Economics 201B—Second Half

Lecture 8, 4/8/10
Existence of Walrasian Equilibrium (Continued)

Proposition 1 (17.C.1) Debreu-Gale-Kuhn-Nikaido Lemma Suppose z : A® — R is a function satisfy-

mg
1. continuity

2. Walras’ Law

vaAO p- Z(p> =0

3. bounded below:

JoertVpeno 2(p) >

4. Boundary Condition: If p, — p where p € A\ A, then

|2(pn)| — o0

Then there exists p* € A° such that

Outline of proof:

e Define a correspondence f: A® — A (so f(p) € 22) by

fp)={qeA:q-z(p)>4q - z(p) for all ¢ € A}
f identifies the goods in highest excess demand.

e Extend the domain of f to A to get a compact domain, in such a way that f has closed graph. The

extension is designed so that there can’t be any fixed points in A\ A°.

e Verify that if p* € f(p*), then p* € A® and z(p*) = 0.
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e Check that f satisfies the hypotheses of Kakutani’s Theorem.
e By Kakutani’s Theorem, there exists p* € A such that p* € f(p*), so p* € A® and 2(p*) = 0.
Details of proof:
e Define a correspondence f: A° — A (so f(p) € 22) by
fp) ={q€A:q-2(p) = ¢ - 2(p) for all ¢’ € A}
f identifies the goods in highest excess demand.

Vezt, 2(P)e > 2(p)e =

f(p) =40,...,0, « ,0,...,0, 1—« ,0,...,0):a€0,1]}

T T
fo gl
Notice that f(p) N A° = 0 unless 2(p); = 2(p). = -+ = 2(p)r, but if that happens, 2(p) = 0 by

Walras’ Law. Notice also that if p, is close to 1, then the other prices are small and the boundary
condition should tell us that there is some ¢’ such that z(p)y > z(p)e, so ¢ € f(p) = qe = 0; if py is
close to zero and all the other prices are far from zero, then ¢ should be the good in highest excess
demand, so ¢ € f(p) = ¢q¢ = 1; this tells us heuristically that fixed points shouldn’t be close to the

boundary of A°.

e Extend the domain of f to A to make it have closed graph. For p € A\ A let

flp) = {g€lA:p-q=0}

= {qEA:pg>0:>qg:0}



We will verify f has closed graph on A in the fourth step.
e Verify that if p* € f(p*), then p* € A® and z(p*) = 0.
— We claim that
b e AP
If p* € A\ A° then

Veerps P° - ¢ = 0 (definition of f)

= p*-p" =0 (since p* € f(p*))

contradiction. Therefore,

p* c AO
— We claim that
pt e fp*), p € A% = 2(p") =0
We can’t have z(p*) < 0, for then p* - z(p*) < 0, contradicting Walras’ Law. Fix ¢ € {1,..., L}

Let
ee = (0,...,0, 1 ,0,...,0)}

2p)e = e 2(p7)
< p2") (b € f(p"), definition of /)
= 0 (Walras’ Law)

Therefore, z(p*) < 0 but z(p*) £ 0, so

z(p*) =0



e Check that f satisfies the hypotheses of Kakutani’s Theorem.

— A is a compact convex nonempty subset of R”.
- f:A—Alis
* nonempty-valued: If p € A°,

f(p) ={e€ A:Vyea q-2(p) 24" - 2(p)}

q - z(p) is a continuous function of ¢ € A, which is compact, so the function achieves its
maximum, so f(p) # 0.
Ifpe A\ A

fp)={¢eA:q-p=0}

Since p € A\ A% p, = 0 for some ¢, so if we let

then ¢ € A and ¢-p =0, so f(p) # 0.

— convex-valued: Suppose ¢, € f(p), a € (0,1). Since A is convex,
ag+ (1 —a)ge A
Ifpe A and ¢’ € A,

(ag+ (1 —a)q)-2(p) = aq-2(p) +(1—a)i-=z(p)
> aq' - z(p) + (1 —a)d - z(p)

(definition of f; ¢,G € f(p))

SO



Ifpe A\ A

(ag+(1—-a)g)p = ag-p+(1—a)§-p
= o+ (1 — 04)0
(definition of f; ¢,G € f(p))

= 0

SO

ag+(1—a)g e f(p)

— upper hemicontinuous: By Theorem 3 in Lecture 7, since A is compact, it is enough to show

that f has closed graph. Suppose p, — p, ¢, € f(pn), and ¢, — ¢q. We need to show that

q € f(p)

If p € A% then p, € A® for n sufficiently large, so

f(pn) ={q € A:Vyea q-2(pa) > ¢ - 2(pa)}

2z is continuous on A’ so
z(pn) — 2(p)

Suppose ¢’ € A.

¢ -2(p) = ¢ - lim 2(py,)

n—oo

= lim ¢ - z(pn)

= lim g, - lim z(py,)

n—oo

= q-z(p)

SO

q € f(p)



If p e A\ A° may have p, € A® for some n and p, € A\ A° for other n. We are in one or

both of the following cases; we show that in each case, p-¢ = 0, and hence g € f(p).

x Case 1: {n : p, € A’} is infinite. Then there is a subsequence p,, such that p,, € A° for

all k. We need to show that p-q = 0. Suppose pg, > 0; let a = p;i. For k sufficiently large,
(Pny)ey =
|2(pn,, )| — o0, and z(p,, ) is bounded below, so
Elfnke{l,...,L} Z(pnk)enk — 00

In the following, z is the x in the statement of the Lemma:

(pnk)foz(pnk)fo = Pny - Z(pnk) - Z (pnk)fz(pnk)f

JZIN)
= _Z(pnk)ﬁz(pnk)f
LF£L
< 7l
oy < lals
nk )l X a

so for k sufficiently large,
Z(pnk)fo < Z(pnk)fnk = (an)fo =0
= Q= 0

Therefore,

pg0>0:>ng:0

soqg-p=_0andqe€ f(p).



x Case IT. {n : p, € A\ A} is infinite, so there is a subsequence p,, such that p,, € A\ A°

for all k. Then gy, - p,, = 0 for all &, so

q-p = (;}H?o an> : (ljirgopnk>
= lim gu, - P,

= limO
k—oo

= 0

SO

q € f(p)

e By Kakutani’s Theorem, there exists p* € A such that p* € f(p*), so p* € A% and z(p*) = 0.m
Existence of Walrasian Equilibrium (Wrap-Up)
e What happens if we weaken the strong monotonicity assumption?

— local nonsatiation implies Walras’ Law holds with equality, but is not sufficient to give Walrasian

Equilibrium with Y7, 2 < @.

* In Edgeworth Box Economy, let

ui(z,y) = y+ vz (strongly monotonic)

wp = (0, 1)
us(z,y) = min{x,y} (weakly monotonic)
Wy = (1, 1)

For any p > 0,

Dy(p) = (1,1) = we

Di(p)1 > wni






For p = (1,0) or p = (0, 1),

D1(p) = @
But notice for p = (1,0)
wr € Qi(p)
wy € Q2(p)

so (1,0) is a Walrasian Quasi-Equilibrium Price.

e Even without local nonsatiation,
I
Fprenarequp) DT <@
i=1
Walrasian Quasi-Equilibrium exists, some goods may be left over; local nonsatiation does not imply

allocation is exact, since some prices may be zero.

e If one agent (WLOG agent 1) is strongly monotonic and w; > 0, then p* > 0, so

€ Dip") (i=1,...,1)
fo < @

If, in addition, all agents exhibit local nonsatiation,
I
dorf=w
i=1

o If w;, > 0 for all 4,

prow; > 0
z; € Di(p")
I
Z z; < @
i=1

Local nonsatiation need not imply allocation exact, since some prices may be zero.

e With nonconvex preferences or indivisibilities, see Lecture 12.



