of overall income and time constraints, we note
that the importance of these effects depends on the proportion of total income and
time spent on transport.  These proportions are likely to be sufficiently low to
allow us to ignore the overall effects of changes in the cost and time of trips.  In
the special case that utility can be written as a function linear in numéraire
commodity, this commodity will "absorb" all income effects and the additive
separability will carry over to the demand functions, even if transport expenditures
are a substantial proportion of income. ...

...

...

"A further observation on the structure of the utility function can be made
by recalling that the function  U(x,s)  of attributes of alternatives is derived from a
more basic utility function defined over levels of satisfaction of fundamental
wants. Consequently, it will usually be the generic attributes of an alternative that
matter to the individual, and not the specific "labeling" of the alternative.  For
instance, walking time is walking time regardless of the principal mode used for
the trip. This structure allows a further reduction in the complexity of the
description of alternatives.

"By contrast to the hypothetical question posed above, in which the mode
choice is indicated ceterus paribus for the remaining environment, one could ask
a question of the form: 'If you had to make a round trip to  γ  on day  π , at what
time of day  β  would you go, given that you can choose your preferred mode ( a
or  b ) ?'  The response to this question is conditioned on an optimal choice along
another travel dimension.  Thus, one would expect this choice to depend not only
on the socioeconomic factors and destination attributes, such as work and
child-care schedules and size of crowds, but also on the attributes of each mode at
each alternative travel time.

"We now assume, analogously to the previous case, that the consumer�s
trade-off between such factors is not influenced by the mode of travel or day of
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the trip.  For example, the degree of additional crowding an individual would
accept at a shopping destination in exchange for lower goods prices should be
independent of the mode used to reach the destination when the attributes of the
trip remain the same.  One can envision a traveler finding a crowded store more
objectionable because he rode a crowded bus to get to the store, but we assume
such instances of interdependence are rare or that their effects are negligible.  This
assumption holds if utility is now assumed to have the separable form

(3.7)U(x(1),x(2),x(3),s) � ψ �
3

i�1
φi (x(i),s) ,

where  x(1)  describes the attributes of the trip,  x(2)  the attributes of the destination
at each time of day, and  x(3)  the remainder of the environment.

"Suppose, as before, that two modes,  a  and  b  , are available; and now
suppose two choices of time of day, peak  (p)  and non-peak  (n) , are offered. 
The subvector  x(1)  will vary with both mode and time of day; e.g.,    willx ap

(1)
describe the attributes of a trip by mode  a  at the peak.  The subvector  x(2)  will
vary with time of travel,    and    , but not with mode, while   x(3)  will bex p

(2) x n
(2)

the same for all choices.  The response to the hypothetical question above will be
a choice of a peak trip if

φ2(x p
(2),s) � Max

i�a,b
φ1(x ip

(1),s) > φ2(x n
(2),s) � Max

i�a,b
φ1(x in

(1),s) .

The important observation to be drawn from this formula is that all the attributes
of the trip are summarized in the 'index' of desirability  φ1(x(1),s)  , whose form
could be determined from the first hypothetical question. Thus, the analysis of
time of day of trip can proceed with the use of this previously determined 
'index' rather than with the much more extensive 'raw' data on trip attributes.
This saving can obviously be extremely valuable in facilitating econometric
analysis."
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The Short-Range-Generalized-Policy (SRGP) Model

The Urban Travel Demand Forecasting Project has, by agreement with the
BART Impact Study of the Metropolitan Transportation Commission of the San
Francisco Bay Area, limited its investigations to work travel, with primary
emphasis on mode-choice, and decisions directly related to mode-choice, such as
auto ownership and trip-scheduling.  In general, policy analysis requires a more
complete description of travel demand, including non-work travel.  In order to
carry through policy studies for the San Francisco Bay Area, this project has
incorporated its work demand models in a general disaggregate demand system
developed by Cambridge Systematics for the Metropolitan Transportation
Commission, and called the Short-Range-Generalized-Policy (SRGP) system. 
This system is illustrated in Figure 3.  Each block represents a constellation of
decisions modeled separately from the remaining decisions, except for the
transmission of the impacts of one block on another through environmental
variables.  For example, the auto ownership decision is influenced by general
environmental variables, by work-mode-choice, and by the assessibility of
non-work destinations by alternative modes, but does not depend directly on
non-work trip frequency. Work-mode-choice is influenced by auto ownership
decisions, and in turn influences non-work trip frequency and auto ownership.

Note that the SRGP model excludes job and household location decisions,
trip-scheduling, route-choice, and some of the more complex characteristics of
trips, such as multiple-stop tours.  Future development of disaggregate behavioral
systems, particularly for long-run policy forecasting, should integrate these
aspects of demand into the forecasting model.

A variety of possible alternatives to the SRGP structure may seem
plausible to the reader.  For example, non-work travel decisions may directly
influence work-mode-choice, or the work mode-choice decision may be made
jointly with the decision of scheduling of work trips.  To a considerable extent, a
structure such as that in Figure 3 is sufficiently flexible to accommodate these sort
of modifications, with the various feedbacks between modules changing
importance. It is also possible to test empirically the validity of alternative
structures, as has been done by Ben Akiva (1974).  This topic has not been
pursued in this study.
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Attitudinal and Objective Data

Transportation demand analysis has two objectives, which are
complementary in principle, but often conflict in practice.  The first is the desire
to gain an understanding of the determinants and structure of behavior--to
"explain" the nature of travel demand.  The orientation of this objective is toward
the inner structure of the household or individual, and the psychological
mechanisms of behavior.  The second objective is policy-oriented demand
forecasting, where the emphasis is on the causal relationship between readily
obtained objective measurements and travel behavior.

These objectives are complementary in the sense that an understanding of
the mechanisms and structure of behavior is fundamental to the construction of
reliable forecasting models, and to understanding the domain of validity of
forecasting systems.  On the other hand, forecasting validity provides an objective
external test for the constructs used to explain the process of choice.

Conflict between the objectives comes when analysts try to serve both
masters within a single model system, or where one objective is pursued under the
guise of attacking the second.  This conflict has been evident in transportation
demand analysis in the perceived contest between "attitudinal" and "objective"
models.  On the whole, models employing attitudinal variables provide a tool for
exploring the decision-making process, and identifying objective variables that are
important determinants of behavior.  However, such models are poorly suited for
policy forecasting, due to the need for field measurement of attitudes, which can
be costly and time-consuming.  On the other hand, objective models treat the
decision-maker as a "black box," and are often poorly suited to revealing the
mechanisms of the decision process.  In particular, it may be difficult to achieve
environmental settings in which the mapping from stimulus to response can be
used alone to identify internal structures.

To the extent that travel behavior is influenced by long-run dynamic forces
of experience and habit, forecasting models based on contemporary objective data
will be inaccurate.  Then, measures of perceptions and attitudes may summarize
the decision-maker's objective history more efficiently than any fully external
measures, and their introduction--in spite of costs of measurement--may be the
most effective way to improve forecasting performance.

The most satisfactory way to incorporate attitudinal variables into a
forecasting system would be to make changes in the attitudinal variables
endogenous to the model; i.e.,
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Current
Behavior � f Objective

environment , State of attitudes
and perceptions ;

Change in State of
Attitudes and Perceptions � g State of attitudes

and perceptions , Current environ�
ment and behavior .

Base-line measurement of the state of attitudes and perceptions would be required,
but then for policy forecasting the mapping  g  would predict attitudes as a
function of predetermined data and objective variables, eliminating the need for
continual monitoring and field collection of attitudinal data.
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Aggregation of Alternatives

The ideal disaggregate model, with every distinguishable alternative from
the standpoint of the decision-maker treated as distinct by the analyst, is usually
impractical in terms of data collection and statistical analysis.  Instead, the
demand system is expressed in terms of reasonable aggregates of alternatives.  For
example, in mode-choice the alternative "bus" may contain several alternative bus
lines, while the alternative "carpool" contains alternative routes and pooling
arrangements.

The section of this chapter on factoring demand gives a method for
describing the attributes of composite alternatives when data is available on each
of the components and the form of utility governing choice among component
alternatives is known.  This approach is implemented in sequential logit models of
the choice process, discussed in Part IV, Chapter 2.   In this section, we consider
the problem of dealing with composite alternatives when component data is not
observed, or the utility for choice among components is unknown.

Consider the problem where data on selected component alternatives can
be observed, but enumeration of all alternatives is impractical.  When a
multinomial logit choice model is employed, McFadden (1976e, 1977a) has
shown that consistent statistical estimates of the utility function can be obtained
using fixed or random subsets of the set of all available alternatives.  McFadden
(1976e) also discusses forecasting from subsets of the full alternative set--this
problem has a less satisfactory solution and deserves further study.

Consider further the problem where component alternative data is
available, at least for a sample of alternatives within a group.  Suppose there are  J 
choice groups, indexed  J = 1,...,J  , and  Mj  components within each group,
indexed  m = 1,...,Mj . Each component alternative  jm  has attributes  yj  common
to the group and attributes  xjm  specific to the sub-component.  The (unknown)
utility function for  jm  is assumed to have the form   .  Byvjm � α�yj � β

�xjm
convention, we can absorb the group means of attributes into  yj , and thus assume
the  xjm  have group means equal to zero.  We shall assume that the choice
probabilities for component alternatives satisfy a generalization of the
multinomial logit model, the generalized extreme value model discussed in Part
IV, Chapter 2:

(1) Pjm � e
vjm

1�σj
�

Mj

m�1
e

vjm

1�σj

�σj

/ �
J

��1
�

M
�

n�1
e

v
�n

1�σ
�

1�σ
�

,
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where  σj  is a measure of the degree to which component alternatives within a
qroup are perceived as similar by individuals.  The parameters  σj  vary between
zero and one, with  σj  =  0  corresponding to the MNL case where unobserved
parts of the utilities of component alternatives are uncorrelated, and  σj  = 1 
corresponding to the case where they are perfectly correlated.  From  (1) , the
choice probability for a group is

(2) Pj � e α
�yj�wj / �

J

��1
e α

�y
�
�w

� ,

where

(3) wj � log �

Mj

m�1
e
β�xjm

1�σj

1�σj

.

If there were no variation in the attributes of component alternatives, so that  xjm 
=  0 , then  wj  =  (1 - σj) log Mj  , reflecting the average contribution to the utility
of the group of the number of components in the group.  Then, more components
in the group increases the possibility that some component alternative has
unobserved attributes making it attractive to the decision-maker.  This particular
model structure has been studied empirically and interpreted by Lerman (1975).

When the   xjm   in (3) are not zero, the convexity of the exponential
implies

�

Mj

m�1
e
β�xjm

1�σj
� Mj ,

and hence  wj � (1 - σj) log Mj , with the difference in the two sides of the
inequality depending on the variances of the  xjm  .  One limiting case of (3) that is
of interest occurs when the number of component alternatives within a group is
large, and the  xjm  behave as if they were independently identically normally
distributed with covariance matrix  Ωj .  Then,

(4) E e
β�xjm

1�σj
� e (1/2)β�Ωjβ/(1�σj)

2
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and

(5) 1
Mj

�

Mj

m�1
e
β�xjm

1�σj
�

a.s.
e (1/2)β�Ωjβ/(1�σ)2

.

Hence,

wj � (1 � σj) log Mj � (1/2)β�Ωjβ / (1 � σ) .

For example, if  σj  =  σ , Mj = θjM , and the number of component alternatives is
large, (2) becomes

Pj �
exp α�yj � (1 � σ) log θj � (1/2)β�Ωjβ / (1 � σ)

�
J

��1
exp α�y

�
� (1 � σ) log θ

�
� (1/2)β�Ω

�
β / (1 � σ)

.

When the components  xjm   are not observed, but their distribution can be
approximated or estimated, and  β  is known, then the model (7) can be estimated
and employed for forecasting using standard MNL models.  If  θj  is unobserved,
then it can also be estimated using the MNL model. Note, however, that when 

  contains an alternative-specific dummy and  θj  is unobserved, theα�yj
alternative-specific coefficient and the term   (1 - σ) log θj  are unidentified.  This
suggests one interpretation of alternative-specific coefficients as indicating, in
part, the number of "equivalent" component alternatives contained in the group. 
When  β  is not known, direct maximum likelihood estimation of (7) could be
carried out with modification of a MNL estimation program to handle quadratic
parameters in the "apparent" utility function.  Alternately, writing out the
quadratic form in (7) and ignoring quadratic restrictions across parameters permits
consistent estimation of all the parameters in (7) with a standard MNL program.

A common practice in the disaggregate transportation demand literature
when confronted with models of the form in (2) and (3) when  β  is unknown has
been to define "composite" attribute variables

(8) x k
j � log �

Mj

m�1
e x k

jm ,
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where   k = l,...,K   indexes individual variables and the sign of      is definedx k
jm

so that "more is better;" then consider the model

(9) Pj � e α
�yj�β

�xj
�

J

��1
e α

�y
�
�β�x

� .

Because (8) weighs most heavily the most attractive value of a variable among the
component alternatives, this method will tend to over-represent the desirability of
a group unless there tends to be a dominant component alternative.  When
different variables are negatively correlated (e.g., travel time and travel cost across
modes for specified trips), this over-representation will be particularly strong. 
Hence, the approximation (8) - (9) does not seem satisfactory.  However, when
the variance of  xjm  is small, the approximation error may be acceptable.
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Model Complexity

One of the motivations for the development of disaggregate demand
models was dissatisfaction with the cost and complexity of traditional modeling
systems.  Some of the policy applications of disaggregate analysis to sketch
planning have achieved remarkable simplicity and flexibility (Cambridge
Systematics, Inc., 1976).  On the other hand, the desire for comprehensive demand
systems capable of providing forecasts to a full range of policy scenarios has led
to the development of increasingly complex model systems.  The logical
conclusion of this line of development will be behavioral models that simulate all
the individual transportation choices of a population. The complexity and cost of
such a simulation package will probably rival or exceed the cost of traditional
models. The use of models of this complexity may be required for comprehensive
transportation policy analysis, particularly for delicate policy choices where
indirect impacts are critical.  On the other hand, many policy questions are
sufficiently limited in scope, or clear-cut in results, to make elaborate analysis
unnecessary.  For these problems, what is needed are simpler models that provide
bounds on the impacts of policy.  What would be desirable, then, would be a
hierarchy of behavioral models, ranging from simple to complex, with an
understanding (based on analysis of more complex structures) of the limits of
accuracy and range of application of models at each level.  In this manner, each
policy issue can be analyzed within a model framework of a complexity and cost
commensurate with the scope and delicacy of the problem.


