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The Second Welfare Theorem in the Arrow Debreu
Economy

Theorem 1 (Second Welfare Theorem) (Pure Exchange
Case) If x∗ is Pareto Optimal in a pure exchange economy,
with strongly monotone, continuous, convex preferences, there
exists a price vector p∗ and an income transfer T such that
(p∗, x∗, T ) is a Walrasian Equilibrium with Transfers.

Outline of Proof:

• Let

Ai = {x′
i − x∗

i : x′
i �i x∗

i}
A =

I∑
i=1

Ai = {a1 + · · · + aI : ai ∈ Ai}
Then 0 �∈ A (if it were, we’d have a Pareto improvement).

• By Minkowski’s Theorem, find p∗ �= 0 such that

inf p∗ · A ≥ 0

• Show
(
RL

+ \ {0}) ⊂ Ai and hence p∗ ≥ 0.

• Show inf p∗ · Ai = 0 for each i.

• Define T to make x∗
i affordable at p∗:

Ti = p∗ · x∗
i − p∗ · ωi

Show ∑I
i=1 Ti = 0 and

x∗
i ∈ Qi(p

∗, T )
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• Use strong monotonicity to show that p∗ 	 0.

• Show
p∗ 	 0 ⇒ Qi(p

∗, T ) = Di(p
∗, T )

Now, for the details:

• Let

Ai = {x′
i − x∗

i : x′
i �i x∗

i}
A =

I∑
i=1

Ai = {a1 + · · · + aI : ai ∈ Ai}
Claim:

0 �∈ A

If 0 ∈ A, there exists ai ∈ Ai such that

I∑
i=1

ai = 0

Let
x′

i = x∗
i + ai

Since x′
i − x∗

i = ai ∈ Ai, we have

x′
i �i x∗

i

I∑
i=1

x′
i =

I∑
i=1

(x∗
i + ai)

=
I∑

i=1
x∗

i +
I∑

i=1
ai

=
I∑

i=1
x∗

i

= ω̄

Therefore, x′ is an exact** allocation, x′ Pareto improves x∗,
so x∗ is not Pareto Optimal, contradiction. Therefore, 0 �∈ A.
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•
∃p∗�=0 inf p∗ · A ≥ 0

Ai is convex, so A is convex (easy exercise). By Minkowski’s
Theorem, there exists p∗ �= 0 such that

0 = p∗ · 0 ≤ inf p∗ · A =
I∑

i=1
inf p∗ · Ai

The fact that inf p∗ · A = ∑I
i=1 inf p∗ · Ai is an exercise; once

you figure out what you have to prove, it is obvious.

• We claim that p∗ ≥ 0.
Suppose not, so p∗� < 0 for some �, WLOG p∗1 < 0. Let

x′
i = x∗

i +

⎛
⎜⎜⎝− 1

p∗1
, 0, . . . , 0

⎞
⎟⎟⎠

By strong monotonicity, x′
i �i x∗

i , so
⎛
⎜⎜⎝− 1

p∗1
, 0, . . . , 0

⎞
⎟⎟⎠ ∈ Ai

So

inf p∗ · Ai ≤ p∗ ·
⎛
⎜⎜⎝− 1

p∗1
, 0, . . . , 0

⎞
⎟⎟⎠

= −1 < 0

inf p∗ · A =
I∑

i=1
inf p∗ · Ai

≤ −I

< 0

a contradiction that shows p∗ ≥ 0.

• We claim that inf p∗ · Ai = 0 for each i:
Suppose ε > 0. By strong monotonicity,

x∗
i + (ε, . . . , ε) �i x∗

i
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so
(ε, . . . , ε) ∈ Ai

so
inf p∗ · Ai ≤ p∗ · (ε, . . . , ε)

Since ε is an arbitrary positive number, inf p∗ · Ai is less than
every positive number, so

inf p∗ · Ai ≤ 0

Since ∑I
i=1 inf p∗ · Ai ≥ 0,

inf p∗ · Ai = 0 (i = 1, . . . , I)

• Define T to make x∗
i affordable at p∗. We claim that T is an

income transfer and

x∗
i ∈ Qi(p

∗, T )

Let
Ti = p∗ · x∗

i − p∗ · ωi

I∑
i=1

Ti =
I∑

i=1
(p∗ · x∗

i − p∗ · ωi)

= p∗ ·
⎛
⎜⎝

I∑
i=1

x∗
i −

I∑
i=1

ωi

⎞
⎟⎠

= p∗ · (ω̄ − ω̄)

= 0

so T is an income transfer.

p∗ · x∗
i = p∗ · (ωi + (x∗

i − ωi))

= p∗ · ωi + p∗ · (x∗
i − ωi)

= p∗ · ωi + Ti
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so
x∗

i ∈ Bi(p
∗, T )

If x′
i �i x∗

i , then x′
i − x∗

i ∈ Ai, so

p∗ · x′
i = p∗ · (x∗

i + (x′
i − x∗

i ))

= p∗ · x∗
i + p∗ · (x′

i − x∗
i )

≥ p∗ · x∗
i + inf p∗ · Ai

= p∗ · x∗
i

= p∗ · ωi + Ti

so
x∗

i ∈ Qi(p
∗, T ) ∗ ∗

• Use strong monotonicity to show that p∗ 	 0.

Lemma 2 If 
i is continuous and complete, and x �i y,
then there exists ε > 0 such that

(B(x, ε) ∩ Xi) �i y

Proof: **If (B(x, ε) ∩ Xi) = {x} for some ε > 0, i.e. x is
an isolated point in Xi, then the lemma is true, since x �i y.
If x is not an isolated point in Xi, then we can find xn → x,
xn ∈ Xi, xn ��i y; by completeness, we have y 
i xn for each
n. Since 
i is continuous, y 
i x, so x ��i y, a contradiction
which proves the lemma.
Since p∗ ≥ 0 and p∗ �= 0, p∗ > 0; since in addition ω̄ 	 0,
p∗ · ω̄ > 0, so

p∗ · ωi + Ti > 0 for some i

If p∗� = 0 for some � (WLOG � = 1), let

x′
i = x∗

i + (1, 0, . . . , 0)
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By strong monotonicity, x′
i �i x∗

i .

p∗ · x′
i = p∗ · x∗

i = p∗ · ωi + Ti > 0

Find � (WLOG � = 2) such that

p∗� > 0, x′
2i > 0

Since x′
i �i x∗

i , let ε > 0 be chosen to satisfy the conclusion
of the Lemma. If necessary, we may make ε smaller to ensure
that ε ≤ 2x′

2i. Let

x′′
i = x′

i − (0, ε/2, 0, . . . , 0)

Since Xi = RL
+, x′′

i ∈ Xi, so by the Lemma, x′′
i �i x∗

i . But
p∗ ·x′′

i < p ·x′
i = p∗ ·ωi +Ti, which shows that x∗

i �∈ Qi(p
∗, T ),

a contradiction which proves that p∗ 	 0.

• Show
p∗ 	 0 ⇒ Qi(p

∗, T ) = Di(p
∗, T )

– Case 1: p∗ ·ωi + Ti = 0. Since p∗ 	 0, Bi(p
∗, T ) = {0}, so

Qi(p
∗, T ) = Di(p

∗, T ) = {0}
– Case 2: p∗ · ωi + Ti > 0

Suppose x ∈ Qi(p
∗, T ) but x �∈ Di(p

∗, T ). Then there
exists z �i x such that z ∈ Bi(p

∗, T ), hence p∗ · z ≤
p∗ · ωi + Ti. Since x ∈ Qi(p

∗, T ), p∗ · z ≥ p∗ · ωi + Ti, so

p∗ · z = p∗ · ωi + Ti > 0

By Lemma 2, there exists ε > 0 such that

|z′ − z| < ε, z′ ∈ RL
+ ⇒ z′ � x
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Let

z′ = z

⎛
⎜⎜⎝1 − ε

2|z|
⎞
⎟⎟⎠

Since z ∈ RL
+, z′ ∈ RL

+.

|z′ − z| =

∣∣∣∣∣∣∣∣
εz

2|z|
∣∣∣∣∣∣∣∣
=

ε

2
< ε

so z′ � x.

p∗ · z′ = p∗ · z
⎛
⎜⎜⎝1 − ε

2|z|
⎞
⎟⎟⎠

= (p∗ · ωi + Ti)

⎛
⎜⎜⎝1 − ε

2|z|
⎞
⎟⎟⎠

< p∗ · ωi + Ti

which contradicts the assumption that x ∈ Qi(p
∗, T ). This

shows Qi(p
∗, T ) ⊂ Di(p

∗, T ); since clearly Di(p
∗, T ) ⊂

Qi(p
∗, T ), Qi(p

∗, T ) = Di(p
∗, T ).

What if preferences are not convex?

• Second Welfare Theorem may fail if preferences are nonconvex.

• Diagram gives an economy with two goods and two agents,
and a Pareto optimum x∗ so that so that the utility levels of
x∗ cannot be approximated by a Walrasian Equilibrium with
Transfers.

• If p∗ is the price which locally supports x∗, and T is the in-
come transfer which makes x affordable with respect to the
prices p∗, there is a unique Walrasian equilibrium with trans-
fers (z∗, q∗, T ); z∗ is much more favorable to agent I and much
less favorable to agent II than x∗ is.
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• This is the worst that can happen under standard assumptions
on preferences. Given a Pareto optimum x∗, there is a Wal-
rasian quasiequilibrium with transfers (z∗, p∗, T ) such that all
but L people are indifferent between x∗ and z∗. Those L peo-
ple are treated quite harshly (they get zero consumption). One
could be less harsh and give these L people carefully chosen
consumption bundles in the convex hull of their quasidemand
sets, but one would then have to forbid them from trading,
a prohibition that would in practice be difficult to enforce.
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