Econ 204 – Problem Set 1

Due 11:59pm Friday August 1 on Gradescope

- 1. Use induction to prove the following statements are true for all $n \in \mathbb{N}$:
 - (a) $2^{2n} 1$ is divisible by 3.
 - (b) $1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \le 2\sqrt{n}$
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as follows. For each function, determine whether it is (i) injective and (ii) surjective:
 - (a) f(x) = 2x + 1
 - (b) $f(x) = x^2$
 - (c) $f(x) = e^x$
 - (d) $f(x) = \frac{1}{1+x^2}$
- 3. Do there exist sets X and Y such that the function $f: X \to Y$: $f(x) = x^2$ is a bijection? If yes, specify examples and if no, justify your answer.
- 4. In the following examples, show that the sets A and B are numerically equivalent by finding a specific bijection between the two.
 - (a) A = [0, 1], B = [10, 20]
 - (b) A = [0, 1], B = [0, 1)
 - (c) $A = (-1, 1), B = \mathbb{R}$
- 5. Let R_1 , R_2 , and R_3 be binary relations on the set of real numbers \mathbb{R} , defined as follows:
 - R_1 : $a \sim b$ if and only if a = b
 - R_2 : $a \sim b$ if and only if $a \geq b$
 - R_3 : $a \sim b$ if and only if a > b
 - (a) For each relation, determine whether it is:
 - i. Reflexive
 - ii. Symmetric
 - iii. Transitive
 - iv. An equivalence relation
 - (b) If R_i is an equivalence relation, describe the quotient set \mathbb{R}/R_i .
- 6. In this exercise we will practice working with sets whose elements are sets as well. For this, we will need the following definition:

1

Sigma-Algebra: Let Ω be a set and $\mathcal{F} \subseteq 2^{\Omega}$ be a collection of subsets of Ω . We say that \mathcal{F} is a sigma-algebra if the following properties hold:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $A^C \in \mathcal{F}$.

- If $\{A_n\}_{n\in\mathbb{N}}$ is a countable collection of sets such that $\forall n\in\mathbb{N}\ A_n\in\mathcal{F}$, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$.
- (a) Prove that if \mathcal{F} is a sigma-algebra and $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
- (b) Prove that if \mathcal{F} is a sigma-algebra, then $\emptyset \in \mathcal{F}$
- (c) Prove that $\{\emptyset, \Omega\}$ is a sigma-algebra. Argue that this is the smallest sigma-algebra over the set Ω .
- (d) Prove that 2^{Ω} is a sigma-algebra. Argue that this is the largest sigma-algebra over the set Ω .
- (e) Prove that if $\mathcal{F}_1, \mathcal{F}_2$ are sigma-algebras, then $\mathcal{F}_1 \cap \mathcal{F}_2$ is a sigma-algebra.
- (f) Prove that if $\{\mathcal{F}_a\}_{a\in\mathcal{A}}$ is a collection of sigma-algebras, then $\cap_{a\in\mathcal{A}}\mathcal{F}_a$ is a sigma-algebra. (Note that we have made no restriction on the set \mathcal{A} .)
- (g) Prove or provide a counterexample to the following statement: If $\mathcal{F}_1, \mathcal{F}_2$ are sigma-algebras, then $\mathcal{F}_1 \cup \mathcal{F}_2$ is a sigma-algebra.
- (h) Let $\Omega = \{1, 2, 3\}$. List all the possible sigma-algebras over Ω . (There are surprisingly few).
- 7. Let $X \subseteq \mathbb{R}$. We say that a function $f: X \to \mathbb{R}$ is bounded if its image $f(X) \subseteq \mathbb{R}$ is a bounded set. We then write $\sup_f = \sup_{x \in \mathbb{R}} f(X)$ and $\inf_f = \inf_{x \in \mathbb{R}} f(X)$.
 - (a) Show that if $f, g: X \to \mathbb{R}$ are bounded, $f + g: X \to \mathbb{R}$ is bounded
 - (b) Show that $(f+g)(X) \subseteq f(X) + g(X)$ and provide an example in which the inclusion is strict. ¹
 - (c) Show that $\sup_{f+g} \leq \sup_f + \sup_g$ and $\inf_{f+g} \geq \inf_f + \inf_g$
 - (d) Provide an example for which the inequalities in the previous item are strict.
 - (e) Show that if $f, g: X \to \mathbb{R}$ are bounded, $f \cdot g: X \to \mathbb{R}$ is bounded
 - (f) Show that $(f \cdot g)(X) \subseteq f(X) \cdot g(X)^2$
 - (g) Show that, if f and g are both positive³, then $\sup_{f \cdot g} \leq \sup_{f} \cdot \sup_{g}$ and $\inf_{f \cdot g} \geq \inf_{f} \cdot \inf_{g}$
 - (h) Provide an example for which the inequalities in the previous item are strict.
 - (i) Provide a counterexample for item g) if the functions are not positive.
 - (j) Show that if f is positive, $\sup_{f^2} = (\sup_f)^2$

¹Given $A, B \subseteq \mathbb{R}$ non-empty and bounded, we define $A + B = \{z \in \mathbb{R} | z = x + y, x \in A, y \in B\}$

²Given $A, B \subseteq \mathbb{R}$ non-empty and bounded, we define $A \cdot B = \{z \in \mathbb{R} | z = x \cdot y, x \in A, y \in B\}$.

³f is positive if $\forall x \in X \ f(x) \geq 0$