
1The "forerunner" of this chapter, Working Paper Number 7621, by Ibrahim Hasan and Antti Talvitie, was published in
Proceedings of the World Conference in Metropolitan Research, Rotterdam, 1977.
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CHAPTER 8 

EQUILIBRATION OF TRAVEL DEMAND AND SYSTEM PERFORMANCE:

AN APPLICATION IN A TRANSPORTATION CORRIDOR1

Introduction

Equilibration of travel demand and system performance has traditionally
been considered an important problem, primarily for auto travel, and only
secondarily for bus travel.  Initially, "capacity-constrained traffic assignments"
were predominant.  These algorithms were invariably restricted to auto mode,
provided no information on convergence, and suffered from other shortcomings
(Ruiter, 1973).  In short, they were not valid equilibration procedures.

In the last decade or so substantial progress has been made in the
development of transportation network equilibrium algorithms.  The seminal
paper of Dafermos and Sparrow (1969) can be identified as a turning point: it
signalled the start of mathematically rigorous analyses of the equilibration
problem.  For a unified approach to network equilibration methods, viewed as
solutions to an optimization problem, the paper by Nguyen (1974) is definitive.  A
brief exposition of the network algorithms is given in the second section of this
chapter.
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The objective of this chapter is to suggest a way in which an equilibrium
model can be developed, where the major components are a set of transportation
system performance equations and a set of disaggregate travel demand equations.
The method, which utilizes the Scarf (1973) algorithm, will be developed within a
context of an analysis of work-trip demand and mode-choice over a transportation
corridor.

An experienced transportation planner readily recognizes that this is a
limited application.  It is the authors� belief, however, that over the next few years
our approach to predicting travel demand and computing equilibrium will prove to
be a useful complement to network equilibrium models.  We also believe that
there will be increasing use of this approach in applications of greater complexity. 
This chapter outlines the components of the proposed system, summarizes the key
concepts involved in the algorithm, and provides an example of its application.  A
"real world" application and computational experiences are discussed in Talvitie,
et al. (1977) .



1The difference between "user-optimized" and "system-optimized" equilibria is discussed in several places. 
A good discussion is given by Ruiter (1973).
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Equilibration in Transport Networks

This section provides a heuristic description of network equilibration
methods.  The emphasis is on simplicity, not on mathematical elegance, and only
the "user-optimized" equilibrium problem will be considered.1  The presentation
here is not a substitute for more complete treatments of network equilibrium
(Nguyen, 1974).

Basic concepts

Before formally stating the network equilibrium problem, it is instructive
to briefly review why equilibration in networks is difficult.  The problem is the
following.  The demand functions are expressed in terms of origin-destination
pairs, while the network performance functions are facility (link)-specific.
Mathematically,

Dw = dw(Cw ) , the demand function for O-D pair  w , and

Ca = ca(Da ) , the link performance function on link  a , where

C  is "generalized" cost (travel time, cost, etc.) and  D  is demand.

Thus, the interzonal travel time that enters the interzonal generalized cost
Cw  depends on the path taken by the traveler.  In networks, this O-D travel time is
calculated as the summation of the individual link travel-times forming the path.
On the other hand, the link travel times are functions of the link volumes, which
are composed of flows between many origins and destinations.  Therein lies the
problem: the "markets" for demand are the O-D pairs when the "markets" for
supply are links.
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Most origins and destinations are also connected by many paths, and a rule
or model of path choice behavior must be given for the equilibrium volumes to be
unique.  The user-optimized equilibrium is governed by Wardrop�s (1952) First
Principle, which states, "the journey times on all the routes actually used are
equal, and less than those which would be experienced by a simple vehicle on any
unused route."

Relationships for network equilibrium

Armed with the basic understanding of the problem, we can state it more
formally.  The following notation will be used:

N = (n1, n2,...) , set of nodes (intersections in the network);

A = (a1, a2,...) , set of links (ordered pairs of nodes) in the network,
a = [a typical link];

W = (w1, w2,...) , set of all origin-destination pairs in the network, w
= [ a typical O-D pair ] ;

S = (s1, s2,...) , set of all paths in the network (no loops),  s =
{(0-n1),(n1-n2),...,(nn-D)} , a path connecting  w ;

set of all paths connecting O-D pair  w .Sw � (Sw1
,...) ,

Using the above notation and concepts we are able to define the relationships
between the link flows and costs, and path flows and costs, and O-D pair flows
and costs in mathematical terms.  The solution to these equations constitutes the
solution to the equilibrium problem.  For this purposes define:

Da , Ca  = flow and cost on link  a ;

Ds , Cs = flow and cost on path  s ;

Dw , Cw = flow and cost for O-D pair  w .

 The relationships between these variables are expressed as follows:
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(1) Interzonal demands Dw � �
s �S
θwsDs (all w � W) ,

where θws �

1 if s � Sw ,
0 otherwise ;

(2) Link demands Da � �
s � S

δasDs (all a � A) ,

where δas �
1 if a � S ,
0 otherwise .

Path "generalized" cost is given by:

(3) Cs � �
a�A
δasCa (all s � S) .

In addition, we have the link performance (supply) relationships:

(4) Ca = ca (Da)   ,

where  ca  is a non-negative continuous link-specific function, and the demand
relationships

(5) Dw = dw(Cw)   ,

where  dw  is a non-negative continuous O-D pair-specific function.  The function
dw  is assumed to be monotone decreasing in  Cw ; hence, it has an inverse
function   Cw  = d-1(Dw) .

For the user-optimized equilibration, routes are selected to minimize
generalized cost, leading to the following flow-distribution rule (Wardrop's First
Principle):
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�
a�A
δasca �

s�S
δasDs � θwsd

�1
w �

s�S
θwsDs � 0 , (all s � S , w � W) ;

Ds �
a�A
δasca �

s�S
δasDs � θwsd

�1
�
s�S
θwsDs � 0 , (all s � S , w � W) .

Cw � Min
s�Sw

Cs ,

and, for  s � Sw ,

Cs > Cw  implies Ds = 0 .

The system (1) - (6) can in general be solved for the values of  Da , Ca , Ds , Cs , 
Dw , Cw .  The inequalities in (6) and nonlinearities in (4) and (5) make direct
solution cumbersome or impossible.

The system (1) - (6) can be reduced to the following system of non-linear
inequalities:

(7)

As shown by Dafermos (1972) and Gibert (1968), the inequalities (7) are the
first-order conditions for maximization of the expression

(8) CS � �
w�W �

�
s�S
θwsDs

�

d �1
w (u)du � �

a�A �

�
s�S
δasDs

0

ca(u)du

in non-negative  Ds , where  �  is a small positive number that can be reduced to
zero if the area under the inverse demand function  d-1  from zero to a positive
quantity is finite.
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By assumption,    is strictly monotone decreasing.  Provided  ca  is ad �1
w

monotone non-decreasing function, each of the integrals in the expression for CS,
including the sign, is concave in the vector of  Ds  values.  Under these conditions
the set of maxima of  CS  will be convex and closed.  If   lim

Dw��

d �1
W (Dw) � 0

and then a maximum exists.  Because of the strict concavitylim
Da��

ca(Da) > 0 ,

of the first integrals of  CS  in  Dw , the values of  Dw  associated with the
maximum will be uniquely determined.  Similarly, if  ca  is strictly increasing,
then  Da  will be uniquely determined.  These conditions have been discussed by
Ruiter (1973).

As the following section shows, the expression  CS  has a simple
economic interpretation as the private (i.e., not accounting for the social
externalities of congestion) consumer's surplus associated with an assignment of 
Ds  values. Hence, the equilibration of the network is achieved by maximization of
private consumer�s surplus.

Graphic illustration of the optimization problem and algorithms

The result of the optimization problem can be understood best through a
simple graphic illustration.  Consider the case of a single link connecting an O-D
pair.  The link performance and inverse demand functions for this case are shown
on top of Figure 20.  The integrals of the    and  ca   functions are shown asd �1

w

shaded areas.  At the bottom of Figure 20 the shaded area shows the difference of
those two integrals; this difference is the value of the objective function (8).  It
can be seen that this value is maximized where the demand curve and the link
performance curve intersect, at  D = D*..  Thus the solution to the optimization
problem is the same as the solution to the user-optimized equilibrium problem.
This is true for a network of arbitrary complexity.

The computation of this network equilibrium in practice requires the
employment of iterative (and expensive) algorithms.  The following paragraphs
explain, in principle, why this is so and also show one practical approach
popularly used to resolve the problem.
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An iterative algorithm to solve (8) for equilibrium values (Ds
*) , starting

from any arbitrary values (Ds
0) , can be constructed using a gradient search,

(9 )
D k�1

s � D k
s � λk

�CS/�D k
s

� D k
s � λk d �1

w �
s�S
θwaDs � �

a�A
δasca �

s�S
δasDs ,

where  w  is such that  s � Sw  , and  λk   is a step size.  One popular equilibration
procedure--"incremental assignment"--is a gradient search of this form with a
fixed step size.  Generally, this procedure encounters practical problems with
convergence.  Step sizes sufficiently small to avoid cycling give slow rates of
convergence.

Alternatives to simple incremental assignment algorithms would be
gradient procedures that vary step size during the search, or Newton-Raphson type
procedures that make use of information on second derivatives.  Because of the
size of equilibration problems and the possibility that the function CS  is not
strictly concave in  (Ds) , direct application of a classical Newton-Raphson
algorithm is generally infeasible.  However, modifications of the
Davidon-Fletcher-Powell algorithm to approximate a generalized inverse of the
Hessian of  CS  might prove practical in systems of moderate size.



1The exceptions are the parking cost and walk time for the auto.  Note also that because time of day choice is
not included in the model system, the peak period travel time is the same for every traveler (between a given
origin and destination), i.e., the linehaul time is the average (aggregate) travel time during the peak.
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Reformulation of the Equilibration Problem

In this section an alternative way of computing transportation equilibrium
will be developed.

A brief historical note is in order concerning the origins of this model.  It
has been suggested by Talvitie (1973, 1975) that for reasons of cost, timeliness,
and accuracy, transportation system performance must be expressed by equations,
and equilibration should be accomplished by solving a set of simultaneous
equations without resorting to networks.  In this section the equilibration problem
is cast as a system of simultaneous equations.  In order to reduce the number of
markets from the numerous zonal interchanges to a more manageable set,
McFadden suggested that, in the present application, the transportation corridor
could be divided into segments and each segment be considered a market.
McFadden also suggested that economists� experience with the Scarf algorithm in
computing equilibria has been good.  Thus, armed with the "supply equations" of
Part III, Chapter 4, enabling disaggregate derivation of almost every variable,1  the
disaggregate demand models from Part III, Chapters 3 and 4, and the intention to
solve these equations by a certain method, the equilibrium formulation was
arrived at rather readily.  The specifics of the model were worked out by Hasan
and Talvitie (1976).

The development of the transportation equilibrium model here is specific
to a given situation; hence, the description of the model system is complete.  We
begin with the description of the problem.

Segmentation of the travel corridor

The problem at hand is as follows.  Given the information on home and
work locations, some socioeconomic characteristics that are assumed to
completely describe the utility-maximizing workers, and the characteristics of the
transportation corridor along which home and work locations are scattered, we
can predict the equilibrium work-trip flow pattern along the corridor.  Such a
result is an indispensible prerequisite for any thorough evaluation of alternative
transportation policies.

To reduce the number of "markets" where supply and demand have to be
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equilibrated, we divide the corridor into large segments, each of which consists of
several traffic zones and many links.  The segment boundaries should be chosen
along the most natural geographic lines perpendicular to the "axis" of the corridor
(so as to make the functioning of the transportation system in one segment
independent of that in the adjacent segments).  The reason for independent
segments will become clear later and applies not only to the present formulation
of the problem but also to the network algorithms.  Figure 21 gives a schematic
representation of the segmentation of the I-580 corridor in the San Francisco Bay
Area.



1In keeping with current knowledge, and in order to retain consistency between demand and "supply"
functions, the examination of transportation system performance is restricted here to the relationships
between travel time and volume.  Other attributes are thought to be independent of volume and require no
equilibration.
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Travel demand

Each worker traveling within the corridor chooses his mode of
transportation by maximizing his utility function, which has the already familiar
form:

(11) u(y,t)  =  v(y,t) + �(y,t)   ,

where we have assumed that utility depends only on travel time  t  and
socioeconomic characteristics  y  (in interaction with mode-specific effects).  This
assumption is artificial and is made only for the sake of ease of exposition. 
Adding monetary cost of travel and other variables into equation (11) is
straightforward.   v(y,t)  is interpreted as the "mean" utility of the population, and 
�(y,t)  is a random term representing the unobserved attributes of alternatives and
individuals.  As is customary, a linear dependence of  v  on  y  and  t  is assumed:

(12)  v(y,t) = ay + bt   ,

a  and  b  being coefficients that are statistically estimated.  Under the assumption
that the values  �(y,t)  are independently identically distributed with a Weibull
distribution, the probability of individual  i  choosing mode  m  from alternative
choice set  M  is given by the multinomial logit model

(13) P i
m �

exp (bt i
m � ay i

m)

�
��M

exp (bt i
�
� ay i

�
)

, i � 1,...,I ; m � 1,...,M ;

where  I  is the total number of individuals in the system, and  M  denotes the total
number of modes available to any individual.

Transportation system performance1

Following the convention in transportation literature, a distinction is made
between two types of relations between travel times and volume over streets and
highways: linehaul and access/egress relationships.  Both of these were discussed



1The uniform distribution of volume over the peak is not required by the method.  One could use trapezoidal
distribution as May and Keller did or develop a model for time-of-day choice; in either case, the relationships
are much more complex. The power of the uniform distribution is its simplicity.
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xjm � max 0,
Bjm

Cjm

� 1 P
2

� Tjm ,

in detail in Part III, Chapter 4.  Because congestion effects on streets and
highways have the greatest bearing on equilibrium, our attention here is directed
to the relationships between vehicular volume on arterials and freeways, and
travel time.

A simple relationship between travel time and volume for each highway
mode over each segment in the corridor can be derived by either extending the
single bottleneck formulation of May and Keller (1967) and Small (1976) to a
collection of roads, or by an aggregation of individual road performance
characteristics, a technique that utilizes Wardrop�s (1952) First Principle and
amounts to horizontal (vertical) summation of parallel (consecutive) links� "travel
time versus volume" curves.

To use the technique of May-Keller-Small, we need to identify the
"bottleneck" for the segment as a whole and for each highway mode of travel.  A
restraining capacity can then be derived for each segment and mode that "meters"
the traffic onto the segment.  Under the customary assumption that the peak
period travel volume is distributed uniformly over the peak period of duration P 
hours, it has been shown that the average travel time  (xjm )  for mode  m  over
segment  j  is given by:1

(14)

where Bjm � �
M

n�1
γm

n Djn .

Bjm  is a weighted sum of travel demands  Djn  of all the  M  modes in segment  j ,
the weights  γn

m  being the "equivalence" factors of the modes;  Cjm  is restraining
capacity of segment  j ;  Tjm  is the "free-speed" travel time of mode  m  in
segment j ; and  P  is the length of the peak period.



1Actually, because equilibration is done on persons rather than vehicles, in this paper, to be consistent, γ2
1

should really be the "number of car equivalents of an express bus divided by the number of passengers in the
bus."  The perceptive reader will notice that, ideally,  γ  ought to be a model that expresses the behavior of
bus company management regarding the relationship between demand and scheduled bus frequency. 
Lacking such a model, a "load factor" is assumed.
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For example, consider the following model with three modes:

m = 1: Auto; 

m = 2: Express bus; 

m = 3: Local bus.

Assume that the modes "auto" and "express bus" use freeways and the
mode "local bus" uses arterial roads.  Then the travel time for mode  l  over
freeway segment  j  is given by:

(15) xjl � max 0,
Bjl

Cjl

� 1 P
2

� Tjl ,

where

(16) Bjl = γl
1Djl + γ2

1Dj2 + γ3
1Dj3    ,

and γ1
1 = 1 ;

γ2
1 = the number of car-equivalents of an express bus1 ;

γ3
1 = 0 .

γ3
1  is zero because local bus does not use freeways and hence does not affect the

travel time on auto.  It should be noted that because express bus also uses
freeways, the travel time for express bus,  xj2 , is given by  xj1 + [a constant] .  This



1Again, the time required at each stop should be a function of volume entering and exiting the bus at each
stop.  To keep the matter simple, this board/alight volume is kept constant in the present application of the
model.  However, this restriction and the one in the previous footnote are not peculiar to the present
equilibrium model but apply equally to any current equilibrium model considering not only auto but also
transit modes.  Also note that part of the auto volume can be diverted to arterials (assuming Wardrop�s First
Principle) without making the model more complex.  For simplicity of presentation these details are omitted
here.
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constant is a function of stop spacing plus time required at each stop.1

The second alternative, the aggregation of individual load link "supply"
relations of the segment into a segment relation, is a generalization of the single
bottleneck concept of a segment: now there are several bottlenecks per segment.
As in the network models, each link has a capacity beyond which travel time
increases rapidly.  Thus, for each segment of the corridor, there is a structure
consisting of links with different supply relationships.  For example, a segment
might have the following structure of roads.
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Under the assumption that, conditional on any chosen mode, a worker will
pick the shortest path available, it is easy to see that Wardrop�s First Principle
holds.  Thus, two parallel roads characterized by two different supply curves  xa ,
xb  is equivalent to one road characterized by a supply curve  xc  that is a
horizontal sum of the supply curves  xa  and  xb .  Similarly, two roads in sequence
is equivalent to a single road whose supply curve is a vertical sum of the two
original curves.  Figure 23 illustrates these cases.
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We can apply such simple schemes sequentially and reduce even very complex
structures into a single "road" characterized by a single supply relation.  In this
way, we can derive segment supply relations for all segments and modes.  For
example, denoting the operation in Figure 23 (i) by  xz  P  xb = xc  and that in
Figure 23 (ii) by  xa  S  xb = xc , we derive an expression for the segment supply
curve for the segment shown in Figure 22 in terms of its component road supply
curves  xa, xb, xc, xd  as follows:

x = xz S ( xb P xc ) S xd   .

To contrast the two formulations of segment supply functions, consider a
segment that consists of two roads in sequence with supply curves  xa  and  xb . 
Now, the single-bottleneck approach identifies the restraining capacity which, in
this case, happens to be in road  b , and assumes that there is no capacity restraint
in  a .  Hence,  a   is characterized by a constant "freespeed" travel time,  Ta , and
the segment supply curve is derived by a vertical addition of  Ta  and  xb .  This
can be compared to the result of the Wardrop scheme of vertically adding  xa  and 
xb , in Figure 24.
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It can be seen that in the range of travel volumes from zero to  Ca , the single
"bottleneck" and "multiple bottleneck" formulations give identical travel times.
Beyond  Ca  the travel times are different, the multiple bottleneck travel time
being larger than the single bottleneck travel time.  Which one is correct?  The
answer is not clear.  If the two consecutive road links are independent, as in the
case of a low volume arterial street governed with unsynchronized traffic signals,
then the multiple bottleneck formulation (every signal is a bottleneck) is
approximately correct.  However, if the consecutive links are not independent, as
in the case of freeways and most arterials, then the single bottleneck version is
approximately correct.  In real world situations both types occur intertwined and,
to reiterate the arguments of Chapter 3, equation (14) ought to be estimated
statistically from appropriately collected data.

The preceding analysis also makes it clear why network models suffer
from conceptual problems in representing system performance.  These models
employ the Wardrop multiple bottleneck scheme, which may cause them to
overestimate link travel times.  Because most links are short by the present coding
practices, this overestimate is likely to be quite large.

The single bottleneck formulation is very attractive because of its
simplicity and smaller data requirements.  Its success will depend in large measure
on whether the delays in a segment of a corridor are due to congestion or traffic
control devices (traffic lights, stop signs, etc.) normally found on arterial streets,
and on whether we have succeeded in parceling the corridor into independent
segments.  Because the segments are often several miles long, the independence
assumption plays a rather small role.  Small (1976) has applied the point
bottleneck model to a single freeway segment several miles long with apparent
success.  The prevalence of signals, stop signs, and other disturbances on arterials
suggests that perhaps a marriage between the methods is the best solution.

The complete model

We are now almost ready to put together the demand and supply
formulations in a complete model system.  However, a crucial problem in
equilibration---that demand is expressed in terms of individual home-to-work trip
variables and system performance is expressed in terms of segment variables--is
still unresolved.  One way to overcome this inconsistency is to make the following
assumption.  Assume that the congestion effects due to a vehicle entering a
segment of length  Lj  at a distance  �ij  from the boundary toward which it is going



1This is not the only assumption that could have been made.  The best assumption probably would be to set 
δij = 1  if the person goes through the "maximum load" point (relative to capacity).  Because segment
boundaries often coincide with the changes in available lanes and because the flow normally increases toward
the center of the city, this rule would be very simple: set  δij = 1  if   �ij � 0 , and  δij = 0  otherwise.   It is left
for further testing and experience to resolve these issues.
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are equivalent to those, due to a fraction  δij  of a vehicle traversing the segment
completely from boundary to boundary;

(17 ) δij �
�ij

Lj

.

What this assumption means is that much of the congestion over a part of the
segment is equivalent to a milder congestion over the whole of the segment.  This
assumption enables the aggregation of individual demands for the various modes
into segment demands for all modes.1

(18) Djm � �
I

i�1
δijP

i
m .

Note further that

(19) t i
m � �

J

j�1
δijxjm � x i

m ,

where  xjm   is the travel time over segment  j  by mode  m ;     is the accessx i
m

travel time, which depends only on the individual's characteristics (i.e., home and
work locations) and the main mode"entrances" for mode  m ; and  J  is the total
number of segments.
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The model is now completely specified.   It is described by the following
equations:

(20) P i
m �

exp b �
j�1
δijxjm � x i

m ay i
m

�
��M

exp b �
J

j�1
δijxj� � x i

�
� ay i

�

;

(21) Djm � �
L

i�1
δijP

i
m ;

(22) xjm = Sjm(Dj1,...,DjM;T)    ;

(23) x i
m � S m(s i;Dji1

,...,DjiM
;T) .

Equations (20) - (23) hold for  i = 1,...,I ;  j = 1,...,J ; and  m = 1,...,M .  T  is a
vector characterizing the transportation system attributes;  ji  denotes the segment
where access occurs; and  si  is a variable characterizing the work and home
locations of individual  i .  Equation (22) is a representation of the result of the
segment supply derivation in the previous section.  One way to derive the set of
equations (23) was described in Part III, Chapter 3.

     Typically, however, there are thousands of workers using the corridor; thus a
straight individual enumeration, as implied by the above model, becomes too
cumbersome to perform.  We are forced, therefore, to use only a sample of the
whole population.  One easy scheme is the following.  Sample individuals at a rate
θ  from the total population.  Observe the sampled individual�s home and work
locations, his socioeconomic characteristics, and the main-mode entrances and
exits.  This information provides the values for the proportion  δij , the
access/egrees attributes    and the socioeconomic attributes  ym

k , forSm(s k
j ;...;T)

each  k , j , and  m , where  K  is the total number of sampled individuals, each of
whom is identified with the index  k . 

The model is then described by the following equations:
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(24) Djm �
1
θ �

K

k�1
δkjP

k
m ;

(25) P k
m �

exp b �
J

j�1
δkxxjm � x k

m ay k
m

�
��M

exp b �
J

j�1
δkjxj� � x k

m�
� ay k

�

, k � 1,...,K
m � 1,...,M ;

(26) xjm = Sjm (Dj1,...,DjM;T)    ;

(27) x k
m � Sm(s k;Djk1,...,DjkM;T) .

Equations (24) - (27) hold for  k = l,...,K ;  m = l,...,M ; and  j = l,...,J .  An
alogrithm for solving these equations simultaneously is described in the next
section.
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�
n

i�1
xigi(x) � 0 .

gi(�x) � 0 , i � 1,...,n .

On the Determination of an Approximate Fixed Point: 
The Scarf  Algorithm Summarlzed

In this section a restatement of Brouwer�s fixed-point theorem and a
constructive proof thereof developed by Scarf (1973) will be presented.  The
computation of the fixed-point in the proof forms the basis of the Scarf algorithm;
the reader should therefore get a fairly good idea of the nature of the Scarf
algorithm from this exposure.

The relevance of fixed-points

A fixed-point of a mapping  y = f(x)  is a point    such that   ,�x �x � f(�x)
i.e., a point that maps into itself.  An illuminating example of the relevance of
fixed-point to equilibrium is provided by the Walrasian model of pure-exchange
economy.  The example is borrowed from Scarf (1973).

Let  x = (x1,...,xn )  represent the (non-negative) prices of commodities
l,...,n , and let the excess demands at this vector of prices be represented by the
continuous functions  g1(x),...,gn (x) that are assumed to satisfy Walras�s Law, a
law derived from a "budget constraint:"

       

A vector    is said to be an equilibrium price vector if all excess demands are�x
less than or equal to zero at this price vector, i.e.,

The computation of an equilibrium price vector is more complex.  One way of
solving it is to transpose it into a problem of computing a fixed-point, which can
then be solved efficiently by the use of the Scarf algorithm.  Let us postulate a
mapping and show that its fixed-point is the equilibrium price vector   . �x
Consider
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yi �
xi � max [0,gi(x)]

1 � �
�

max [0,g
�
(x)]

.

x �

i �

x �

i � max [0,gi(x
�)]

1 � �
�

max [0,g
�
(x �)]

,

x �

i �
�

max [0,g
�
(x �)] � max [0,gi(x

�)] .

The claim is that the fixed-point of this mapping is the vector   .  (We will not�x
toil over the proof of the existence of such a fixed-point here.  We will simply
assume that it exists.)  A fixed-point  x*  of the above mapping satisfies

or,

If  is in fact greater than zero, the above equation implies that  �
�

max [0,g
�
(x �)]

qi(x* ) > 0  for every  i  with  xi
*  > 0 .   Because all  xi

* � 0  and some are strictly
positive, this violates Walras�s Law.  We conclude that �

�

max [0,g
�
(x �)] � 0

and therefore,

gi (x*) � 0   ,    i = 1,...m ;

hence,  x*  is an equilibrium price vector.
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Brouwer�s fixed-point theorem

Let  y = f(x)  be a continuous mapping of the simplex into itself.  Then
there exists a fixed point of the mapping, i.e., a vector     such that  .�x �x � f(�x)

Before we start the proof of this theorem, the concept of a primitive set
needs to be introduced.

Definition:  Given any list of vectors  xn+1 , ..,xk  in the simplex  s , the  (n - m)
vectors   , along with the  m  sides   form a primitive set if nox ji,...,x jn�m s i1,...,s im

vector  xn+1,...,xk  is interior to the simplex defined by   xi1
� 0,...xim

� 0

and xi � min [x
j1

i ,...,x
jn�m

i ] for i � i1,...,im .

Note that the vectors in the list are indexed  (n = l),...,k  because the
indices  l,...,n  are reserved for the sides of the simplex  S ; that is,  xi ,  i = l,...,n 
refers to the side of  S . We now state an important lemma of Scarf�s.

Scarf's lemma (1967):  Let each vector in the list  x1,...,xn+1,...,xk  be labeled with
one of the first  n  integers.  Let  xj  (for  j = l,...,n ) be given by the label  j .  Then
there exists a primitive set each of whose vectors has a different label.

Now recall that a vector  x  is in the simplex  S  if

xi � 0   for  i = l,...,n , and �
n

i�1
xi � 1 .

Thus the requirement that  y = f(x)  be a mapping from the simplex into itself
implies that
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fij
(x j) � xij

, j � j1,...,jn ,

(28) �
n

i�1
[fi(x) � xi] � 0 .

It is clear that there is at least one  i  such that 

fi (x) � xi    .

Label each vector  xj (j = n+1,...,k)  in the following manner:

label  (xj) = ij    ,

where ij = min{� | f
�
 (xj) � x

�

j}   .

The vectors  xj (j = 1,...,n)  are labeled  j .   The conditions of Scarf�s lemma are
now satisfied, and hence there exists a primitive set whose labels are all different. 
That is, there exists a primitive set   such that(x j1,...,x jn)

where    are all distinct from each other.ij1
,...,ijn

Let us now demonstrate Brouwer�s theorum by taking a finer and finer
collection of vectors which, in the limit, become everywhere dense on the
simplex.  Each such collection will determine a geometric subsimplex with the
above property.   As the vectors are increasingly refined, a convergent
subsequence of subsimplices may be found, which tend in the limit to a single
vector  x* .  From the continuity of the mapping, the vector  x*  must have the
property that

(30) fi(x
�) � x �

i , i � 1,...,n .

But (28) holds for any  x , and in particular for  x* .
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(31) �
n

i�1
[fi(x

�) � x �

i ] � 0 .

Equations (30) and (31) imply that

fi(x*) = xi
*   ,                  

demonstrating Brouwer�s theorem.

It is a fact that we cannot really go to the limit in an actual application on a
computer.  But the final primitive set with distinct labels could be averaged out
and the resultant vector becomes an approximation of the true fixed-point.
Furthermore, the approximation can be made as good as desired by simply taking
a fine enough collection of vectors.

This development is in the spirit of Scarf�s algorithm for computing
approximate fixed-points. More specifically, to use the Scarf algorithm to
compute the fixed-point of any continuous mapping from the simplex into itself,
the following must be specified:

1. A finite list of vectors in the simplex;
2. A labeling procedure;
3. A replacement operation;
4. A final termination routine.

The algorithm then proceeds as follows.  Each of the vectors in the list is labeled
according to the specified labeling procedure.  An initial primitive set is created
and a check is made to see if each of the members has a distinct label.  If such is
not the case, the algorithm constructs a new primitive set in a manner specified in
the replacernent operation and repeats the check to find out if the new primitive
set is "completely-labeled."  The process is continued until a completely labeled
primitive set, whose existence is guaranteed by Scarf�s lemma, is obtained.  The
final termination routine then averages out the vectors in the final primitive set to
give a good approximation to the fixed point.

Note that the labeling procedure is determined by what mapping is being
considered, whereas the creation of the list of vectors, the specification of the
replacement operation, and the final termination routine rely only peripherally on
the specific mapping under investigation.

In the next section, the Scarf algorithm is applied to solving the equations
on pages 447-448.
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τ0m �
1
M

� �
J

j�1
τjm , m � 1,...M ,

τjm � 0 , j � 0,1,...,J ; m � 1,...,M ;

Computation of the Equilibrium Flow Pattern--An Example

A seemingly restrictive assumption that needs to be satisfied if we are to
apply the Scarf algoirthm is the condition that  y = f(x)  be a mapping from a
simplex into itself.  However, a suitable artificial mapping from the simplex into
itself can be defined with the property that its fixed-point corresponds to the
desired quantity which, in this case, is the equilibrium flow pattern of a
transportation system.

For the sake of exposition, let us, at this point, solve the models on pages
447-448.  Consider the case where no equilibration needs to be done on the access
components. Hence ,   are fixed constants.x k

m

Define

τjm �

xjm

MJt j

, j � 1,...,J ; m � 1,...,M ;

and

where    is the upper limit of all  xjm :t j

xjm � [0,t j] , j � 1,...,J .

Clearly the "vectors"    are in the simplex:τjm
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�
J

j�1
�
M

m�0
τjm � 1 .

and

The assumption of no equilibration on access implies that we have determined all
variables in the system except for  xjm ,  j = 1,...,J  and  m = 1,...,M .

It is easy to verify that the following transformation satisfies the condition
of Brouwer�s theorem and has a fixed point that corresponds to an equilibrium
vector  {xjm }  for the above example.

(32)

Gjm(τ) �
1

MJt j

Sjm(Dj1(τ),...,Djm(τ)) ;

G0m(τ) �
1
M

� �
J

j�1
Gjm(τ) ;

where

(33) Djm(τ) �
1
θ �

K

k�1
δkj

exp b �
J

j�1
δkjMJt jτjm � bx k

m � ay k
m

�
M

��1
exp b �

J

j�1
δkjMJt jτj� � bx k

�
� ay k

�

,

The fixed point    of the transformation defined by equations (32) andτ�

(33) have the property that
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(34) Gjm(τ�) � τ�jm , j � 0,...J ; m � 1,...M .

Associated with each    is a unique  τ�jm x �

jm

(35) x �

jm � τ�jmMJt j , j � 1,...,Jj ; m � 1,...,M .

It should be observed that at segment travel times   ,  j = l,...,J ,  m = l,...,M ,x �

jm

each and every worker in the sample plans his travel in such a way that the segment
demands are  

Djm(x �) �
1
θ �

K

k�1
δkj

exp b �
J

j�1
δkjx

�

jm � bx k
m � ay k

m

�
M

��1
exp b �

J

j�1
δkjx

�

j� � bx k
�
� ay k

�

,

j = 1,...,J ;   m = 1,...,M  .

The travel times "supplied" by the transportation system in response to these
demands are, in turn, given by:

Sjm(Dj1(x*),...,DjM(x*) ,   j = 1,...,J ;   m = 1,...,M   ;

which, in view of equations (32), (34), and (35) turn out to be exactly

  ,  j = 1,...,J ;   m = 1,...,M  .x �

jm
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Hence, as soon as we have  { } , the equilibrium flow pattern  { }  obtainsτ�jm x �

jm

immediately.

Now Scarf�s fixed-point algorithm can be applied to compute  { } . Byτ�jm
specifying a grid of vectors and utilizing a labeling procedure similar to (29), the
algorithm yields a final primitive set, each of whose members is "close" to  { } .τ�jm
To get a good approximation of  { } , a simple averaging out of the members ofτ�jm
the final primitive set can be made, or, better, they can be averaged in a manner
outlined by Shoven (1974).  From the discussion in the preceeding section, it is
clear that as good an approximation of  { }  can be obtained as desired by simplyτ�jm
making the grid of vectors fine enough.  Thus, the Scarf algorithm can give any
approximation desired of the equilibrium flow pattern  {xjm} .


