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Lecture Notes Part II

10 Detrending and Changing the Variance of

Itô Processes (Continued)

2. Converting a Martingale to a Wiener Process: Time Change
Suppose we want to convert a martingale to a Wiener process. The
most natural way to do this is to use a time change.

Let Z be a (one-dimensional) martingale with respect to the �ltration
generated by a standard K-dimensional Wiener process W ; for sim-
plicity, we consider the case K = 1. By the Martingale Representation
Theorem, there exists b 2 L2 such that

Z(!; t) = Z(!; 0) +
Z t

0
b(!; s) dW

The instantaneous variance of Z(!; t) is b(!; t)2. If jb(!; t)j > 1, Z is
moving \too fast" to be a Wiener process, while if jb(!; t)j < 1, Z is
moving \too slow" to be a Wiener process. However, we can �x this by
speeding up or slowing down time to make the instantaneous variance
equal 1.

Replace W with the n-step random walk X, and suppose that b is an
adapted, simple process, and1

max
�
b
�
!; k

n

�2�
n

! 0 as n!1 (1)

Let

�
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k

n

!
=

k�1X
j=0

b
�
!; j

n

�2
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1If, in the continuous time setting, b 2 L2, the simple functions approximating it will
satisfy the condition in Equation (1) almost surely.
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� (!; �) is nondecreasing in time; if b(!; t) 6= 0 everywhere, then � (!; �)
is strictly increasing in time. De�ne

��1(!; t) = minfs : � (!; s) � tg
Then

t � �
�
!; ��1(!; t)

�
� t+

max
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so
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�
!; ��1(!; t)

�
' t

Then Z ��1(!;t)

0
b dX '

bn��1(!;t)c�1X
k=0

b
�
!; k

n

�
!k+1p

n

which is a sum of bn��1(!; t)c uncorrelated random variables. so

Var

0
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bn��1(!;t)c�1X

k=0

0
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�
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n

1
CA

= �

 
!;
bn��1(!; t)c

n

!

' t

Thus,
R ��1(!;t)
0 b dW has the right variances for a standard Wiener

process. It turns out it also has nearly independent increments. It's
true that the random variables

b
�
!; k

n

�
!k+1p

n

are not independent, but the failure of independence comes from the
possible dependence of b(!; k=n) on b(!; j=n)!j+1 for j < k, and the
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time change just cancels out this dependence. With independence, the
Central Limit Theorem guarantees that the increments are normally
distributed.

Now, let's turn back to the continuous-time problem. Let

� (!; t) =
Z t

0
b2(!; s) ds

� (!; �) is continuous and nondecreasing in time, almost surely; if b(!; t) 6=
0 almost everywhere, then � (!; �) is strictly increasing in time, almost
surely. Assume

Z 1

0
b2(!; s) ds =1 almost surely.

De�ne
��1(!; t) = minfs : � (!; s) = tg

The minimumexists almost surely, and � (!; ��1(!; t)) = t, since � (!; �)
is almost surely continuous in time.2

De�ne
Ẑ(!; t) = Z(!; ��1(!; t))

and note that by analogy with the discrete-time calculation, we expect

Z ��1(!;t)

0
b(!; s)2 ds = �

�
��1(!; t)

�
= t

and we expect Ẑ to normally distributed with mean zero and indepen-
dent increments, which would make Ẑ a standard Wiener process.

Theorem 10.1 (L�evy's Representation Theorem) Suppose

Z(!; t) =
Z t

0
b(!; s) dW

2If b(!; t) 6= 0 almost everywhere, � (!; �) is strictly increasing in t almost surely and
��1 (!; � (!; t)) = t.
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where W is a standard K-dimensional Wiener process and b 2 L2 is
1�K-dimensional. Suppose

� (!; t) =
Z t

0
b(!; s)bT (!; s) ds

satis�es
lim
t!1 � (!; t) =1

almost surely. Then

Ẑ(!; t) = Z
�
!; ��1(!; t)

�

is a standard 1-dimensional Wiener process.

3. Detrending by Adjusting Probabilities (A Girsanov Theorem)
This is a less obvious approach, but it turns out to be very useful in
Finance. Let Z be any adapted simple process on the random walk
�ltration; think of Z as representing the price of a stock, Suppose
there is also a money-market account3 M whose value is given by

M

 
!;

k

n

!
= erk=n

What conditions on Z assure there is no arbitrage? A trader can always
borrow (by selling short the bond) and purchase the stock. If s/he
borrows Z(!; k=n) to buy one unit of the money-market account, s/he
will have to pay back Z(!; k=n)er=n at time k+1

n
. Alternatively, s/he

can sell short one share of the stock, place the proceeds Z(!; k=n)
in the money-market account, and receive Z(!; k=n)er=n at time k+1

n
.

Thus, there is no arbitrage if and only if Z(!; k=n)er=n lies between

Z
�
!�; k+1n

�
and Z

�
!+;

k+1
n

�
. More precisely, there is no arbitrage if

and only if one of the following three mutually exclusive conditions

3This is usually referred to as a riskless bond. We follow Nielsen's terminology and
call it a money-market account, which is a more accurate description of its properties.
Note that M is riskless, whereas a real-world \bond" uctuates in value, depending on
prevailing interest rates.
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holds:
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n

!
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!
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n

!
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!�;
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!
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!
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!+;

k + 1

n

!
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!�;

k + 1

n

!
= Z

 
!;

k

n

!
er=n = Z

 
!+;

k + 1

n

!

Suppose that Z does not admit arbitrage. We shall show how to de-
�ne the conditional probability Qk(!+j!) to make Z(!; k=n)e�rk=n a
martingale. There exists a unique4 � 2 (0; 1) such that

Z

 
!;

k

n

!
er=n = �Z

 
!+;

k + 1

n

!
+ (1 � �)Z

 
!�;

k + 1

n

!

De�ne Qk(!+j!)) = � and Qk(!�j!)) = 1��; these conditional prob-
abilities de�ne a unique probability measure Q on 
 by

Q(!) =
nT�1Y
k=0

Qk(!k+1j!k)

Then Z(!; k=n)e�rk=n is a martingale with respect to Q. We have
proved the following theorem:

Theorem 10.2 Suppose Z, the stock price, is an adapted simple process
with respect to the n-step random walk model, and there is a money-
market account

M(!; k=n) = erk=n

Suppose that there is no arbitrage. Then there is a probability measure
Q such that Q(!) > 0 for each ! 2 
 and such that Z(!; k=n)e�rk=n is
a martingale with respect to Q.

Now, we turn to the continuous-time case.

4If Z
�
!
�

; k+1n
�
= Z

�
!; k+1n

�
= Z

�
!+;

k+1
n

�
er=n, any � 2 [0; 1] will work, so choose

arbitrarily � = 1=2.
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De�nition 10.3 We say that a probability measure Q is absolutely
continuous with respect to P if

A 2 F ; P (A) = 0) Q(A) = 0

P and Q are said to be equivalent if Q is absolutely continuous with
respect to P and P is absolutely continuous with respect to Q.

Theorem 10.4 (Radon-Nikodym) Let (
;F ; P ) be a probability space.
Q is absolutely continuous with respect to P if and only if there is a
function f 2 L1(P ) (called the Radon-Nikodym derivative of Q with
respect to P ) such that for all F 2 F

Q(F ) =
Z
F
f dP

Remark 10.5 In Theorem 10.2, it is obvious that Q(!) > 0 for each
! 2 
, so

Q(A) = 0, P (A) = 0, Z = ;
so P and Q are equivalent. This carries over to the continuous-time
case, but equivalence there is considerably more subtle. For example,
suppose we found in the random walk case that Qk(!�j!) = 1=3 and
Qk(!+j!) = 2=3 for all k. Then

E(X(!; 1)) =
n
�
2
3
� 1

3

�
p
n

=

p
n

3
!1

as n!1. While the distribution of X(�; 1) is Normal with mean zero
and variance 1 under P , the distribution of X(�; 1) blows up under Q,
in the limit as n ! 1. Asymptotically, as n ! 1, P and Q become
mutually singular; there is are sets An � 
n such that Pn(An)! 1 and
Qn(An)! 0.

Now, suppose that Z is an Itô Process

Z(!; t) = Z(!; 0) +
Z t

0
a ds +

Z t

0
b dW
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with a 2 L1 and b 2 L2, b(!; t) 6= 0. We'll derive a probability measure
which makes Z into a martingale. To do this, we pretend that W is an
n-step random walk, and a; b are adapted and simple. Then

Z

 
!;

k + 1

n

!
= Z (!; k=n) +

a(!; k=n)

n
+
b(!; k=n)!k+1p

n

so if Z is to be a martingale,

0 =
a(!; k=n)

n
+ �

 
b(!; k=n)p

n

!
� (1� �)

 
b(!; k=n)p

n

!

a(!; k=n)

n
= (1 � 2�)

 
b(!; k=n)p

n

!

� =
1

2
� a(!; k=n)

2
p
nb(!; k=n)

so

Qk(!+j!) =
1

2
� a(!; k=n)

2
p
nb(!; k=n)

Qk(!+j!)
P (!+j!) =

1
2
� a(!;k=n)

2
p
nb(!;k=n)
1
2

= 1� a(!; k=n)p
nb(!; k=n)

= 1� a(!; k=n)!k+1p
nb(!; k=n)

Qk(!�j!)
P (!�j!) =

1
2 +

a(!;k=n)
2
p
nb(!;k=n)
1
2

= 1 +
a(!; k=n)p
nb(!; k=n)

= 1� a(!; k=n)!k+1p
nb(!; k=n)

Thus,

Q(!)

P (!)
=

nT�1Y
k=0

 
1� a(!; k=n)!k+1

b(!; k=n)
p
n

!
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log
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!
=

nT�1X
k=0
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b(!; k=n)

!k+1p
n

!

=
nT�1X
k=0

 
�a(!; k=n)
b(!; k=n)

!k+1p
n

!
� 1

2

 
�a(!; k=n)
b(!; k=n)

!k+1p
n

!2

+O
�
n�3=2

�

= �1

2

Z T

0

a2(!; k=n)

b2(!; k=n)
dt�

Z T

0

a(!; k=n)

b(!; k=n)
dW +O

�
n�1=2

�

This suggests that in the continuous-time problem, the Radon-Nikodym
derivative of Q with respect to P should be given by

e
� 1

2

R T
0

a2(!;t)

b2(!;t)
dt�
R T

0

a(!;t)
b(!;t) dW (2)

provided that the stochastic integral makes sense (i.e. a
b
2 L2) and

the candidate Radon-Nikodym derivative actually de�nes a probability
measure on 
.

De�nition 10.6 If � 2 L1 and � 2 L2 are 1� 1 and 1�K processes
respectively, andW is aK-dimensional standard Wiener process, de�ne

�[�; �](t) = e
R t

0
(�� 1

2
��T ) ds+

R t

0
� dW

�[�; �] is called a stochastic exponential

Proposition 10.7 (Proposition 2.18 in Nielsen) If Z is a 1-dimensional
positive Itô process, there exist � 2 L1 and � 2 L2 such that

Z(!; t) = Z(!; 0)�[�; �]

Proof: Apply Itô's Lemma to logX.

Proposition 10.8 (Proposition 2.19 in Nielsen) If � 2 L1 and
� 2 L2, then � = �[�; �] is the unique 1-dimensional Itô process satis-
fying the stochastic di�erential equation

d�

�
= � dt+ � dW

and the initial condition
�(!; 0) = 1
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Suppose we are given an Itô process

Z(!; t) = Z(!; 0) +
Z t

0
a ds +

Z t

0
b dW

We are looking for a probability measure Q so that Z is a martingale
with respect to Q. Above, in Equation (2), we conjectured a formula
for the Radon-Nikodym derivative of Q with respect to P in the case
N = K = 1:

e
� 1

2

R T
0

a2(!;t)

b2(!;t)
dt�
R T

0

a(!;t)
b(!;t) dW = �

"
0;�a(!; t)

b(!; t)

#
= �[0;��]

where5

�(!; t) =
a(!; t)

b(!; t)

For general N and K, we replace this condition by a = b�T .

Notice that � is trying very hard to be a martingale; indeed, it will be
a martingale provided that

e�
R T

0
� dW 2 H2

for all T . A su�cient condition for � to be a martingale is the Novikov
condition:

E
�
e
1
2

R T

0
�T� ds

�
<1 for all T

We need � to be a martingale to ensure that our formula for the Radon-
Nikodym derivative of Q de�nes a probability measure. Indeed, if � is
a martingale,

Q(
) =
Z


�(T ) dP

=
Z


E(�(T )jF0) dP since 
 2 F0

=
Z


�(0) dP since � is a martingale

=
Z


e0 dP

= 1
5I have chosen to follow Nielsen's notation here, so please note not to confuse this use

of � with the other use of � to denote Lebesgue measure.
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The converse is also true. If
R

 �[0;��](T ) dP = 1 for all T , then

�[0;��] is a martingale. This follows from the following proposition:

Proposition 10.9 (Proposition 2.23 in Nielsen) For all � 2 L2,
�[0; �] is a supermartingale, i.e. if s < t,

E (�[0; �](t)jFs) � �[0; �](s)

Thus, every positive Itô process with zero drift is a supermartingale.

Since � is a supermartingale, if it is not a martingale, we will have
Q(
) < 1 and Q will not be a probability measure. In the discrete
setting, the de�nition automatically made Q be a probability measure,
so the assumption that �[0;��] is a martingale is saying, in essence,
that the discrete process converges to its continuous-time analogue.

Theorem 10.10 (Generalization of Theorem 2.26 in Nielsen) (Revised
4/6/03) Let W be a K-dimensional standard Wiener process and

Z(!; t) = Z(!; 0) +
Z t

0
a ds +

Z t

0
b dW

with a 2 L1 and b 2 L2 of dimension N � 1 and N � K respectively.
Suppose there exists � 2 L2 such that

a(!; t) = b(!; t)�(!; t)T

almost everywhere. If E(�[0;��](T )) = 16, then there is a probability
measure Q equivalent to P such that each component of Z has zero drift
with respect to Q on the interval [0; T ]. If b 2 H2 with respect to Q,
then Z is a vector martingale with respect to Q. The Radon-Nikodym
derivative of Q with respect to P is given by

�[0;��](T )
The instantaneous covariance matrix of Z, viewed with respect to Q, is
bbT .

6In particular, if the Novikov condition

E

�
e
1

2

R
T

0

�T�ds
�
<1

is satis�ed.
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Corollary 10.11 (Theorem 2.26 in Nielsen) LetW be aK-dimensional
Wiener process. Suppose � 2 L2, and de�ne

W �(t) =
Z t

0
�T ds+W (t)

If E(�[0;��](T )) = 1, then W � is a Wiener process with respect to
Q, where Q is the probability measure with Radon-Nikodym derivative
�[0;��](T ).

Proof: (Revised 4/6/03) In Theorem 10.10, take Z(!; 0) = 0, �T =
a, and take b(!; t) to be theK�K identity matrix. Then Z = W �, a =
b�T , � 2 L2, and E(�[0;��](T )) = 1, so W � has zero drift under Q by
Theorem 10.10; since b is bounded, it is in H2 with respect to Q, soW �

is a Q-martingale. By L�evy's Representation Theorem (Theorem 10.1),
if Zi is the ith component of Z and �i is de�ned with respect to Zi as in
the statement of L�evy's Representation Theorem, then Zi(!; �i(!; t))
is a standard 1-dimensional Wiener process under Q, but �i(!; t) is t
times the (i; i) entry of bbT , hence �i(!; t) = t.

11 The Brownian Bridge

In this section, we present an alternative formulation of the Brownian bridge.
In the following section, we present an alternative formulation for Ornstein-
Uhlenbeck Processes. You should read the rest of Chapter 3 of Nielsen on
your own.

Geometric Brownian motion is a reasonably good model of stock pricing,
but it is completely inappropriate for some assets. For example, a zero-
coupon bond which pays $1 at time T and no payments at any other time
is guaranteed, by arbitrage considerations, to trade for a price of exactly $1
at time T . On the other hand, uctuations in interest rates make the value
of the bond uncertain at times t < T . We want a stochastic process which
uctuates something like a Brownian motion, but is guaranteed to have a
particular value at some future time T . The Brownian bridge has exactly
these properties; it is also the simplest process based on Brownian motion
which exhibits mean reversion. The Brownian bridge is a good model for
one long-run zero coupon bond, but unfortunately (as we shall see in a later
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section) it does not provide a satisfactory foundation for the term structure
of interest rates. Ornstein-Uhlenbeck processes, which will be treated in the
next section, provide more satisfactory models of interest rates, and mean
reversion.

Nielsen de�nes the Brownian bridge by working through Itô processes.
Here, we give an alternative, more hands-on, construction.

Suppose W is a 1-dimensional Wiener process. Fix � 2 R and let B(t) =
W (tjW (T ) = �). Since W (T ) = � is an event of probability zero, one can
think of taking

B"(t) = W (tjW (T ) 2 [�� "; �+ "])

then taking a limit as "! 0.
B is a well-de�ned process, but it is not a Brownian motion. In particular,

� B does not have independent increments.

� B is not a martingale.

� B is Gaussian; we will see why.

For the sake of exposition, let us assume � = 0. The qualitative properties
we derive go through for general � 2 R. We construct a discrete analogue
of the Brownian bridge as follows. Replace W by the n-step binary random
walk X, and assume that nT is even, so it is possible to have X(!; t) = 0.
We de�ne

B(!; t) = X(!; tjX(!; T ) = 0)

Clearly, we can think of B is living on


0 = f! : X(!; T ) = 0g =
�
! : jfk : !k = +1gj = nT

2

�

We can think of 
0 in two other ways:

� It is the set of all permutations of nT
2
+1's and nT

2
�1's.

� It is the set of all sequences of samples, without replacement, from an
urn which initially contains nT

2
+1's and nT

2
�1's.
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This tells us that the Brownian bridge has a symmetry property: If we de�ne
B̂(!; t) = B(!; T � t), then B̂ has the same distribution as B. Notice that
this means that the process looking forward from time t looks the same as
the process looking backward from time T � t.

We can compute the stochastic di�erential equation satis�ed by B. Sup-
pose that

B

 
!;

k

n

!
=

`p
n

This means that, up to time k
n
, we have chosen k+`

2
+1's and k�`

2
�1's. The

remaining draws in the urn consist of nT�k�`
2 +1's and nT�k+`

2 �1's. Thus,
the probability that !k+1 is +1 is

nT � k � `

2(nT � k)

and the probability that !k+1 is �1 is
nT � k + `

2(nT � k)

so the drift per unit time is

�`
(nT�k)pn

1
n

=
�`pn
nT � k

=
�`pn
n(T � t)

=
�`p

n(T � t)

=
�B(!; t)
(T � t)

In other words, the drift at time t points linearly back toward 0 at time T .
Similarly, one can calculate the instantaneous variance of the process, which
then determines the stochastic di�erential equation; the details are left to
Problem Set 6.
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12 Ornstein-Uhlenbeck Processes

Ornstein-Uhlenbeck Processes are very useful for modelling interest rates, as
well as other processes which exhibit mean reversion.

Assume that a; b; � are deterministic constants, a > 0, and W is a 1-
dimensional Wiener Process. Consider the stochastic di�erential equation

dr = a(b� r) dt + � dW; r(0) = r0

where r0 is an F0-measurable random variable or a constant. Notice that if
r > b, the drift term is negative, while if r < b, the drift term is positive.
In other words, the process tends to drift back toward b over time, but in
addition volatility is constantly being introduced by the � dW term. How
can we construct a solution and write it as an Itô Process?

Consider the n-step random walk X. De�ne

r

 
!;

k

n

!
= r0 +

k�1X
j=0

a
�
b� r

�
!; j

n

��
n

+
k�1X
j=0

�!j+1p
n

r is a perfectly well-de�ned process in discrete time; if it has a well-de�ned
limit in continuous time, that limit will have to satisfy the stochastic integral
equation

r (!; t) = r0 +
Z t

0
a (b� r (!; s)) ds + �dW

so it will be a solution of the stochastic di�erential equation, as desired.
In order to see that the discrete solution has a limit, and to get a speci�c

formula for it, consider �rst the deterministic ordinary di�erential equation

_r = a(b� r); r(0) = r0

The solution is
r(t) = b+ (r0 � b)e�at

as can be seen by computing

r(0) = b+ (r0 � b) = r0

_r = �a(r0 � b)e�at

= �a(r � b)

= a(b� r)
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The solutions exhibit a kind of additivity. If b = 0, and r and s are solutions
of the ordinary di�erential equation with initial conditions r(0) = r0 and
s(0) = s0, then

(r + s)(t) = r(t) + s(t) = r0e
�at + s0e

�at = (r0 + s0)e
�at

so the solution for the sum of the initial conditions is the sum of the solutions.
For general b, we get

((r � b) + (s� b))(t) = r(t) + s(t)� 2b

= b+ (r0 � b)e�at + b+ (s0 � b)e�at � 2b

= ((r0 � b) + (s0 � b))e�at

so when we add the initial conditions (expressed as deviations from b), the
solution is the sum of the solutions (again, expressed as deviations from
b). This tells us that the initial disturbance from b arising from the initial
condition, and the ongoing disturbances from the volatility terms !j + 1
enter the solution additively; each disturbance decays exponentially. Thus,
we have

r

 
!;

k

n

!
' b+ (r0 � b)e�ak=n +

k�1X
j=0

�!j+1p
n

e�a(k�j�1)=n

so the solution has a well-de�ned limit

r (!; t) = b+ (r0 � b)e�at + �
Z t

0
e�a(t�u) dW (u)

It is not hard to check that this is indeed a solution of the stochastic di�eren-
tial equation; see Nielsen for details. Thus, we have the following proposition:

Proposition 12.1 (Proposition 3.8 in Nielsen) Let a; b; � be constants,
a > 0, and r0 F0-measurable. The process

r (!; t) = b+ e�at(r0 � b) + �
Z t

0
e�a(t�u) dW (u)

= e�atr0 +
�
1 � e�at

�
b+ e�at�

Z t

0
eau dW (u)

is the unique Itô Process satisfying the stochastic di�erential equation

dr = a(b� r) dt + � dW; r(0) = r0
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13 Securities and Trading Strategies

We now turn to Chapter 4 of Nielsen. We assume there are N +1 long-lived
securities indexed n = 0; : : : ; N ; often but not always, the zeroth security
is a Money-Market Account, which is instantaneously riskless. The security
price process is an Itô Process

�S(t) = �S(0) +
Z t

0
�� ds+

Z t

0
�� dW

where W is a K-dimensional standard Wiener process, �� 2 L1 is (N+1)�1,
and �� 2 L2 is (N + 1)�K.

A trading strategy is an adapted, measurable 1 � (N + 1) process ��;
��n(!; t) denotes the holding of security n at node (!; t). The value process
is

���S = ��0
�S0 + � � �+ ��N

�SN

The set of trading strategies for which the capital gain process is well-de�ned
is

L(S) = f �� : ���� 2 L1 and ���� 2 L2g
The Cumulative Gain Process of �� with respect to �S is

G( ��; �S)(t) = ��(0) �S(0) +
Z t

0

�� d �S

= ��(0) �S(0) +
Z t

0

����ds +
Z t

0

���� dW

Implicitly, this de�nition assumes the securities pay no dividends.
�� is self-�nancing if it satis�es the budget constraint

���S = G( ��; �S)
i.e.

��(t) �S(t) = ��(0) �S(0) +
Z t

0

�� d �S

almost surely, for all t. In other words, after ��(0) �S(0) is invested to buy
the initial portfolio ��(0), no additional money goes in to buy stocks and
no money is withdrawn. Writing the self-�nancing condition in di�erential
form,

d( ���S) = �� d �S
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i.e. the instantaneous rate of change of the value process is the security
holding times the instantaneous rate of change of the security prices. Heuris-
tically, this is saying that

�S d �� = 0

i.e. the instantaneous change in the portfolio is orthogonal to the vector of
securities prices, which just says the value of shares bought equals the value
of shares sold. This is heuristic, rather than precise, because the trading
strategy �� is not required to be an Itô Process, so we may not be able to
assign formal meaning to d ��.

It is important to understand that self-�nancing is a property of the
trading strategy and not of the value process. Nielsen gives one example of
this. The following is a simpler (but perhaps fairly stupid) example. Suppose
there are two assets

�S0(t) = �S0(0)e
r0t and �S1(t) = �S1(0)e

r1t

with r1 > r0. The buy-and-hold strategy

�� = (0; 1)

(hold one unit of S2 no matter what) is self-�nancing and yields the value
process

��(t) �S(t) = �S1(0)e
r1t

The strategy

��0 =

 
S1(0)e(r1�r0)t

S0(0)
; 0

!

has the same value process

��0(t) �S(t) = �S0(0)e
r0t

�S1(0)e(r1�r0)t

�S0(0)
= �S1(0)e

r1t

but it is not self-�nancing; money is constantly going in to increase the
holding of security zero and this is not balanced by any sale of security one.

The Cumulative Net Withdrawal Process7 is

D( ��; �S) = G( ��; �S)� ���S
7The alternative terminology cumulative dividend is very unfortunate; this should refer

to the cumulative dividends earned by a portfolio, when the underlying securities pay
dividends.
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�� is self-�nancing if and only if D( ��; �S) = 0.
A numeraire for �S is a self-�nancing trading strategy �b such that �b �S = 1

for all t, almost surely. S is said to be normalized if there is a numeraire for
S. Consider the following examples:

1. Suppose N = 0 and �S0 is a money-market account. The only self-
�nancing trading strategies are buy-and-hold strategies; �b(t) = �b(0).
If b is a numeraire, then �S0(t) must be a constant, independent of t;
any increase in value due to interest is incorporated into the units of
account in which the security price is measured. Said another way, the
currency is not dollars but units of the security, and each unit of the
security buys more real goods as time passes.

2. Assuming no new shares are issued or redeemed, and no mergers occur,
one self-�nancing strategy is buy and hold all the shares outstanding.
If this is a numeraire, then ���S = 1 means that prices are deating at
the rate of growth of the market porfolio.

3. At each node (!; t) we can multiply all the security prices by an ar-
bitrary scalar �(!; t) without changing the opportunities to make a
self-�nanced change of portfolio at time t. As long as we also multiply
the price of real goods by the same scalar, nothing has changed; the
set of goods that can be bought with the value of the portfolio is un-
changed. If we multiply security prices at each node by an arbitrary
scalar �(!; t), the Itô integrals needed to de�ne capital gains may no
longer be de�ned. A surprising fact is that, if the needed stochastic
integrals are de�ned, they compute the capital gains correctly, and the
set of self-�nancing portfolios is invariant to these price changes. We
will have more to say on this later.

Example 13.1 [Black-Scholes Model, Example 4.3 in Nielsen] I followed
Nielsen closely on this, so I will not reproduce that discussion except to note
the following point. The Black-Scholes formula not only tells you how to
price a standard call option; it also gives you a necessary condition for any
self-�nancing portfolio that replicates the option. If C is the value of the
option and S is the stock price, then the replicating portfolio necessarily
holds @C

@S
units of the stock at all times. To see this, note that the uniqueness

of coe�cients of Itô processes implies that the instantaneous volatility of the
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replicating portfolio must equal the instantaneous volatility of the option,
but since everyting except S in the formula for the option price C varies
smoothly over time, the instantaneous volatility of C must be @C

@S
times the

instantaneous volatility of S; since the instantaneous volatility of the money-
market account is zero, the replicating portfolio must hold exactly @C

@S
units

of the stock.

14 Strategies in L( �S) Admit Arbitrage

In this section, I will give a brief uni�ed treatment of Sections 4.2 and 4.7
of Nielsen. The essential point is this: if we allow traders to hold general
strategies in L( �S), there will be arbitrage opportunities. Hence, we must
impose an additional condition (\admissiblity") on trading strategies to rule
out arbitrage.

The essential idea is the Harrison-Kreps [3] \doubling strategy," a self-
�nancing strategy which invests zero and yields a payo� greater than or
equal to one, almost surely, at time T = 1. We will be quite informal. Let us
suppose that �S is an Itô process with constant �� 6= 0, so at least one security
has non-zero instantaneous volatility at all times; we will refer to this security
as \the stock." Suppose also �S0 is a money-market account with interest rate
r � 0. The trading strategy is de�ned inductively as follows:

1. At time t = 1=2, set �� to short the money-market account (i.e. borrow
money) and use the proceeds to buy the stock; hold this position until
time t = 3=4.

2. At time t = 3=4, check to see whether ���S � $1. If so, close out the
portfolio (i.e. sell the stock, use the proceeds to close out the short
position on the money-market account, and pocket the pro�t which is
at least $1). If ���S < $1, short the money-market account further, and
use the proceeds to increase the holding of the stock. Hold this new
portfolio until time t = 7=8.

3. Continue in this way. At time t = 1 � 2�n, check to see whether
���S � $1. If so, close out the portfolio (i.e. sell the stock, use the
proceeds to close out the short position on the money-market account,
and pocket the pro�t which is at least $1.). If ���S < $1, short the
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money-market account further, and use the proceeds to increase the
holding of the stock. Hold this new portfolio until time t = 1� 2�n�1.

Even if the stock's volatility is low, remember that the standard deviation of
the stock over a time interval is of the order of the square root of the length
of the interval, while any drift in the stock price and any interest owed on
the short position in the money-market account over a short interval is pro-
portional to the length of the interval; as the time interval gets short, the
volatility overwhelms the interest and drift. Thus, by being su�ciently ag-
gresive at increasing the holding of the stock and increasing the short position
in the money-market account, the trader can e�ectively double her exposure
at each time. This transforms the situation into the following situation in
roulette:8 Here is a strategy which wins $1 for sure at roulette:

1. Borrow $1, bet $1 on red. If red comes up, you win $2; pay o� the $1
you borrowed, pocket $1, and leave. Otherwise, continue.

2. Borrow another $2, bet $2 on red. If red comes up, you win $4; pay
o� the total of $3 that you borrowed, pocket $1, and leave. Otherwise,
continue.

3. At the nth stage, borrow $2n�1 more and bet $2n�1 on red. If red comes
up, you win $2n dollars, pay o� the $(1 + 2 + � � � + 2n�1) = $(2n � 1)
total you borrowed, pocket $1, and leave. Otherwise, continue.

With probability one, you leave with $1. With probability zero, you never
win, and you end up owing an in�nite debt. But 0 �1 = 0, so you don't
lose sleep over it.

What's wrong with this? There are several ways to see this:

1. At some point, the casino (or your stockbroker) will refuse to extend
further credit. Suppose you know from the start the casino will pull the
plug after the nth stage. After the nth stage, you will have pocketed $1
and left with probability 1� 2�n, but you will owe $2n � 1 with proba-
bility 2�n. This is no longer an arbitrage. The refusal to extend further
credit is, in e�ect, a short-sale constraint. Imposing a lower bound on

8We assume that the roulette wheel has 36 slots, 18 black and 18 red. In practice, the
roulette wheel also has two slots, 0 and 00, which are neither red nor black; the house
makes its pro�t from these.
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the trading strategies is perhaps the most realistic way to eliminate
arbitrage, but the literature generally shies away from it, because the
choice of any particular lower bound seems ad hoc, and because short
sale constraints make the models less tractable analytically.

2. The Harrison and Kreps doubling strategy is in L( �S), but not in

H( �S) = fb adapted, measurable : b�� 2 L1; b�� 2 H2g

Indeed, notice that the expected borrowing in the roulette doubling
strategy is in�nite. As we have noted, stochastic integrals over inte-
grands in H2 are better behaved than integrals over integrands in L2;
in particular, if b�� 2 H2, then

R
b��dW is a martingale. Some papers in

the literature have eliminated the doubling strategy by requiring that
trading strategies lie in H( �S). However, assuming that �� 2 H( �S) is
stronger than required, and H( �S) is not closed under operations we
need to do in Finance.

3. If you terminate the roulette doubling strategy at any �nite stage, the
resulting payo� is a martingale. However, when one goes to the limit
and allows in�nitely many steps, it is no longer a martingale, essentially
because 2�n(2n � 1) = 1 � 2�n ! 1 but by convention 0 �1 = 0. In
other words, the in�nite doubling strategy is not the natural limit of the
�nite doubling strategy. One can �x this by restricting attention to a
subset of the trading strategies, called the admissible trading strategies,
whose stochastic integrals are martingales. Following Harrison and
Kreps [3], this is the approach that has generally been taken in the
literature, and it is the one we will use, but it will take us a little while
to get there.

15 State Price Processes

In this section, we discuss sections 4.3 and 4.4 of Nielsen.

De�nition 15.1 A state price process or pricing kernel for �S is a positive
1-dimensional Itô process � such that � �S has zero drift.
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We should think of a state price process as changing the units in which
securities prices are measured at each node; � �S is the price process in these
new units. If � is a state price process, the ��S is almost but not quite a
martingale.

Remark 15.2 Requiring that � �S have zero drift is mathematically more
general than requiring that � �S be a martingale. It is unclear to me how
much this generalization matters to Finance. As we shall see, if � is a state
price process, but ��S is not a martingale, the strategy of buying and holding
the market portfolio will not be admissible, so the set of admissible trading
strategies will be constrained in very awkward ways. Perhaps the best reason
for generalizing in this way is it is usually easier to verify that � �S has zero
drift than to verify it is a martingale, and making the de�nition in this way
eliminates the need to check that � �S is a martingale.

In understanding state price processes, it is helpful to relate them to
competitive equilibrium. There are severe di�culties in proving existence
of equilibrium in continuous-time �nancial markets; indeed, there are essen-
tially no results with more than one trader in the market. Since there isn't
a satisfactory theory of equilibrium, state prices have come to be used as
a substitute for equilibrium in the literature. But suppose, as a thought
experiment, that the securities prices are the prices in a competitive equi-
librium. In other words, we have one or more traders. Each trader has a
utility function over consumption in the terminal period T , an endowment
process, and initial security holdings. The securities pay a dividend in period
T and no dividends in earlier periods. Let us suppose that there is at least
one agent whose consumption c(!; T ) in the terminal period T is interior,
i.e. c(!; T ) > 0 for all !; let u be the utility function of that agent for con-
sumption in period T , and �� her trading strategy. Then it follows from the
�rst order conditions that

�S(�; t) = �(�; t)E(u0(c(�; T )) �S(�; T )jFt) (3)

To see this, note that if

�Sn(!; t)

E(u0(c(�; T )) �Sn(�; T )jFt)(!)
<

�Sm(!; t)

E(u0(c(�; T )) �Sm(�; T )jFt)(!)
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then the given agent can achieve a higher utility level by modifying �� by
buying a little more of �Sn (or shorting it a little less) at the node (!; t) and
buying a little less of �Sm (or shorting it more) and holding this position,
in addition to the holding prescribed by ��, in all nodes that follow (!; t).
Consumption at times t < T is not changed. When the portfolio is liquidated
at T , the consumption at period T yields a higher expected utility than
the consumption obtained by following ��, so �� could not have been the
agent's equilibrium trading strategy. The factor �(!; t) is needed because
equilibrium can only set the relative prices of securities at the node (!; t);
one can normalize bymultiplying all the prices at a given node by an arbitrary
constant, without changing the self-�nancing trading strategies or the budget
set of the agent.

Let

�(!; t) =
1

�(!; t)

Then
�(!; t) �S(!; t) = E(u0(c(�; T )) �S(�; T )jFt)(!)

and this is a martingale (and thus � is a state price process) provided that

E(ju0(c(�; T )) �S(�; T )j) <1
When the price process �S is presented in the form of Equation (3), risk-
adjustment is already represented in �S by the factor u0(c(!; T )). � incor-
porates time-discounting. One could use the factor u0(c(!; T )) to derive the
risk-adjusted probabilities, alternatively incorporate the risk-adjustment into
�.

Thus, if �S were an equilibrium price process, then (modulo the issues
hinted at in the above discussion) there would be a state price �. State prices
have proven very useful in the literature as a �nesse around the problem that
we don't have a remotely satisfactory theory of existence of equilibrium in
continuous-time �nance.

Now, we return to the material in Nielsen. Recall we are assuming that
the security price process �S satis�es the stochastic di�erential equation

d �S = �� dt+ �� dW

Since � is a positive Itô process

� = �(0)�[�r;��]
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for some �(0) > 0, r 2 L1, and � 2 L2, i.e.

�(t) = �(0)e
R t
0
(�r���T =2)ds�

R t

0
�dW

d�

�
= �r dt� � dW

r represents riskless time discounting; it is called the instantaneously riskless
interest rate, � is called the (1 � K) vector of prices of risk. Notice that
there is a price of risk for each component of the underlying Wiener process
W , not a price of risk for each stock. As we shall see, the risk premium
of each stock can be derived from its coe�cients on the underlying Wiener
process W and the prices of risk of the components of W . Indeed, if the risk
premium cannot be derived in this way, there will be an arbitrage.

Proposition 15.3 If � is a state price process for �S and �� 2 L( �S) is self-
�nancing, then ����S has no drift.

Proof: This is mostly an exercise in Itô's Lemma for Products and the
self-�nancing constraint.

d(� ���S) = �d( ���S) + ���S d�+ (d�)d( ���S)

= ��� d �S + ���S d�+�(�r dt� � dW )( �� d �S)

(using the self-�nancing constraint twice,

and the stochastic di�erential equation satis�ed by �)

= ��� d �S + ���S d�+���(�r dt� � dW )(�� dt+ �� dW )

= ��� d �S + ���S d��������T dt

(since (dW )2 = dt and (dt)2 = dW dt = 0)

= ��(� d �S + �S d�+ (d�)(d �S))

= �� d(� �S)

Since ��S has no drift, � ���S has no drift.
Suppose now that there is a money-market account embedded in �S. This

means either

1. the zeroth security S0 is instantaneously riskless, i.e.

d �S0(!; t)
�S0(!; t)

= r(!; t) dt

or
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2. there is a self-�nancing trading strategy �b whose value process M = �b �S
is instantaneously riskless.

For example, if the basic securities explicitly listed as components of �S include
a stock and a call option on the stock priced by the Black-Scholes formula,
then we can construct a money market account.9

If �b is a money-market account, then �b�� = 0 for almost all (!; t), so the
(N +1)�K matrix �� must have rank at most N almost everywhere. Notice
that if K � N , this necessary condition for the existence of a money-market
account follows automatically. This raises a modeling question: Which is
bigger, K or N . Normally, we assume that the number of securities is small
compared to the number of sources of uncertainty, particularly if one consid-
ers individualized uncertainty. On the other hand, Arbitrage Pricing Theory
tries to identify a comparatively small number of \factors" W1; : : : ;WK that
explain most of the variation in securities pricing. For example, if there are
N securities, and

Sn = e(��n�
P
1

k=1
�2
nk
=2)t+

P
1

k=1
��nkd �Wk

with 1X
k=1

�2nk <1

most of the variation in Sn can be explained by a �nite number of the com-
ponents of �W ; this suggests one might be able to construct an approximate
money-market account in some sense.

If M = �b �S is a money-market account, then �b is self-�nancing and

M = M(0)�[�; 0]

for some M(0) > 0 and � 2 L1. Therefore,

�M = �(0)M(0)�[�r;��]�[�; 0]
= �(0)M(0)�[�� r;��]

9This argument begs the question of why, if there is no money-market account, the
option should be priced by the Black-Scholes formula. The price of the option is forced
by arbitrage to be the Black-Scholes formula if there is a money-market account, but in
the absence of a money-market account, it presumably could be priced in a di�erent way
without creating arbitrage opportunities.
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Since M = �b �S, �b is self-�nancing, and � is a state-price process, the drift of
�M is zero, i.e.

� � r = 0; � = r

M(t) = M(0)�[r; 0](t)

= M(0)e
R t

0
r ds

dM

M
= r dt

In other words, if there is a money-market account M , the drift of the state-
price process must equal the interest rate on M . r is the instantaneous rate
of return on the money-market acount; note it is a function of (!; t), not a
constant. We write

M = M(0)�[�r; 0]
even if M is not available in the market under the prices �S, i.e. even if there
does not exist �b self-�nancing such that �b �S = M ; note that r comes from
the state price process �. By Itô's Lemma, since � = �(0)�[�r;��], so
d� = ��r dt��� dW , we have

d(� �S) = � d �S + �S d�+ (d�)(d �S)

= �(��dt + �� dW ) + �S�(�r dt� � dW ) ����T dt

the drift of � �S is
�[��� r �S � ���T ]

Thus, � is a state-price process for S if and only if

��� r �S = ���T (4)

if and only if

(��n � r) �Sn =
KX
k=1

��nk�k

In other words, the excess return on security n is the inner product of the
vector of coe�cients of Sn on W and the vector of prices of risk of the
components ofW . This strong and useful condition is in essence an arbitrage
condition. Note that

d �Sn = ��n dt+
KX
k=1

��nk dWk
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If we had m and n such that ��nk = ��mk for each k, then �Sm and �Sn would
have identical volatility; if ��m > ��n, we can obtain an arbitrage by shorting
�Sn and going long in �Sn. This analysis can be extended to create an arbitrage
if Equation (4) is not satis�ed.

The instantaneous variance of � is ��T , so high prices of risk imply that
� is very volatile.10

If �� is a self-�nancing trading strategy (in particular, buy and hold one
security), the instantaneous excess return is

����� r �� �S = ��(�� � r �S) = �����T

But
d�

�
= �r dt� � dW

so portfolios that are negatively correlated with changes in � have higher
expected returns. Notice that this is connected in spirit with one of the
main conclusions of the Capital Asset Pricing Model; the excess return on a
security is not determined by its volatility, but rather by its covariance with
the market portfolio, which determines the portion of its volatility which
cannot be diversi�ed away.

Recall that
�M = �(0)M(0)�[0;��]

so

� =
�(0)M(0)�[0;��]

M

and
�(T )

�(t)
=
�[0;��](T )=�[0;��](t)

M(T )=M(t)

Prices adjust for the time value of money and for risk; �[0;��] is the risk
adjustment. We will see in Chapter 5 that the \risk-adjusted probabilities"
are formed by incorporating the risk adjustment �[0;��] into the probability
measure, making

�S(t)
M(t) into a martingale.

If �S is a normalized securities price process (recall this means that there is
a self-�nancing trading strategy �b such that �b �S = 1, so �b is a money-market

10In an equilibrium context, high prices of risk mean that agents are risk-averse, and
the risk is undiversi�able.
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account with r = 0 = �), � is a state price process for �S if and only if
� = �(0)�[0;��] where � is a system of prices of risk for �S, i.e. � 2 L2,
�� = ���T .

16 Existence and Uniqueness of State Price

Processes

The existence and uniqueness of a state price process is equivalent to the
existence and uniqueness of r 2 L1 and � 2 L2 such that

��� r �S = ���T

If there is a money-market account, rmust be the interest rate on the account.
If K > N + 1, there is no hope of uniqueness; N + 1 security prices do

not contain enough information to price the risk of the K components of the
Wiener process W uniquely.

Example 16.1 Suppose N = 1. Security zero is a money-market account
M , and security one is a stock S whose stochastic di�erential equation is

dS = �(W2) dt+ �(W2) dW1

In other words, the stock price is driven by W1, the �rst component of the
Wiener process, but the instantaneous mean and volatility are functions of
W2, which is independent from W1. In particular, the volatility of the stock
price is stochastic. This is important because stochastic volatility permits a
better �t to empirically observed stock price processes, which exhibit periods
of relatively high volatility and periods of relatively low volatility. Stochastic
volatility is also a means of fattening the tails of the stock return distribution
compared to those obtained from a log normal with constant volatility. How-
ever, if volatility is stochastic in this manner, markets are not dynamically
complete, and options cannot be uniquely priced by arbitrage considerations
alone.

In order for a state price process to exist, it must be possible at each
(!; t) to �nd a solution to ��� r �S = ���T . Notice that

9� ��� r �S = ���T , ��� r �S 2 span f��1; : : : ; ��Kg
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where ��k denotes the kth column of ��; in this case, �T is just the vector of
coe�cients expressing ��� r �S as a linear combination of the columns of ��.11

In addition, the solutions to these linear equations at each (!; t) must �t
together into processes in L1 and L2.

Proposition 16.2 (Proposition 4.4 in Nielsen, No Money-Market Account)
Assume K � N+1. Suppose rank �� = N+1 almost everywhere. Let r 2 L1.
Set

�� = (��� r �S)T (����T )�1��

There exists a vector of prices of risk (for r) if and only if �� 2 L2. In that
case,

j��(!; t)j � j�(!; t)j at almost all (!; t)

for every vector of prices of risk � corresponding to r. If K = N + 1 and
�� 2 L2, then �� is the unique vector of prices of risk corresponding to r.

Proposition 16.3 (Proposition 4.5 in Nielsen, Money-Market Account)
Assume K � N , the zeroth security is a money-market account with interest
rate r 2 L1, and rank �� = N . Let

~� =

0
BB@

��11 � � � ��1K
...

...
��N1 � � � ��NK

1
CCA ~� =

0
BB@

��1
...
��N

1
CCA ~S =

0
BB@

�S1
...
�SN

1
CCA

Set
�� = (~�� r ~S)T (~�~�T )�1~�

There exists a vector of prices of risk (for r) if and only if �� 2 L2. In that
case,

j��(!; t)j � j�(!; t)j at almost all (!; t)

for every vector of prices of risk � corresponding to r.

Remark 16.4 �� is called the minimal vector of state prices, because it is
of minimal length for each (!; t); �[�r;���] is called the minimal state price
process because it has minimal volatility. The minimal state price process
is sometimes identi�ed in the literature as a focal state price process, and
used to pick a focal valuation of derivatives. In my view, this is completely
unjusti�ed, unless the state price process is actually unique.

11Nielsen expresses this condition as the rank of �� equals the rank of a matrix with
��� r �S in the �rst column and the columns of �� in the second through K + 1st columns.

29



Proof: (of Proposition 4.4) Since rank �� = N + 1, there is a solution
to the equation

��� r �S = ���T (5)

We will verify that the formula given for �� is a solution. Since rank �� =
N + 1,

x�� = 0) x = 0

Thus, if x is a nonzero (N + 1)-dimensional row vector,

x(����T )xT = (x��)(x��)T = jx��j2 > 0

) (����T )xT 6= 0

which implies that ����T is nonsingular, so the formula

�� = (��� r �S)T (����T )�1��

makes sense and

��(��)T =
�
����T

�T
=

�
(��� r �S)T (����T )�1����T

�T
=

�
(��� r �S)T

�T
= ��� r �S

Let V be the span of the rows ��0; : : : ; ��N of �� and X the orthogonal comple-
ment

X = fx 2 RK : x � v = 0 for all v 2 V g
=

n
x 2 RK : x � ��n = 0; 0 � n � N

o

Given two solutions �; �0 to the linear equation (5),

��(�� �0)T = 0

so � � �0 is perpendicular to the rows of ��, i.e. � � �0 2 X. On the other
hand, if � is a solution to the linear equation (5), �+x is also a solution, for
every x 2 X. Thus, the set of solutions of the linear equation is exactly

�� +X
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If K = N + 1, X = f0g and �� is the unique solution of the linear equation
(5).

Notice that
�� =

h
(��� r �S)T (����T )�1

i
��

is a linear combination of the rows of ��, hence �� 2 V , so � is perpendicular
to X. Thus, if x 2 X,

j�� + xj2 = j��j2 + jxj2 � j��j2

so �� is the minimal solution of the linear equation (5).
Now, suppose � 2 L2 is a process which solves the linear equation (5)

almost everywhere. In particular, � is an adapted measurable process, and
��(!; t) is the orthogonal projection of it onto V!;t, the space spanned by the
rows of ��(!; t). Clearly, this makes �� adapted. Nielsen tacitly assumes this
makes �� measurable, and I will duck this question also (but I have no doubt
that it does). Since j��(!; t)j2 � j�(!; t)j2 almost everywhere, this shows
�� 2 L2.

Example 16.5 [Example 4.7 in Nielsen] This is the Ball-Torous Model, with
two zero-coupon bonds, with maturity dates T1 < T2. The bond prices follow
Brownian bridge processes. The model seeks to price an option on the long
bond which expires at the maturity date T1 of the short bond. Nielsen shows
there is no state price process in this model; the esential point is that the
long and short interest rates need to be linked in a way that is impossible
for two (correlated) Brownian motions; the problem occurs at time T1.

17 Arbitrage and Admissibility

We saw that the value process of the doubling strategy is not a martingale.
This leads us to the following de�nition.

De�nition 17.1 A self-�nancing arbitrage strategy is a self-�nancing trad-
ing strategy �� 2 L( �S) such that either

1. ��(0) �S(0) < 0 almost surely and for some t, ��(t) �S(t) � 0 almost surely;
or
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2. ��(0) �S(0) � 0 almost surely and for some t, ��(t) �S(t) � 0 almost surely
and ��(t) �S(t) > 0 with positive probability.

De�nition 17.2 A self-�nancing trading strategy �� 2 L( �S) is admissible
(for �S and state price process �) if � ���S is a martingale.

Remark 17.3 Notice that admissibility is a property of �� and of �. The
existence of an admissible strategy need not imply that � �S is a martingale;
that's an issue of whether buy-and-hold strategies are admissible, and the
theory works without assuming that. Note, however, that a �nance model
in which buy-and-hold strategies are not self-�nancing is a weird model; it is
not clear that such models are interesting.

Proposition 17.4 A self-�nancing arbitrage strategy is not admissible.

Proof: If �� a self-�nancing arbitrage strategy, there exists t such that

E(�(t) ��(t) �S(t) > �(0) ��(0) �S(0)

so ����S cannot be a martingale.

Proposition 17.5 (Proposition 4.11 in Nielsen) Let � be a state price
process for �S. There is no self-�nancing arbitrage strategy �� such that ����S
is bounded below.

Proof: Suppose �� is a self-�nancing arbitrage strategy such that � ���S is
bounded below. Choose K such that

�(t) ��(t) �S(t) � K for all t

almost surely. Then ����S � K is a positive Itô process with zero drift,
hence it is a supermartingale by Proposition 2.23 of Nielsen. Since �� is a
self-�nancing arbitrage strategy, there exists t such that

E(�(t) ��(t) �S(t)) > E(�(0) ��(0) �S(0))

so � ���S is not a supermartingale, contradiction.
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18 Changing the Units of Account

We already touched on this when we talked about a numeraire, and when we
saw that if the pricing process arose from an interior equilibrium, we could
�nd a state price process. This section focuses on using a positive Itô process
as the numeraire.

Suppose that E(t) = E(0)�[�E; �E](t), where �E 2 L1 is 1-dimensional,
�E 2 L2 is 1�K-dimensional, and

dE

E
= �E dt+ �E dW

E is the price of the new unit of acount in terms of the old unit of account.

Example 18.1 Suppose that E is the price of a foreign currency in terms of
the home currency. Then �S is the price of the securities in the home currency
and �S=E is the price of the securities in the foreign currency.

By the Itô Quotient Rule (Example 2.15 of Nielsen) ,

d( �S=E) =
1

E

h
�� + �S(��E + �E�

T
E)� ���TE

i
dt+

1

E
[�� � �S�E] dW

=
1

E

h
�� � �S�E � (�� � �S�E)�

T
E

i
dt+

1

E
[�� � �S�E] dW

Proposition 18.2 (Proposition 4.12 in Nielsen) Let E be a positive Itô
process. A trading strategy �� is self-�nancing with respect to �S if and only
if it is self-�nancing with respect to �S=E.

Remark 18.3 Indeed, given an arbitrary positive process E, the self-�nancing
constraint is not changed at any given (!; t) by change the prices from �S to
�S=E. In particular, in discrete time, since the self-�nancing constraint is
applied one node at a time, this proposition is true for an arbitrary positive
process E. In continuous time, we need assumptions to ensure that we can
compute the stochastic integrals in the self-�nancing constraint.

Proof: Suppose �� is self-�nancing with respect to �S. We �rst check that
�� 2 L( �S=E). As we saw,

d( �S=E) =
1

E

h
�� � �S�E � (�� � �S�E)�

T
E

i
dt+

1

E
[�� � �S�E] dW
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so we need to show

��

E

h
��� �S�E � (�� � �S�E)�

T
E

i
=

1

E

h
����� ���S�E � ( ���� � ���S�E)�

T
E

i
2 L1

(6)
and

��

E

h
�� � �S�E

i
=

1

E

h
���� � ���S�E

i
2 L2 (7)

For Equation (6), note that

� E is continuous and positive, hence almost surely uniformly bounded
away from zero on �nite time intervals [0; T ], so 1=E is almost surely
bounded on �nite time intervals

� ���� 2 L1 since �� 2 L(S)
� ���S is continuous because �� is self-�nancing, hence ���S is an Itô Inte-
gral; therefore, ���S is almost surely uniformly bounded on �nite time
intervals [0; T ]

� �E 2 L1, by the de�nition of �E, so ���S�E 2 L1 because ���S is almost
surely uniformly bounded on �nite time intervals

� ���� 2 L2 because �� is a trading strategy; �E 2 L2 by the de�nition of
�E, so

�����TE 2 L1 and ���S�E�
T
E 2 L1

since ���S is almost surely bounded on �nite time intervals and the
produce of elements of L2 lies in L1.

so Equation (6) is satis�ed.
For Equation (7), note that

� as before, 1=E is almost surely uniformly bounded on �nite time inter-
vals [0; T ]

� ���� 2 L2 since �� is a trading strategy

� as before, ���S is almost surely uniformly bounded on �nite time inter-
vals [0; T ]

� �E 2 L2, by the de�nition of �E, so ���S�E 2 L2
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so Equation (7) is satis�ed and �� 2 L( �S=E).
Now, we show that �� is self-�nancing with respect to �S=E.

d

 
���S

E

!

=
1

E
d( ���S) + ���Sd

�
1

E

�
� 1

E
�����TE dt

by Itô's Lemma

=
1

E
��d �S + ���Sd

�
1

E

�
� 1

E
�����TE dt

since �� is self-�nancing

= ��
�
1

E
d �S + �Sd

�
1

E

�
� 1

E
���TE dt

�

= ��d

 
�S

E

!
by Itô's Lemma

so �� is self-�nancing with respect to �S=E.
Conversely, if �� is self-�nancing with respect to �S=E, then 1=E is a

positive Itô process, so by what we have just proved, �� is self-�nancing with

respect to
�S=E
1=E

= �S.

Proposition 18.4 Suppose E is a positive Itô process. � is a state price
process for �S if and only if �E is a state price process for �S=E. A self-
�nancing trading strategy �� is admissible for �S and � if and only if �� is
admissible for �S=E and �E.

Proof:

�E

 
�S

E

!
= ��S

so there is no drift on the left side of the equation if and only if there is no
drift on the right side of the equation.

� ���S = �E ��
�S

E

so the left side of the equation is a martingale if and only if the right side of
the equation is a martingale.
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Remark 18.5 1. Changing the unit of account changes the state price
process, hence changes the interest rate r and the vector of prices of
risk �.

2. If E has zero dispersion, � does not change but r does. In particular,
if E = M , the value process of a money-market account, the change
from �S to �S=E sets the interest rate r to zero, but leaves � unchanged.

3. Suppose �b is self-�nancing, and �b �S > 0. Set E = �b �S. We saw that
�� is self-�nancing with respect to �S if and only if �� is self-�nancing
with respect to �S=E. In particular, �b is self-�nancing with respect to
�S=E = �S=�b �S. The value process is

V (t) =
�b �S

E
=

�b �S
�b �S

= 1

so �S=�b �S is normalized, with �b as numeraire.

4. Suppose �b is a money-market account with value process M = �b �S and
interest rate r =

�b��
�b �S
. Take E = M . Notice that the coe�cient of dW

in d(1=M) is zero, so by Itô's Lemma,

d

 
�S

M

!
=

1

M
d �S � �S

r

M
dt =

1

M

h
(�� � r �S) dt+ �� dW

i

Obviously, d(M=M) = d(1) = 0; we can also see that from

d
�
M

M

�
= d

 
�b �S

M

!

= �bd

 
�S

M

!
since �b is self-�nancing

=
1

M

h
(�b��� r�b �S) dt +�b�� dW

i

=
1

M

"
(�b���

�b��
�b �S

�b �S) dt

#
since �b�� = 0

= 0

5. The largest class of stochastic processes for which stochastic integrals
are de�ned is the class of semi-martingales. Roughly speaking, these
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are processes of the form

S(!; t) = S(!; 0) +
Z t

0
a(!; t) ds+M(!; t)

where a 2 L1 and M is \almost a martingale" with a well-behaved
quadratic variation. This allows some more freedom in changing the
units of account. As long as the stochastic integral is de�ned, the
change from �S to ( �S=E) will work �ne.
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