University of California, Berkeley Economics 201B Spring 2006 Final Exam–May 19, 2006

Instructions: You have three hours to do this exam. The exam is out of a total of 300 points; allocate your time accordingly. Please write your solutions to Parts I and II in separate bluebooks; you get five points for doing this.

Part I

- 1. (80 points) Define or state and *briefly* discuss the importance of each of the following within or for economic theory:
 - (a) Index Theorem
 - (b) First Welfare Theorem in the Arrow-Debreu Economy
 - (c) Implicit Function Theorem
 - (d) Arrow security
- 2. (75 points) From the proof of the Debreu-Gale-Kuhn-Nikaido Lemma:
 - (a) Define the correspondence that is used in the proof.
 - (b) Show that any fixed point of the correspondence must lie in the interior of the price simplex.
 - (c) Show that any interior fixed point must be an equilibrium price.

Part II

3. (90 points) Consider an exchange economy with I = 2 agents and L = 2 goods, with fixed endowment profile $\omega \gg 0$. Agent 2 has a continuous "demand" function $D_2(p) \in \mathbf{R}^2_+$ which satisfies Walras' Law, but agent 2 need not be "rational," i.e. we don't assume that $D_2(p)$ maximizes a preference relation. Agent 1 is "rational", with a parameterized Cobb-Douglas utility function

$$u_{\alpha}(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$$
 where $\alpha \in (0, 1)$

Let $f(p, \alpha)$ be the excess demand for this economy at the price $p \in \Delta^0$.

- (a) Show that for every $\alpha \in (0, 1)$ and every $\varepsilon > 0$, there is a twoperson exchange economy with "rational" agents such that the excess demand of the economy equals $f(p, \alpha)$ on $\{p \in \Delta : p_1 \ge \varepsilon, p_2 \ge \varepsilon\}$.
- (b) Show that for every $\alpha \in (0, 1)$, there exists p_{α}^* such that $f(p_{\alpha}^*, \alpha) = 0$.
- (c) Suppose in addition that D_2 is C^1 . Show that except for a set of α of Lebesgue measure zero, the economy is regular.
- 4. (50 points) Consider an exchange economy with H = 2 consumers and L goods, with social endowment $\bar{\omega} \in \mathbf{R}_{++}^L$. Suppose the two consumers a, b have continuous, strongly monotone, and strictly convex preferences. In this question, we will also consider the *n*-fold replica of this economy. In the *n*-fold replica, there are 2n agents, of whom *n* (referred to as type *a* agents) have preferences and endowments identical to those of agent *a* in the original economy, and *n* (referred to as type *b* agents) have preferences and endowments identical to those of agent *b* in the original economy. Consider a Pareto optimal allocation $x = (x_a, x_b)$ of the 2-agent economy.
 - (a) Let $x^{(n)}$ denote the *n*-fold replica of x, in which the type *a* agents all consume x_a and the type *b* agents all consume x_b . Show that $x^{(n)}$ is Pareto optimal in the *n*-fold replica economy.
 - (b) Suppose that there is a coalition S that can block $x^{(n)}$ by some x'. Show that the coalition S can also block $x^{(n)}$ by an x'' with the property that all type a members of S are assigned the same consumption by x'', and all type b members of S are assigned the same consumption by x''.