Econ 204 – Problem Set 5

GSI - Anna Vakarova

August 12, 2025

1 Taylor Theorem and Mean Value Theorem

Problem 1

Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable. Suppose f'(0) = f'(1) = 2 and $\forall x \in [0,1], |f''(x)| \leq 4$.

- a. Prove that $|f(1) f(0)| \le 4$.
- b. Prove that $|f(1) f(0)| \le 3$.

(Hint: use Taylor's Theorem)

Problem 2

Let f be a function on [a, b] that is differentiable at c. Let L(x) be the tangent line to f at c. Prove that L is the unique affine function with the property that

$$\lim_{x \to c} \frac{f(x) - L(x)}{x - c} = 0$$

Problem 3

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that $f'(\mathbb{R})$, has an intermediate value property, that is if f' takes at least two values a < b then for every $c \in [a, b]$ there exists x: f'(x) = c

2 Implicit and Inverse Function Theorems

2.1 Problem 4

Given $t \in \mathbb{R}$, the agent chooses $x \in \mathbb{R}$ to solve

$$\max_{x \in S(t)} f(x, t)$$

where $f: \mathbb{R}^2 \to \mathbb{R}$ and $S(t) \subset \mathbb{R}$ for all t. Under what conditions on f does the solution to the above maximization problem $x^*(t)$ increase in t? Try to come up with an "intuitive" argument to explain your assumptions.

Problem 5

- a) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function. Suppose F(0,0) = 0. What sufficient condition on F will guarantee that F(F(x,y),y) = 0 can be solved for y as a C^1 function of x in a neighborhood of (0,0)?
- b) Prove that the function $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(x,y) = (e^x \cos y, e^x \sin y)$ has a local inverse at each point of its domain. Does it have a global inverse? Find a maximal open subset of \mathbb{R}^2 such that F has a differentiable inverse on its image.