Economics 201B—Second Half
Lecture 6, 4/1/10
Revised 4/6/10, Revisions Marked by ** and Sticky
Notes &

The Second Welfare Theorem in the Arrow Debreu
Economy

Theorem 1 (Second Welfare Theorem) (Pure Exchange
Case) If x* is Pareto Optimal in a pure exchange economy,
with strongly monotone, continuous, convex preferences, there
erists a price vector p* and an income transfer T' such that
(p*, x*,T) is a Walrasian Equilibrium with Transfers.

Outline of Proof:
o Let

A =z, —axfxl = x'}
A = ZéAi:{ajﬁr---Jra[:aZ-EAZ-}
Then 0 ¢ A (if it were, we’d have a Pareto improvement).
e By Minkowski’s Theorem, find p* # 0 such that
infp*- A>0
e Show (R4 \ {0}) C 4; and hence p* > 0.
e Show inf p* - A; = 0 for each 1.
e Define T to make 7 affordable at p*:
Ti=p - z;—p - w
Show s/, T; = 0 and
z; € Qi(p", T)
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See pages 2 and 5.


e Use strong monotonicity to show that p* > 0.

e Show

Now, for the details:

o Let
A =, —af 2l =; 27}
A = ZélAZ-:{alJr---Jra,[:a,z-EAZ-}
Claim:

0 A
If 0 € A, there exists a; € A; such that
I
Yo a; = 0
i=1
Let
T, =T} + a

Since x; — xf = a; € A;, we have

/ *
I I
Yowp = ¥ (a7 + a)
i=1 i=1
o, 1
= > T+ X a
i=1 i=1
I
i=1
= w
Therefore, 2’ is an exact™ allocation, a2’ Pareto improves x*,

so x* is not Pareto Optimal, contradiction. Therefore, 0 € A.
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The original said feasible allocation.  If we view exchange economies as special cases of Arrow-Debreu economies with no firms, then feasible allocations are exact allocations of the exchange economy.  


Elp*#() Hlfp* A Z 0
A; is convex, so A is convex (easy exercise). By Minkowski’s
Theorem, there exists p* # 0 such that

I
O0=p"-0<infp"- A= ,Zlinfp*-AZ-

The fact that inf p* - A = =L, inf p* - A; is an exercise; once
you figure out what you have to prove, it is obvious.

e We claim that p* > 0.
Suppose not, so p; < 0 for some ¢, WLOG p] < 0. Let

- ( 1 )
%
By strong monotonicity, z} =; x

*

¥, S0

1
(—*,O,...,O)eAi

P1
SO
infp*-A; <op -(—,O,...,O)
P
= —-1<0
I
infp*- A = 1infp*-AZ-
< I
< 0

a contradiction that shows p* > 0.

e We claim that inf p* - A; = 0 for each 7:
Suppose € > 0. By strong monotonicity,

i+ (e,...,8) = x}

3



SO

(g,...,€) € A,

SO
infp*-Aigp*-(g,...,E)

Since € is an arbitrary positive number, inf p* - A; is less than
every positive number, so

Since x1_, inf p* - A; > 0,

e Define 7" to make «x affordable at p*. We claim that 7" is an
income transter and

r; € Qi(p",T)
Let

so 1" 1s an Income transfer.

*

pex; = pt(wi+ (77 — w))
=p"wi+p" (@] —w)
=p w +T;
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SO
z; € Bi(p*, T)
If x) »; x7, then x} — ¥ € A;, so

prexy = pte(xf + (2] — 1))
=p' i +pt (v — )

x; +infp* - A;

x;

w; + 1;

IV

p
P
p -
p

SO
z; € Qi(p", T) * 42
e Use strong monotonicity to show that p* > 0.

Lemma 2 If >, is continuous and complete, and x >=; v,
then there exists € > 0 such that

(B(ZC, 8) M Xz) bt Yy

Proof: &lf (B(z,¢e) N X;) = {z} for some ¢ > 0, i.e. z is
an isolated point in Xj;, then the lemma is true, since x >; y.
[f x is not an isolated point in X, then we can find x,, — =,
rn, € X;, T, ¥i y; by completeness, we have y >, x,, for each
n. Since >; is continuous, y >~; x, S0 x ¥, y, a contradiction
which proves the lemma.s

Since p* > 0 and p* # 0, p* > 0; since in addition w > 0,
p*-w >0, s0

p" - w; +T; > 0 for some 1
If pj = 0 for some ¢ (WLOG ¢ = 1), let
v, =z +(1,0,...,0)
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The subscript i was missing.

Anderson
Sticky Note
This deals more carefully with what happens if x is isolated in X_i.


By strong monotonicity, z} =; x}.
preai=p-al=p w+ T >0
Find ¢ (WLOG ¢ = 2) such that
p, >0, x5, >0

Since x =; xf, let € > 0 be chosen to satisfy the conclusion
of the Lemma. If necessary, we may make € smaller to ensure
that e < 2x5,.. Let

x; =x;, — (0,/2,0,...,0)

Since X; = RL, 2/ € X, so by the Lemma, =/ =; z}. But
p*al < p-xi =p*-w;+T;, which shows that x & Q;(p*,T),
a contradiction which proves that p* > 0.

e Show

— Case 1. p*-w; +T; = 0. Since p* > 0, B;(p*,T) = {0}, so
Qi(p",T) = Di(p", T) = {0}

—Case 2: p*-w; +T; >0
Suppose x € Q;(p*,T) but x & D;(p*,T). Then there
exists z »=; x such that z € B;(p*,T), hence p* - z <
p*-w; +T;. Since x € Q;(p*,T), p*- 2> p* - w; + T}, s0

pez=p -wi+T, >0
By Lemma 2, there exists € > 0 such that

2~z <e,/ eRY =2 = o



Let

) £
Since z € RY, 2/ € RL.
|z’—z|:€—zzg<5
21z|| 2

so 2 > x.

E
* ) % 1 — ——
7of =i

3

= (p* - w,+T) |1 ——

o D)1= 5
<pwtT

which contradicts the assumption that z € Q;(p*,T). This
shows Q;(p*,T) C D;(p*,T); since clearly D;(p*,T) C
Qi(p*a T)7 Qi(p*a T) — Di<p*7 T)

What if preferences are not convex?

e Second Welfare Theorem may fail if preferences are nonconvex.

e Diagram gives an economy with two goods and two agents,
and a Pareto optimum 2 so that so that the utility levels of
x* cannot be approximated by a Walrasian Equilibrium with
Transters.

e If p* is the price which locally supports x*, and 1" is the in-
come transfer which makes x affordable with respect to the
prices p*, there is a unique Walrasian equilibrium with trans-
fers (2%, q*, T); z* is much more favorable to agent I and much
less favorable to agent II than z* is.
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e This is the worst that can happen under standard assumptions
on preferences. Given a Pareto optimum z*, there is a Wal-
rasian quasiequilibrium with transfers (z*, p*, T') such that all
but L people are indifferent between z* and z*. Those L peo-
ple are treated quite harshly (they get zero consumption). One
could be less harsh and give these L people carefully chosen
consumption bundles in the convex hull of their quasidemand
sets, but one would then have to forbid them from trading,
a prohibition that would in practice be difficult to enforce.



