University of California, Berkeley Economics 201A Spring 2005 Final Exam-May 20, 2005

Instructions: You have three hours to do this exam. The exam is out of a total of 300 points; allocate your time accordingly. Please write your solutions to Parts I and II in separate bluebooks.

Part I

- 1. (100 points) Define or state and *briefly* discuss the importance of each of the following within or for economic theory:
 - (a) Shapley-Folkman Theorem on Sums of Sets
 - (b) local nonsatiation
 - (c) Walrasian Quasiequilibrium
 - (d) Second Welfare Theorem in an Arrow-Debreu Economy
 - (e) Debreu-Gale-Kuhn-Nikaido Lemma
- 2. (80 points) Consider an Edgeworth Box economy, with endowments $\omega_1 = (3,1), \ \omega_2 = (1,3), \ \text{and utility functions} \ u_1(x_{11},x_{21}) = x_{11}^{1/3}x_{21}^{2/3}, u_2(x_{12},x_{22}) = x_{12}^{2/3}x_{22}^{1/3}.$
 - (a) Find all the Walrasian Equilibria of this economy.
 - (b) Compute the set of Pareto Optima of this economy.
 - (c) Find prices and transfers that make the allocation $x_1 = \left(1, \frac{16}{7}\right)$, $x_2 = \left(3, \frac{12}{7}\right)$ a Walrasian equilibrium with transfers.
 - (d) Compute the core of this economy. [You should obtain equations for the end points of the core, but you needn't solve these equations explicitly.]

Part II

- 3. (120 points) Consider an exchange economy with I consumers and L=2 goods. The vector of endowments, $\omega \in \mathbf{R}^{2I}$, is fixed, and $\omega_1 > 0$. Let \mathcal{U} denote the set of utility functions u on \mathbf{R}^2_+ satisfying
 - ullet u is C^2 (the second partial derivatives all exist and are continuous)
 - $\nabla u|_x >> 0$ and the Hessian matrix $Hu|_x$ is negative definite for all $x \in \mathbf{R}^2_{++}$
 - u(x) = 0 for $x \in \mathbf{R}^2_+ \setminus \mathbf{R}^2_{++}$
 - u(x) > 0 for $x \in \mathbf{R}^2_{++}$

The preferences of consumers i=2,...,I are fixed and generated by utility functions $u_2,...,u_I \in \mathcal{U}$. i=1's preference is described by a parametrized utility function $u_1: \mathbf{R}^2_+ \times ((0,\infty) \times (0,1)) \to \mathbf{R}$ given by $u_1(x_1,\alpha) = v(x_{11},x_{21}) + \alpha_1 x_{11}^{\alpha_2} x_{21}^{1-\alpha_2}$, for some $v \in \mathcal{U}$.

- (a) Write down the first-order conditions defining the demand of agent 1, and show that they are necessary and sufficient to characterize the demand.
- (b) Using the Implicit Function Theorem, show that the demand of agent 1 is a C^1 function of (p, α) .
- (c) Using the Transversality Theorem, show that for almost all α , the economy is regular.
- (d) Using the Implicit Function Theorem, show that for almost all α , the economy has finitely many equilibria which move in a C^1 fashion in response to changes in α .