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CHAPTER 2  

A DESTINATION CHOICE MODEL FOR WORK TRIPS

Introduction

Workplace and residential location have often been treated as being
outside the scope of transportation demand analysis.  Land use models typically
locate (primary) workplaces exogenously, and then distribute residences about
workplaces in a manner that takes account of land use constraints, but that
incorporates sensitivity to at most primitive measures of the attributes of travel.
Short-run transportation analysis has usually treated work and residence locations
as fixed, without sensitivity to transportation level-of-service variables.  Further,
changing demographic patterns have not been adequately accounted for in most
intermediate-run transportation studies.

A model of the decisions determining work and residence location would
be useful at two places in transportation demand analysis.  First, a model that is
sensitive to the demographic characteristics of the population can be used to
forecast the total demand for work-trips.  Combined with a behavioral mode-split
model, this analysis could provide forecasts of aggregate numbers of trips and
revenues.  Second, a model that is sensitive to level-of-service attributes could be
incorporated into a model system in which policy impacts including impacts on
location are assessed.  This chapter concentrates on a model developed to forecast
demographic changes in the pattern of work and residence locations.

Location decisions have several aspects.  First, employers locate
establishments based on a variety of considerations, including land use
restrictions, cost, ease of goods movement, and availability of labor.  Workers
then choose employers and residential locations, taking into account wages, other
attributes of the work, residential neighborhood attributes, and transportation
system attributes. Traditional land-use models assume the worker first chooses a
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work location, and then chooses a residential location treating the work location
as given.  This may be reasonable for some professional workers, but is probably
not reasonable for secondary workers or for the large number of workers in
occupations where numerous comparable employment opportunities exist.  In the
latter case, residential location is more likely to remain fixed, with a choice made
among alternative work locations.  In each case, wage rates or availability of
positions will adjust to equate jobs demanded and jobs supplied at each location.

If the joint work and residence location choice can be described adequately
by a multinomial logit model, then the conditional choice of work location given
residential location will be multinomial logit.  Furthermore, if the mean utility
function is additively separable between attributes of the work location and
attributes of the residential location and journey to work, then only the latter
variables will enter the conditional multinomial logit probability for workplace
choice.



1The Census Public Use Sample provides household characteristics at the level of the individual, but fails to
provide the work destination district.
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Socioeconomic Determinants of Work Locations

In order to forecast total number of work trips taken between zone pairs at
various forecast dates, we developed a model of workplace location splits as a
function of household characteristics.  While the model can in principle be given a
choice model interpretation, our motivation was primarily to provide a
data-analysis tool for auxiliary forecasting rather than to develop a behavioral
model.  The model structure, and its consequent interpretation, were severely
constrained by data availability.  Data restrictions also made it impractical to
include transportation level-of-service variables, although with some effort the
approach could be amended to allow such sensitivity.

The San Francisco Bay Area has 440 traffic analysis zones.  It is
impractical to attempt to estimate a destination choice model (with 440
alternatives) for each origin zone, even if an adequate calibration data base were
available.  Hence, the Bay Area was partitioned into larger units, termed districts.
Table 28 lists the eight origin and twelve destination districts used in this study.
For each origin district, the probability of working in each destination district was
estimated as a function of household characteristics (interacted with
destination-specific dummy variables).  The geographical coverage of the Urban
Travel Demand Forecasting Project surveys was too restrictive to permit use of
this data source as a base for calibration.  The 1965 BATSC survey provided a
potential calibration base using individual household data, but was somewhat out
of date and was known to have problems of representativeness that give some
marginals inconsistent with census marginals.  Census data for 1970 giving work
destinations and major household characteristics is not available at the level of the
individual, but is available at the level of the census tract.1  The disaggregate
model was developed with the objective of calibration using aggregate census
tract data. Table 29 describes the household characteristics used in the analysis.
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TABLE  28

Origin Districts Destination Districts

1. Marin and Sonoma 1. San Francisco CBD

2. Napa and Solano 2. San Francisco (remainder)

3. Contra Costa 3. Oakland CBD

4. Northern Alameda County* 4. Oakland (remainder)

5. Southern Alameda County** 5. Alameda County (remainder)

6. Santa Clara 6. San Mateo

7. San Mateo 7. Contra Costa

8. San Francisco 8. Marin and Sonoma

9. San Jose

10. Santa Clara (remainder)

11. Solano and Napa

12. Outside Bay Area

*Traffic Analysis Zones 123-186

**Traffic Analysis Zones 187-216
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TABLE 29 Socioeconomic Variables Used in the SYNSAM Classification of
Households

Variable Symbol
Boolean

Variable* Categories
1970 PUS

Tabulations

1. Workers W V2

V3
1. Zero workers
2. One worker
3. Two or more workers

P31

2. Family type F V4

V5

V6

1. Husband and wife, head under 45
2. Husband and wife, head over 45
3. Other family
4. Primary individual

H70 and H72-73

3. Autos A V7

V8
1. Zero autos
2. One auto
3. Two or more autos

H60

4. Income I V9 1. Above Bay Area median
2. Otherwise

H85-87
($10,500 in

1970)

5. Persons P V10 1. One or two person household
2. Otherwise

H12-13

6. Units U V11 1. One unit attached or detached
2. Otherwise

H35

7. Race B V12 1. Black
2. Otherwise

H71

8. Tenure R V13 1. Renter occupied
2. Otherwise

H31-33

9. Mobility M V14 1. Head moved in past five years
2. Otherwise

H90

*A Boolean variable is one if the household characteristic takes on the associated value, and is
zero otherwise. For example, V2 = 1 if the household has no workers, and V2 = 0 otherwise. V1 =
1 always.



1The   �dδτ   are expected to be heteroscedastic for two reasons.  First, in more populous tracts, the number of
households in the census will increase, lowering the sampling variance in  P(δ | d,τ) .   Second, the
requirement that  P(δ | d,τ)  be contained in the unit interval will tend to lower its variance near values of zero
or one.  The first heteroscedasticity may be corrected by multiplying each observation by the number of
households in the tract.  This adjustment has the further advantage of preserving the aggregation property that
the sum of calculated probabilities for all households in the district will equal aggregate shares. The second
source of heteroscedasticity can be corrected only at the expense of making the model extremely sensitive to
outliers (Domencich and McFadden (1975), Chapter 4). Hence, use of this adjustment is not recommended.

194

In general, the relation between individual choice probabilities and the
aggregate probabilities for the heterogeneous population in a census tract would
be analytically complex, making calibration from aggregate data difficult.  An
exception is the linear probability model, which assumes that the probability of
destination district  δ , conditioned on origin district  d  and household
characteristics  σ , is a linear combination of the zero-one variables V k

σ
corresponding to  σ  (e.g., if  σ  denotes a household with one worker and zero
autos, then  and ).  This model has the formV 3

σ � 1 V 8
σ � 1

(1)     P(δ | d,σ) � b 1
dδV

1
δ �...� b k

dδV
k
σ � �dδσ ,

where E�dδσ = 0 ,  , and   for k > 1 .  The dependence of�δ b 1
dδ � 1 �δ b k

dδ � 0

the coefficients  on destination district  d  could be reinterpreted as the result ofb k
dδ

interactions of the household characteristic boolean variables  andV k
σ

destination-specific dummy variables.  Note that the coefficients    areb k
dδ

assumed to not depend on the census tract in which the household is located.

Now suppose the individual probabilities (1) are averaged over all the
households in a census tract on traffic analysis zone  τ .   Let  P(δ | d,τ)  denote the
average probability for the tract, and  denote the average value of  in theVk

τ V k
σ

tract, or the proportion of the tract households with  .  ThenV k
σ � 1

(2) P(δ | d,τ) � b 1
dδV

1
τ � ... � b k

dδV
k
τ � εdδτ .

Each of the variables in (2) is observed from census data at the tract level.  Hence,
the coefficients  can be fitted by applying ordinary least squares to data on theb k

dδ

tracts in each origin district.1  With eight origin districts and twelve destination
districts, this requires 96 regressions, of which eight are redundant and can be
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used as checks.  These are from 93 to 287 census tracts in each origin district.

To the extent that census data is available on interactions between the
socioeconomic variables, such interactions could be added as variables in (1) and
then coefficients calibrated in the preceeding manner.

The destination choice model described above has two empirical
shortcomings.  First, much of the variation in household characteristics is known
to be intra-tract.  Fleet and Robinson (1968) found eighty percent of the variation
in a selected set of socioeconomic variables to be intra-tract, and McFadden and
Reid (1979) have found as much as ninety percent of the variance of some
household characteristics to be intra-tract.  This implies that there will be low
variation in the averaged variables  over tracts relative to the variation of Vk

τ V k
σ

across individuals.  Large statistical standard errors of the coefficients may result,
and the averaged variables may exhibit considerable multicollinearity.

Second, the linear probability model does not force probabilities to lie in
the unit interval, a particular problem when extrapolating the independent
variables outside the range of the calibration data.  Because we have argued that
the range of tract averages is likely to be limited, and the values of the explanatory
variables for a household will lie at an extreme, the problem of negative
calculated probabilities is serious.  At least within the confines of the linear
probability model, there seems to be no fully satisfactory theoretical method for
handling the problem.  Two ad hoc procedures suggest themselves.  First,
negative calculated probabilities could be set to zero, and the remaining
probabilities renormalized to sum to one.  We have adopted this method in
empirical analysis.  Second, the calculated probability vector for a household
could be averaged with the corresponding positive probability vector for the
district to make the least component non-negative.  I.e., let  P(δ | d,σ)  be the
calculated probability for household  σ , and let  P(δ | d)  be the positive observed
probability for the district. Define   A(d,σ) = {δ | P (δ | d) > P(δ | d,σ)}   , and

  Defineθ � max 0, max
δ�A(d,σ)

�P(δ | d,σ)
P(δ | d) � P(δ | d,σ)

.

 .  Then  is non-negative, withP �(δ | d,σ) � (1 � θ)P(δ | d,σ) � θP(δ | d) P �(δ | d,σ)
 .   Further,  summed over household types  σ ,�δ P �(δ | d,σ) � 1 P �(δ | d,σ)

weighted by the proportion of district house holds of type  σ , equals the district
probability  P(δ | d) .  This procedure could also be applied using the observed
probabilities for the tract or zone in which the household resides,  P(δ | d,τ) . 



1Hunt-Stein estimators exploit the fact that with samples from related populations, best estimates of
population means utilize information on the overall mean of the samples as well as the individual sample
means.
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However, in this case the final calculated probabilities  would dependP �(δ | d,σ,τ)
on the residence tract.

The second adjustment method described above resembles a Hunt-Stein
estimator,1 which suggests that it might have more desirable statistical properties
than the unadjusted estimator.  However, it should be emphasized that these
adjustments are essentially ad hoc, and must in the end be judged on empirical
grounds.
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Empirical Results

As an illustration of calibrated probabilities, we consider one origin
district--Contra Costa County, and the prototypical households given in Table 30.
The calculated probabilities from the linear probability model are strongly
different for the different consumer types, with a number of values outside the
permissible zero-one range.  This is due to extrapolation of the model to values of
the explanatory variables well outside the range of the observed census tract
averages on which the model is calibrated.  One would then expect the linear
probability model to signal correctly variations in destination patterns for a
household type from the district averages, but to overstate the magnitude of the
variation.

The results in Table 31 confirm the seriousness of the problem of negative
probabilities.  The two adjustment processes give substantially different results.
Data is currently not available to evaluate either method.  However, we conjecture
that the second method will prove superior in most applications.
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TABLE 30    Prototypical Households

I

Older Upper
Class Family

II

Older Lower
Class Family

III

Young Family
With Children

IV 

Young Family
Without Children

V

Primary
Individual

Workers--W 2 3 2 3 2

Family Type--F 1 1 2 2 4

Autos--A 3 2 2 2 2

Income--I 1 2 2 2 2

Persons--P 1 1 2 1 1

Units--U 1 2 1 2 2

Race--B 2 2 2 2 2

Tenure--R 2 1 1 1 1

Mobility--M 2 2 1 1 1
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Extension of the Model to Include Level-of-Service Variables

The model described in the preceding section omitted transportation
level-of-service variables.  While the effects of level-of-service are captured in the
baseline model by the alternative-specific parameters, the model is not sensitive to
changes in level-of-service, and hence cannot be used to answer policy questions
as to the effect of level-of-service changes on work destinations.  (Of course, a
complete picture of the impact of level-of-service changes also requires a
description of the supply of jobs, and the equilibration process that equates
demand and supply at various locations.)  Further, to the extent that work
destination choice is sensitive to level-of-service variables, and that these
variables change over time without being accounted for in the model, erroneous
forecasts will result.

District-to-district travel times and costs could be added to the explanatory
variables in column (1), and parameter estimates obtained from the regression
analysis.  A further refinement could be made by using times and costs from the
observed tract or zero to the destination district.  The definition of these times and
costs will in either case involve construction of indices.  To the extent that the
linear probability model is realistic, these indices can be defined as weighted
averages of zone-to-zone variables, with weights proportional to the number of
trips for each zone pair.  If a multinomial logit model is more appropriate at this
level, then the indices should have the form of "inclusive prices", as defined in
Part I, Chapter 2.

An overall refinement to the destination choice model described in this
section would be to replace destination-specific variables with generic measures
of accessibility and attractiveness of destination districts from each origin district.
Such a model would move in the direction of land use models currently calibrated
by simulation methods with limited data.


