
1This methodology is described in detail, with technical specifications and a description of the software, in
Final Report volume VIII.
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CHAPTER 3  

FORECASTING THE VALUES OF EXOGENOUS VARIABLES:

SOCIOECONOMIC VARIABLES

Introduction

Disaggregate behavioral model forecasts of the effects of urban
transportation policy require auxiliary forecasts of the variables exogenous to the
model system.  The exogenous variables typically include residence and work
location, and household socioeconomic and demographic characteristics.
Consistent aggregation of behavioral models requires that these variables be
provided for each homogeneous market segment, or for a representative random
sample of households.  The forecasting method should take into account shifts in
demographic and land use patterns, changing economic conditions, and
population growth.

It is in the nature of auxiliary forecasting that one does not have available
complete structural or causal models; hence, forecasting must use data analysis
and trend projection techniques, combined with available external forecasts.  The
method should be able to combine the information contained in a variety of
different data sources, and have the capacity to upgrade the quality of the forecasts
as additional data become available.

We have developed a methodology--SYNSAM--for generating a synthetic
representative sample of households for an urban area for any specified date.1  We
describe the implementation of this procedure for the San Francisco Bay Area,
involving the construction of a sample of 12,000 households for the year 1976.  In
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addition to residence and work locations, data for each household comprises a
subset of the socioeconomic variables tabulated in the Public Use Sample (PUS)
of the 1970 Census.  The implementation utilizes 1960 and 1970 Census data plus
external projections of population and economic conditions.  Because such data
are available for all Standard Metropolitan Statistical Areas (SMSA), the
procedure is readily transferable to other cities.

A principal feature of the SYNSAM procedure is the use of Iterative
Proportional Fitting (IPF) to construct and update for each zone of residence a
contingency table giving the distribution of a selected set of household
characteristics, starting from the various marginal tabulations available on census
tapes and other sources.  The program is based on an algorithm due to Haberman
(1974).  A second principal step is to actually construct a synthetic sample by
random sampling, once the contingency tables for socioeconomic characteristics
have been computed.  For each household in the sample, the program selects a
residence zone; selects a vector of nine household socioeconomic characteristics;
assigns an employment zone; selects a matching representative household with the
same vector of socioeconomic characteristics from the PUS census file; and
selects a worker within this household.

SYNSAM is intended to be a flexible methodology, capable of
accommodating a variety of data sources and estimates, and allowing alternative
methods and possible improvements in various steps of the procedure.
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Background: Construction of Sampling Tables

Exogenous socioeconomic variables are normally defined or coded
categorically; we shall assume they always have this form.  Then the distribution
of characteristics-of-household is described by a contingency table, such as the
schematic table given in Figure 12.  Each cell in the table represents a
"homogeneous market segment," and the cell probability gives the share of this
market segment in the population.  The dimensions of the table correspond to the
exogenous variables, including residence and workplace zone.  For each zone
pair, the transportation networks for the urban area provide level of service (LOS)
variables, including times and costs, for alternative transportation modes.  The
disaggregate travel demand model system forecasts the travel behavior of the
households in a cell as a function of the cell socioeconomic characteristics and
LOS variables.  In a complete model, this will include trip generation and
distribution and mode split probabilities.  The sum of these probabilities over
cells, weighted by all probabilities, gives aggregate travel behavior forecasts for
the urban area. In the special case that the only exogenous variables are residence
and workplace zone, the system above reduces to the conventional aggregate
demand forecasting framework; hence, the auxiliary forecasting methodology
considered here is applicable to aggregate as well as disaggregate policy analysis.

In Figure 12, cell probabilities are denoted  Pij , where  i  is the level of the
first variable, and  j  is the level of the second.

FIGURE  12   Example of a Contingency Table

Number 

of 

Persons

in

Household

Residence Zone

1 2 3 SUM

1 p11 p12 p13 p1+

2 p21 p22 p23 p2+

3 p31 p32 p33 p3+

4 p41 p42 p43 p4+

5 p51 p52 p53 p5+

SUM p+1 p+2 p+3 p++=1
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The marginal probabilities are denoted  pi+ = pil + pi2 + pi3  for the number of
persons in household and p+j = plj + p2j + p3j + p4j + p5j   for residence zone.  In
practice, tables will usually be required for more than two variables; in the present
application, nine-way contingency tables are constructed for the nine household
variables given in Table 12.

Cell probabilities are denoted by  Pσ , where the index is a vector  σ =
(i1,...,i9)  of these nine socioeconomic and demographic variables.  Because of
changes over time in population and in demographic and socioeconomic
characteristics, the cell probabilities will be functions of time.  When the dates of
probabilities must be distinguished, we write  pσ(t)  for date  t .

The basic problem is that data for the full contingency table is rarely, if
ever, available.  It could be obtained directly only from a large-scale random
survey of households in the area.  Without such a survey, the available data
provides a collection of marginal tables, i.e., the contingency tables for various
subsets of the socioeconomic variables of interest.  One must then attempt to
reconstruct, as far as possible, the entire table from the available marginals.  This
problem is particularly important in forecasting the cell probabilities at a specified
date, because the set of marginal tables available for updating and projection is
usually much sparser than the set available for the base year.  Typical sources are
the U.S. Census (Fourth Count census tract data, Public Use Sample, and Urban
Transportation Planning Package), metropolitan transportation surveys, screen
line counts, and external forecasts of population and land use models.  Local
transportation surveys may provide observations from individual cells in the table
at the survey date; other sources typically provide first and second order marginal
distributions.

A classical method of combining contingency table data from two or more
sources is iterative proportional fitting, associated with Deming and Stephan
(1940).  The method and its assumptions are discussed in Bishop, Fienberg, and
Holland (1975).  An earlier application to census data has been made by Liu
(1976).  The algorithm which we use is due to Haberman (1974).

For the illustrative contingency table of Figure 12, the procedure is as
follows. Suppose we are given an initial trial table   and a set of observedp (0)

ij ,
marginals   and   .  Successive approximations are then given bypi� p

�j

(1) p (n�1)
ij � p (n)

ij � pi� / p (n)
i�



1In the formulation of the contingency table in terms of the log linear model, this implies that the effects in
the model with one or more factors exhibit linear trends.  The fitting procedure implies that the order of
effects exhibiting non-zero trends will not exceed the order of the highest order observed marginal table.
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and

(2) p (n�2)
ij � p (n�1)

ij � p
�j / p (n)

�j

(for  n = 0,2,4,...), i.e., alternately rows and columns are rescaled to agree with the
observed row and column sums.  Under certain conditions (see Final Report
Volume VIII, Appendix A) this iterative procedure always converges to a fitted
table consistent with the given marginal data.  A more general account of the
algorithm and its properties is given in this reference, which also describes the
interpretation of a contingency table in terms of "m-factor effects" by means of the
log linear model.

One possible difficulty is that data may fail to include direct observations
on interactions that are believed a priori to be important.  Then, it may be
desirable to attempt to recover the missing interactions by imposing sufficient
structure on the data to identify these effects.  In the absence of supplementary
survey data, a case in point is the effect of socioeconomic variables on the
workplace zone probabilities for a given zone of residence.  To capture these
interactions, we use the work destination model described in Part III, Chapter 2.

To combine data from different dates, we shall assume log cell
probabilities follow a linear trend,1

(3) log pσ(t) = A(t) + ασ(t - t0) + log pσ(t0)   ,

where  ασ  is the trend rate of change for the cell and  A(t)  is a normalizing factor
to satisfy   .  If  t0  and  t1  are two dates with observed data, then�

σ
pσ(t) � 1
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(4) ασ �
1

t1 � t0

log
pσ(t1)
pσ(t0)

�

A(t1)
t1 � t0

,

implying

(5) log pσ(t) � A(t) � A(t1)
t � t0

t1 � t0

�

t � t0

t1 � t0

log
pσ(t1)
pσ(t0)

� log pσ(t0) ,

(6) pσ(t) � A �(t) pσ(t0) �����
�����

pσ(t1)
pσ(t0)

t � t0
t1 � t0 .

In broad outline, our forecasting technique is to start from a common  �pσ
(0)

that reflects the interactions of all orders that appear to characterize the population
in the geographical area under study.  Typically,   would be estimated from a�pσ

(0)

sample of individual households, taken from a transportation survey, or, as in the
present application, from the Census Public Use Sample.  Then, iterative
proportional fitting is applied to the observed marginals to refine the tables, first
by residence zone and secondly by date.  From the fitted tables    for various�pσ(t)
dates, cell trend rates are estimated.  Using these trend rates, the fitted tables are
extrapolated to the date at which a forecast is desired.  This extrapolated table
provides market segments and segment shares directly. Alternately, random or
stratified sampling from the cells of the table provides a representative sample of
a specified population.  A further step is to associate with a sampled cell a case
record of an observed household that appears in this cell. Such a record may
contain added variables, or refinements of variables, which are not determined by
the cell identification.  Provided the household file from which this case record is
drawn is representative, conditioned on cell identification, this method will
provide a representative sample of the population.
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The Iterative Proportional Fitting Method

The description of contingency tables

We first define the notation used to describe a multi-dimensional
contingency table and its associated marginal tables.  We recall the illustrative
two-dimensional table of Figure 1, where the cell probabilities are denoted  pij 
and the marginal probabilities are the row and column totals:    and   pi� � �j pij

 .  Generalizing this notation, assume  K  variables, indexed by thep
�j � �j pij

elements of   .  Let  Ik  denote the set of categories defined forK~ � {1,...,K}

variable  k .  A cell in the contingency table is indexed by a vector   σ = (il,...,ik) ;
the set of possible cell indices is denoted  S = Il × ... × Ik .  Cell probabilities are
denoted by  pσ .  For any subset   B � S , define    to be the probabilitypB � �

σ�B
pσ

of  B .

We wish to consider marginal probabilities for a subset of variables (or,
configuration)   ; i.e., the probability of sets of the formQ � K~

(7) B � Χ
��Q

i
�

× Χ
��Q

I
�

.

This probability can be denoted generally by  pB  , but will also be denoted by an
abbreviated notation: let  σ  be a K-vector with component  k  equal to  ik   if       
k � Q  and equal to  "+"  if   k�Q , and let   pσ  denote the probability of the set in
equation  (A.l) .  For example, if  Q = {1,2}  and

B = {2} × {3} × I3 × ... × IK , then the probability of  B  is denoted  p23+...+ .

One method of describing a contingency table is by use of a log linear
model, in which the cell probabilities are written in the form

(8) log pσ � �
Q�K~

uQ(σ) ,

where  uQ(σ)  is a constant for each configuration  Q  and the cell in the
Q-configuration marginal table that is the projection of  σ .  For example, if         
K = 3 , then
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(9)
log pkj� � u

�
� u1(i) � u2(j) � u3(�) � u12(ij) � u23(j�)

� u13(i�) � u123(ij�) ,

where we write  u1(i)  rather than u{1}(i)  , etc.  With the normalization that for any  
k � Q  ,

(10) �
σk�Ik

uQ(σ) � 0 ,

this model has the same number of cells and independent effects  uQ(σ) , and can be
inverted to express the effects in terms of the cell probabilities.  Hence, any table
can be described in terms of a log linear model representation.  If  Q  has  m 
elements, then  uQ(σ)  is referred to as an m-factor effect or an effect of order  m .

If all the variables in a contingency table are independent, then all the
effects  uQ  will be zero except the zero and one factor effects.  Then the table can
be reconstructed from its first order marginals.  More generally, if a table has
effects of order  m  or higher equal to zero, then it can be reconstructed from the
family of  (m - 1) order marginals.



1The conditions for marginal distributions to be mutually consistent have been given by Darroch (1962).  A
necessary condition is that their common marginals agree.  For example, the marginal configurations Q1 =
{1,2,3} and Q2 = {1,2,4} must have identical marginals for the configuration Q3 = {1,2} .
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Properties of the IPF method

The iterative proportional fitting procedure appears to have been first
discussed by Deming and Stephan (1940), and is treated in some detail in Bishop,
Fienberg and Holland (1975).  Other useful references are Darroch (1962) and
Haberman (1974).  The method enables one to adjust a contingency table so as to
be consistent with an observed set of marginal tables.

The iterative proportional fitting algorithm applied to data available at a
common date has a simple description.  Suppose that observations are available
on the probabilities of a sequence of marginal distributions with configuration 
Q1,...,QJ  . We assume each of these configurations to be maximal in the sense that
none are contained in another.  For each  σ � S , let  σj  denote the index vector
formed by replacing the components  k  of  σ  for which  k � Qj  by  "+" .  Then, 
σj  indexes the cell of the marginal distribution with configuration  Qj that is the
projection of  σ .  For example, in Figure 1, if  Q2 = {1}  is the configuration
giving the first order marginal distribution of residence zone and  σ = (4,3) , then 
σ2 = (4,+) .  Suppose an initial trial table   for  σ � S  is given.  Then the table�pσ

(0)

is modified iteratively using the formula

(11) �pσ
(i�1)

� �pσ
(i)

pσj

�pσj
(i)

, (σ � S)

where  j  cycles through the values  j = l,...,J  in successive iterations.  If the
observed marginal distributions are mutually consistent1 and the initial trial values

 are positive, then this algorithm always converges to a fitted table   that is�pσ
(0) �pσ

consistent with the observed marginal distributions; i.e.,   for  σ � S  and �pσj
� pσj

j = l,...,J (Haberman, 1974).

The iterative proportional fitting algorithm has the following properties
(Bishop, Fienberg and Holland (1975)):

1. If the initial trial table    has no non-zero effects of order greater�pσ
(0)

than the order  m  of the largest observed marginal configuration, then
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the final fitted table   will have no non-zero effects of order greater�pσ
than m .  (In particular, if   is the same for all  σ  , this conclusion�pσ

(0)

holds.)

2. If the initial trial table   has non-zero effects of order greater than�pσ
(0)

the order  m  of the largest observed marginal configuration, then all
effects in the final fitted table   of order greater than  m  will equal�pσ
the corresponding effects in   .�pσ

(0)

3. The final fitted table   gives the unique maximum likelihood�pσ
estimate of the log linear model, subject to the condition that   and�pσ

 have the same effects for orders exceeding the highest order�pσ
(0)

marginal.


