Economics 204 Summer/Fall 2025

Lecture 10-Friday August 8, 2025

Diagonalization of Symmetric Real Matrices (from Handout)

Definition 1 Let

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

A basis $V = \{v_1, \dots, v_n\}$ of \mathbf{R}^n is orthonormal if $v_i \cdot v_j = \delta_{ij}$.

In other words, a basis is orthonormal if each basis element has unit length ($||v_i||^2 = v_i \cdot v_i = 1$ for each i), and distinct basis elements are perpendicular ($v_i \cdot v_j = 0$ for $i \neq j$).

Remark: Suppose that $x = \sum_{j=1}^{n} \alpha_j v_j$ where $\{v_1, \dots, v_n\}$ is an orthonormal basis of \mathbf{R}^n . Then

$$x \cdot v_k = \left(\sum_{j=1}^n \alpha_j v_j\right) \cdot v_k$$
$$= \sum_{j=1}^n \alpha_j (v_j \cdot v_k)$$
$$= \sum_{j=1}^n \alpha_j \delta_{jk}$$
$$= \alpha_k$$

SO

$$x = \sum_{j=1}^{n} (x \cdot v_j) v_j$$

Example: The standard basis of \mathbb{R}^n is orthonormal.

Recall that for a real $n \times m$ matrix A, A^{\top} denotes the transpose of A: the $(i, j)^{th}$ entry of A^{\top} is the $(j, i)^{th}$ entry of A. So the i^{th} row of A^{\top} is the i^{th} column of A.

Definition 2 A real $n \times n$ matrix A is unitary if $A^{\top} = A^{-1}$.

Theorem 3 A real $n \times n$ matrix A is unitary if and only if the columns of A are orthonormal.

Proof: Let v_j denote the j^{th} column of A.

$$A^{\top} = A^{-1} \iff A^{\top}A = I$$

$$\iff v_i \cdot v_j = \delta_{ij} \ \forall i, j$$

$$\iff \{v_1, \dots, v_n\} \text{ is orthonormal}$$

If A is unitary, let V be the set of columns of A and W be the standard basis of \mathbb{R}^n . Since A is unitary, it is invertible, so V is a basis of \mathbb{R}^n .

$$A^{\top} = A^{-1} = Mtx_{V,W}(id)$$

Since V is orthonormal, the transformation between bases W and V preserves all geometry, including lengths and angles.

Theorem 4 Let $T \in L(\mathbf{R}^n, \mathbf{R}^n)$ and W be the standard basis of \mathbf{R}^n . Suppose that $Mtx_W(T)$ is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis $V = \{v_1, \ldots, v_n\}$ of \mathbf{R}^n consisting of eigenvectors of T, so that $Mtx_W(T)$ is diagonalizable:

$$Mtx_W(T) = Mtx_{W,V}(id) \cdot Mtx_V(T) \cdot Mtx_{V,W}(id)$$

where Mtx_VT is diagonal and the change of basis matrices $Mtx_{V,W}(id)$ and $Mtx_{W,V}(id)$ are unitary.

Proof: (Sketch) The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. Here is a very brief outline.

- 1. Let $M = Mtx_W(T)$.
- 2. The inner product in \mathbb{C}^n is defined as follows:

$$x \cdot y = \sum_{j=1}^{n} x_j \cdot \overline{y_j}$$

where \bar{c} denotes the complex conjugate of any $c \in \mathbf{C}$; note that this implies that $x \cdot y = \overline{y \cdot x}$. The usual inner product in \mathbf{R}^n is the restriction of this inner product on \mathbf{C}^n to \mathbf{R}^n .

- 3. Given any complex matrix A, define A^* to be the matrix whose $(i,j)^{th}$ entry is $\overline{a_{ji}}$; in other words, A^* is formed by taking the complex conjugate of each element of the transpose of A. It is easy to verify that given $x,y\in \mathbb{C}^n$ and a complex $n\times n$ matrix A, $Ax\cdot y=x\cdot A^*y$. Since M is real and symmetric, $M^*=M$.
- 4. If M is real and symmetric, and $\lambda \in \mathbf{C}$ is an eigenvalue of M, with eigenvector $x \in \mathbf{C}^n$, then

$$\lambda |x|^2 = \lambda(x \cdot x)$$
$$= (\lambda x) \cdot x$$
$$= (Mx) \cdot x$$

$$= x \cdot (M^*x)$$

$$= x \cdot (Mx)$$

$$= x \cdot (\lambda x)$$

$$= \overline{(\lambda x) \cdot x}$$

$$= \overline{\lambda (x \cdot x)}$$

$$= \overline{\lambda |x|^2}$$

$$= \overline{\lambda |x|^2}$$

which proves that $\lambda = \bar{\lambda}$, hence $\lambda \in \mathbf{R}$.

- 5. If M is real (not necessarily symmetric) and $\lambda \in \mathbf{R}$ is an eigenvalue, then $\det(M-\lambda I) = 0 \Rightarrow \exists v \in \mathbf{R}^n$ s.t. $(M-\lambda I)v = 0$, so there is at least one real eigenvector. Symmetry implies that, if λ has multiplicity m, there are m independent real eigenvectors corresponding to λ (but unfortunately we don't have time to show this). Thus, there is a basis of eigenvectors, hence M is diagonalizable over \mathbf{R} .
- 6. If M is real and symmetric, eigenvectors corresponding to distinct eigenvalues are orthogonal: Suppose that $Mx = \lambda x$ and $My = \rho y$ with $\rho \neq \lambda$. Then

$$\lambda(x \cdot y) = (\lambda x) \cdot y$$

$$= (Mx) \cdot y$$

$$= (Mx)^{\top} y$$

$$= (x^{\top} M^{\top}) y$$

$$= (x^{\top} M) y$$

$$= x^{\top}(My)$$

$$= x^{\top}(\rho y)$$

$$= x \cdot (\rho y)$$

$$= \rho(x \cdot y)$$

so $(\lambda - \rho)(x \cdot y) = 0$; since $\lambda - \rho \neq 0$, we must have $x \cdot y = 0$.

- 7. Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:
 - Let $X_{\lambda} = \{x \in \mathbf{R}^n : Mx = \lambda x\}$, the set of all eigenvectors corresponding to λ . Notice that if $Mx = \lambda x$ and $My = \lambda y$, then

$$M(\alpha x + \beta y) = \alpha Mx + \beta My = \alpha \lambda x + \beta \lambda y = \lambda(\alpha x + \beta y)$$

so X_{λ} is a vector subspace. Thus, given any basis of X_{λ} , we wish to find an orthonormal basis of X_{λ} ; all elements of this orthonormal basis will be eigenvectors corresponding to λ .

- Suppose X_{λ} is m-dimensional and we are given independent vectors $x_1, \ldots, x_m \in X_{\lambda}$. The Gram-Schmidt method finds an orthonormal basis $\{v_1, \ldots, v_m\}$ for X_{λ} .
- Let $v_1 = \frac{x_1}{|x_1|}$. Note that $|v_1| = 1$.
- Suppose we have found an orthonormal set $\{v_1, \ldots, v_k\}$ such that span $\{v_1, \ldots, v_k\}$ = span $\{x_1, \ldots, x_k\}$, with k < m. Let

$$y_{k+1} = x_{k+1} - \sum_{j=1}^{k} (x_{k+1} \cdot v_j) v_j, \ v_{k+1} = \frac{y_{k+1}}{|y_{k+1}|}$$

•

$$\operatorname{span} \{v_1, \dots, v_{k+1}\} = \operatorname{span} \{v_1, \dots, v_k, v_{k+1}\}$$

= span
$$\{v_1, \dots, v_k, y_{k+1}\}$$

= span $\{v_1, \dots, v_k, x_{k+1}\}$
= span $\{x_1, \dots, x_k, x_{k+1}\}$

• For i = 1, ..., k,

$$y_{k+1} \cdot v_i = \left(x_{k+1} - \sum_{j=1}^k (x_{k+1} \cdot v_j) v_j \right) \cdot v_i$$

$$= x_{k+1} \cdot v_i - \sum_{j=1}^K (x_{k+1} \cdot v_j) (v_j \cdot v_i)$$

$$= x_{k+1} \cdot v_i - \sum_{j=1}^K (x_{k+1} \cdot v_j) \delta_{ij}$$

$$= x_{k+1} \cdot v_i - x_{k+1} \cdot v_i$$

$$= 0$$

$$v_{k+1} \cdot v_i = \frac{y_{k+1} \cdot v_i}{|y_{k+1}|}$$

$$= \frac{0}{|y_{k+1}|}$$

$$= 0$$

$$|v_{k+1}| = \frac{|y_{k+1}|}{|y_{k+1}|}$$

$$= 1$$

Application to Quadratic Forms

Consider a quadratic form

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \alpha_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j$$
 (1)

Let

$$\alpha_{ij} = \begin{cases} \frac{\beta_{ij}}{2} & \text{if } i < j \\ \\ \frac{\beta_{ji}}{2} & \text{if } i > j \end{cases}$$

Let

$$A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix}$$

SO

$$f(x) = x^{\top} A x$$

Example: Let

$$f(x) = \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2$$

Let

$$A = \left(\begin{array}{cc} \alpha & \frac{\beta}{2} \\ \\ \frac{\beta}{2} & \gamma \end{array}\right)$$

so A is symmetric and

$$(x_1, x_2) \begin{pmatrix} \alpha & \frac{\beta}{2} \\ \frac{\beta}{2} & \gamma \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1, x_2) \begin{pmatrix} \alpha x_1 + \frac{\beta}{2} x_2 \\ \frac{\beta}{2} x_1 + \gamma x_2 \end{pmatrix}$$

$$= \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2$$

$$= f(x)$$

Returning to the general quadratic form in Equation (1), A is symmetric, so let $V = \{v_1, \ldots, v_n\}$ be an orthonormal basis of eigenvectors of A with corresponding eigenvalues

 $\lambda_1, \ldots, \lambda_n$. Then

$$A = U^{\top}DU$$

$$\text{where } D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

$$\text{and } U = Mtx_{VW}(id) \text{ is unitary}$$

The columns of U^{\top} (the rows of U) are the coordinates of v_1, \ldots, v_n , expressed in terms of the standard basis W.

Given $x \in \mathbf{R}^n$, recall

$$x = \sum_{i=1}^{n} \gamma_i v_i$$
 where $\gamma_i = x \cdot v_i$

Then

$$f(x) = f\left(\sum \gamma_i v_i\right)$$

$$= \left(\sum \gamma_i v_i\right)^{\top} A\left(\sum \gamma_i v_i\right)$$

$$= \left(\sum \gamma_i v_i\right)^{\top} U^{\top} D U\left(\sum \gamma_i v_i\right)$$

$$= \left(U \sum \gamma_i v_i\right)^{\top} D\left(U \sum \gamma_i v_i\right)$$

$$= \left(\sum \gamma_i U v_i\right)^{\top} D\left(\sum \gamma_i U v_i\right)$$

$$= \left(\gamma_1, \dots, \gamma_n\right) D \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix}$$

$$= \sum \lambda_i \gamma_i^2$$

The equation for the level sets of f is

$$\sum_{i=1}^{n} \lambda_i \gamma_i^2 = C$$

- If $\lambda_i \geq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n . The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$ if $C \geq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if C < 0. See Figure 1.
- If $\lambda_i \leq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n . The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$ if $C \leq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if C > 0.
- If $\lambda_i > 0$ for some i and $\lambda_j < 0$ for some j, the level set is a hyperboloid. For example, suppose $n = 2, \lambda_1 > 0, \lambda_2 < 0$. The equation is

$$C = \lambda_1 \gamma_1^2 + \lambda_2 \gamma_2^2$$
$$= \left(\sqrt{\lambda_1} \gamma_1 + \sqrt{|\lambda_2|} \gamma_2\right) \left(\sqrt{\lambda_1} \gamma_1 - \sqrt{|\lambda_2|} \gamma_2\right)$$

This is a hyperbola with asymptotes

$$0 = \sqrt{\lambda_1} \gamma_1 + \sqrt{|\lambda_2|} \gamma_2$$

$$\Rightarrow \gamma_1 = -\sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2$$

$$0 = \left(\sqrt{\lambda_1} \gamma_1 - \sqrt{|\lambda_2|} \gamma_2\right)$$

$$\Rightarrow \gamma_1 = \sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2$$

See Figure 2. This proves the following corollary of Theorem 4.

Corollary 5 Consider the quadratic form (1).

- 1. f has a global minimum at 0 if and only if $\lambda_i \geq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n .
- 2. f has a global maximum at 0 if and only if $\lambda_i \leq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n .
- 3. If $\lambda_i < 0$ for some i and $\lambda_j > 0$ for some j, then f has a saddle point at 0; the level sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n .

Section 3.4. Linear Maps between Normed Spaces

Definition 6 Suppose X, Y are normed vector spaces and $T \in L(X, Y)$. We say T is bounded if

$$\exists \beta \in \mathbf{R} \text{ s.t. } ||T(x)||_Y \leq \beta ||x||_X \ \forall x \in X$$

Note this implies that T is Lipschitz with constant β .

Theorem 7 (Thms. 4.1, 4.3) Let X, Y be normed vector spaces and $T \in L(X, Y)$. Then

T is continuous at some point $x_0 \in X$

 \iff T is continuous at every $x \in X$

 \iff T is uniformly continuous on X

$$\iff$$
 T is Lipschitz

$$\iff$$
 T is bounded

Proof: Suppose T is continuous at x_0 . Fix $\varepsilon > 0$. Then there exists $\delta > 0$ such that

$$||z - x_0|| < \delta \Rightarrow ||T(z) - T(x_0)|| < \varepsilon$$

Now suppose x is any element of X. If $||y-x|| < \delta$, let $z = y-x+x_0$, so $||z-x_0|| = ||y-x|| < \delta$.

$$||T(y) - T(x)||$$

$$= ||T(y - x)||$$

$$= ||T(y - x + x_0 - x_0)||$$

$$= ||T(z) - T(x_0)||$$

$$< \varepsilon$$

which proves that T is continuous at every x, and uniformly continuous.

We claim that T is bounded if and only if T is continuous at 0. Suppose T is not bounded. Then

$$\exists \{x_n\} \text{ s.t. } ||T(x_n)|| > n||x_n|| \ \forall n$$

Note that $x_n \neq 0$. Let $\varepsilon = 1$. Fix $\delta > 0$ and choose n such that $\frac{1}{n} < \delta$. Let

$$x'_{n} = \frac{x_{n}}{n\|x_{n}\|}$$

$$\|x'_{n}\| = \frac{\|x_{n}\|}{n\|x_{n}\|}$$

$$= \frac{1}{n}$$

$$< \delta$$

$$||T(x'_n) - T(0)|| = ||T(x'_n)||$$

$$= \frac{1}{n||x_n||} ||T(x_n)||$$

$$> \frac{n||x_n||}{n||x_n||}$$

$$= 1$$

$$= \varepsilon$$

Since this is true for every δ , T is not continuous at 0. Therefore, T continuous at 0 implies T is bounded. Now, suppose T is bounded, so find M such that $||T(x)|| \leq M||x||$ for every $x \in X$. Given $\varepsilon > 0$, let $\delta = \varepsilon/M$. Then

$$||x - 0|| < \delta \implies ||x|| < \delta$$

$$\Rightarrow ||T(x) - T(0)|| = ||T(x)|| < M\delta$$

$$\Rightarrow ||T(x) - T(0)|| < \varepsilon$$

so T is continuous at 0.

Thus, we have shown that continuity at some point x_0 implies uniform continuity, which implies continuity at every point, which implies T is continuous at 0, which implies that T is bounded, which implies that T is continuous at 0, which implies that T is continuous at some x_0 , so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$||T(x) - T(y)|| = ||T(x - y)||$$

 $\leq M||x - y||$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is

bounded with constant M. So all the statements are equivalent.

Every linear map on a finite-dimensional normed vector space is bounded (and thus continuous, uniformly continuous, and Lipschitz continuous).

Theorem 8 (Thm. 4.5) Let X, Y be normed vector spaces with dim X = n. Every $T \in L(X, Y)$ is bounded.

Proof: See de la Fuente.

Definition 9 A topological isomorphism between normed vector spaces X and Y is a linear transformation $T \in L(X,Y)$ that is invertible (one-to-one, onto), continuous, and has a continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological isomorphism $T: X \to Y$.

Suppose X and Y are normed vector spaces. We define

$$B(X,Y) = \{T \in L(X,Y) : T \text{ is bounded}\}$$

$$\|T\|_{B(X,Y)} = \sup \left\{ \frac{\|T(x)\|_Y}{\|x\|_X}, x \in X, x \neq 0 \right\}$$

$$= \sup \{\|T(x)\|_Y : \|x\|_X = 1\}$$

Theorem 10 (Thm. 4.8) Let X, Y be normed vector spaces. Then

$$(B(X,Y), \|\cdot\|_{B(X,Y)})$$

is a normed vector space.

Proof: See de la Fuente.

Theorem 11 (Thm. 4.9) Let $T \in L(\mathbf{R}^n, \mathbf{R}^m)$ (= $B(\mathbf{R}^n, \mathbf{R}^m)$) with matrix $A = (a_{ij})$ with respect to the standard bases. Let

$$M = \max\{|a_{ij}| : 1 \le i \le m, 1 \le j \le n\}$$

Then

$$M \le ||T|| \le M\sqrt{mn}$$

Proof: See de la Fuente. ■

Theorem 12 (Thm. 4.10) Let $R \in L(\mathbf{R}^m, \mathbf{R}^n)$ and $S \in L(\mathbf{R}^n, \mathbf{R}^p)$. Then

$$||S \circ R|| \le ||S|| ||R||$$

Proof: See de la Fuente.

Define

$$\Omega(\mathbf{R}^n) = \{ T \in L(\mathbf{R}^n, \mathbf{R}^n) : T \text{ is invertible} \}$$

Theorem 13 (Thm. 4.11') Suppose $T \in L(\mathbf{R}^n, \mathbf{R}^n)$ and E is the standard basis of \mathbf{R}^n .

Then

T is invertible

$$\Leftrightarrow \ker T = \{0\}$$

$$\Leftrightarrow \det(Mtx_E(T)) \neq 0$$

 \Leftrightarrow det $(Mtx_{V,V}(T)) \neq 0$ for every basis V

 \Leftrightarrow det $(Mtx_{V,W}(T)) \neq 0$ for every pair of bases V, W

Theorem 14 (Thm. 4.12) If $S, T \in \Omega(\mathbf{R}^n)$, then $S \circ T \in \Omega(\mathbf{R}^n)$ and

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1}$$

Theorem 15 (Thm. 4.14) Let $S, T \in L(\mathbb{R}^n, \mathbb{R}^n)$. If T is invertible and

$$||T - S|| < \frac{1}{||T^{-1}||}$$

then S is invertible. In particular, $\Omega(\mathbf{R}^n)$ is open in $L(\mathbf{R}^n, \mathbf{R}^n) = B(\mathbf{R}^n, \mathbf{R}^n)$.

Proof: See de la Fuente. ■

Theorem 16 (4.15) The function $(\cdot)^{-1}: \Omega(\mathbf{R}^n) \to \Omega(\mathbf{R}^n)$ that assigns T^{-1} to each $T \in \Omega(\mathbf{R}^n)$ is continuous.

Proof: See de la Fuente. ■

 $\lambda_1 > 0$, $\lambda_2 > 0$

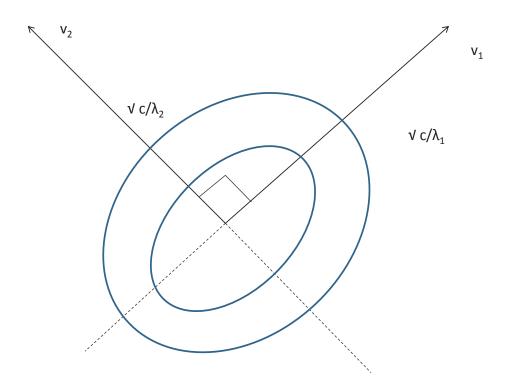


Figure 1: If $\lambda_1, \lambda_2 > 0$ and C > 0, the level set is an ellipsoid, with principal axes in the directions v_1, v_2 . The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$.

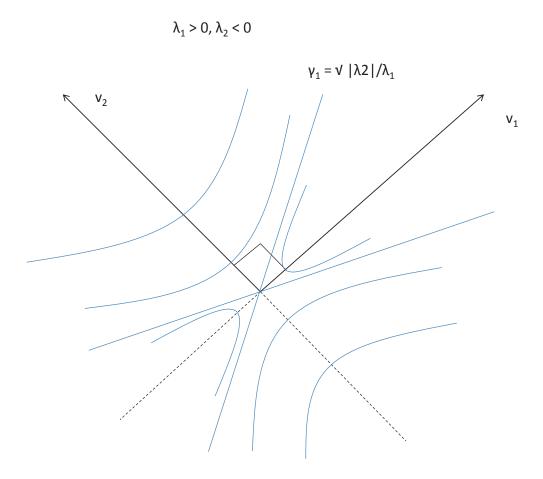


Figure 2: If $\lambda_1 > 0$ and $\lambda_2 < 0$, the level set is a hyperbola with asymptotes $\gamma_1 = \sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2$.