
Economics 201B–Second Half

Lecture 5, 3/30/10

The Welfare Theorems in the Arrow Debreu Economy

• Local nonsatiation: The preference relation �i on the consumption set Xi is locally nonsatiated if,

for every xi ∈ Xi and every ε > 0, there exists x′
i ∈ Xi such that |x′

i − xi| < ε and x′
i �i xi.

– Note that this is a substantial weakening of monotonicity

– Important especially with production, since we want to allow for input goods which provide no

direct consumption utility

Theorem 1 (First Welfare Theorem) If preferences are locally nonsatiated and (x∗, y∗, p∗, T ) is a Wal-

rasian Equilibrium with Transfers, then (x∗, y∗) is Pareto Optimal.

Proof: Let

Wi = p∗ · ωi +
J∑

j=1

θijp
∗ · y∗

j + Ti

Wi is the income available to person i. Observe that

I∑
i=1

Wi =
I∑

i=1

p∗ · ωi +
I∑

i=1

J∑
j=1

θijp
∗ · y∗

j +
I∑

i=1

Ti

= p∗ ·
(

I∑
i=1

ωi

)
+

J∑
j=1

(
I∑

i=1

θij

)
p∗ · y∗

j + 0

= p∗ · ω̄ +
J∑

j=1

p∗ · y∗
j
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By the definition of Walrasian Equilibrium with Transfers, (x∗, y∗) is a feasible allocation.

Suppose (x∗, y∗) is not Pareto Optimal. Then there is a feasible allocation (x′, y′) such that

x′
i �i x∗

i (i = 1, . . . , I)

x′
i �i x∗

i for some i, WLOG i = 1

x′
1 �1 x∗

1 ⇒ x′
1 �∈ B1(p

∗, y∗, T )

⇒ p∗ · x′
1 > W1

We claim that

p∗ · x′
i ≥ Wi (i = 1, . . . , I)

If not, p∗ · x′
i < Wi for some i. The dot product is continuous, so we may find some ε > 0 such that

z ∈ Xi, |z − x′
i| < ε ⇒ p∗ · z < Wi (1)

By local nonsatiation, we may find x′′
i ∈ Xi such that

|x′′
i − x′

i| < ε and x′′
i �i x′

i so x′′
i �i x∗

i

by completeness and transititivity of preferences. Since |x′′
i − x′

i| < ε, p∗ · x′′
i < Wi by Equation (1), so x′′

i

lies in agent i’s budget set, so x∗
i �∈ Di(p

∗, y∗, T ), a contradiction which shows that p∗ · x′
i ≥ Wi for all i.

Therefore,

p∗ ·
I∑

i=1

x′
i =

I∑
i=1

p∗ · x′
i

>
I∑

i=1

Wi

= p∗ · ω̄ +
J∑

j=1

p∗ · y∗
j
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≥ p∗ · ω̄ +
J∑

j=1

p∗ · y′
j (profit maximization)

= p∗ ·
⎛
⎝ω̄ +

J∑
j=1

y′
j

⎞
⎠

= p∗ ·
I∑

i=1

x′
i because (x′, y′) is a feasible allocation

so

p∗ ·
I∑

i=1

x′
i > p∗ ·

I∑
i=1

x′
i

a contradiction which proves that (x∗, y∗) is Pareto optimal. Another way to interpret the contradiction

is that we have shown that (x′, y′) cannot be a feasible allocation.

• Note: As in the Edgeworth Box case, if we were content to prove weak Pareto optimality, we wouldn’t

need to assume local nonsatiation or completeness or transitivity. Weak Pareto Optimality follows

directly from the definition of Walrasian Equilibrium with Transfers.

Run-Up to Second Welfare Theorem:

• supremum, infimum: sup and inf were covered in 204, review in de la Fuente. Recall

sup B ≤ α ⇒ b ≤ α for all b ∈ B

inf B ≥ α ⇒ b ≥ α for all b ∈ B

Recall from Econ 204 the following important theorem:
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Theorem 2 (Minkowski’s Theorem) (Separating Hyperplane Theorem) If B, C ⊆ RL are con-

vex, B �= ∅ �= C, and B ∩ C = ∅, then there exists p ∈ RL, p �= 0 such that

sup p · B ≤ inf p · C

In particular, if b ∈ B and c ∈ C, then p · b ≤ p · c.

Review rough idea of proof from 204.

Pure Exchange Economy (depart slightly from MWG): A pure exchange economy is an Arrow-Debreu

economy in which

• ω̄ � 0;

• J = 0 (no firms,
∑0

j=1 Yj = {0} (the empty sum is zero)); the only economic activities are trade and

consumption;

• Xi = RL
+, preferences are complete, transitive and locally nonsatiated.

Recall that in the Arrow-Debreu economy, a feasible allocation is (x, y) with

I∑
i=1

xi = ω̄ +
J∑

j=1

yj

but because J = 0,
∑J

j=1 yj = 0, so
I∑

i=1

xi = ω̄

i.e. x is an exact allocation. Hence, we can eliminate y, speak of an exact allocation x, and a Walrasian

equilibrium (p∗, x∗), or a Walrasian equilibrium with transfers (p∗, x∗, T ).

Quasi-Demand: In pure exchange economy, define

Qi(p, T ) = {xi ∈ Bi(p, T ) : x′
i �i xi ⇒ p · x′

i ≥ p · ωi + Ti}

Anything strictly preferred uses up whole budget; motivation is limited, but it’s technically very convenient.
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Example: Consider the utility function u1(x) = x1 + x2 and endowment ω1 = (0, 1). If p = (1, 0), then

B1(p, 0) = {x ∈ R2
+ : p · x ≤ p · ω1}

= {x ∈ R2
+ : p · x ≤ 0}

= {(0, x2) : x2 ≥ 0}

D1(p, 0) = ∅

Q1(p, 0) = B1(p, 0) = {(0, x2) : x2 ≥ 0}

If u2(x) = x1 + x2 and endowment ω2 = (1, 0), then

B2(p, 0) = {x ∈ R2
+ : p · x ≤ p · ω2}

= {x ∈ R2
+ : p · x ≤ 1}

= {(x1, x2) : x1 ∈ [0, 1], x2 ≥ 0}

D2(p, 0) = ∅

Q2(p, 0) = ∅

Theorem 3 (Second Welfare Theorem) (Pure Exchange Case) If x∗ is Pareto Optimal in a pure

exchange economy, with strongly monotone, continuous, convex preferences, there exists a price vector p∗

and an income transfer T such that (p∗, x∗, T ) is a Walrasian Equilibrium with Transfers.

Outline of Proof:

• Let

Ai = {x′
i − x∗

i : x′
i �i x∗

i }

A =
I∑

i=1

Ai = {a1 + · · · + aI : ai ∈ Ai}

Then 0 �∈ A (if it were, we’d have a Pareto improvement).
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• By Minkowski’s Theorem, find p∗ �= 0 such that

inf p∗ · A ≥ 0

• Show
(
RL

+ \ {0}
)
⊂ Ai and hence p∗ ≥ 0.

• Show inf p∗ · Ai = 0 for each i.

• Define T to make x∗
i affordable at p∗:

Ti = p∗ · x∗
i − p∗ · ωi

Show
∑I

i=1 Ti = 0 and

x∗
i ∈ Qi(p

∗, T )

• Use strong monotonicity to show that p∗ � 0.

• Show

p∗ � 0 ⇒ Qi(p
∗, T ) = Di(p

∗, T )
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