Economics 204 Summer/Fall 2025

Lecture 10-Friday August 8, 2025

Diagonalization of Symmetric Real Matrices (from Handout)

Definition 1 Let

1 if i=j
5ij —
0 if i
A basis V = {vy,...,v,} of R" is orthonormal if v; - v; = 6;;.

In other words, a basis is orthonormal if each basis element has unit length ( ||v;|* = v;-v; = 1
for each i), and distinct basis elements are perpendicular (v; - v; = 0 for ¢ # j).
Remark: Suppose that x = 37, ajv; where {vy,...,v,} is an orthonormal basis of R™.
Then
n
zov = | Y_ooyui | o
j=1
n
= > a;(v;-ve)
j=1
n
= Z ;0jk
j=1
= ak
SO

n
= (z-v)v,
=1

Example: The standard basis of R"™ is orthonormal.



Recall that for a real n x m matrix A, AT denotes the transpose of A: the (i, )" entry

of AT is the (j,1)" entry of A. So the i row of AT is the 7" column of A.

Definition 2 A real n x n matrix A is unitary if AT = A~

Theorem 3 A real nxn matriz A is unitary if and only if the columns of A are orthonormal.

Proof: Let v; denote the j column of A.
AT=A" «— ATA=1]
<~ 'Ui'vjzéij VZ,j

<= {vy,...,v,} is orthonormal

If A is unitary, let V be the set of columns of A and W be the standard basis of R".

Since A is unitary, it is invertible, so V' is a basis of R".
AT = Ail = Mtl’uw(@d)

Since V' is orthonormal, the transformation between bases W and V' preserves all geometry,

including lengths and angles.

Theorem 4 LetT € L(R™, R™) and W be the standard basis of R™. Suppose that Mtxy (T)
1s symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis

V ={v1,...,v,} of R™ consisting of eigenvectors of T, so that Mtxy (T) is diagonalizable:
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where MtxyT is diagonal and the change of basis matrices Mtzyw (id) and Mtzy.y(id) are

unitary.

Proof: (Sketch) The proof of the theorem requires a lengthy digression into the linear algebra

of complex vector spaces. Here is a very brief outline.

1. Let M = Mtaw(T).

2. The inner product in C” is defined as follows:

Toy=> ;"7
j=1

where ¢ denotes the complex conjugate of any ¢ € C; note that this implies that

x -y =7 -x. The usual inner product in R" is the restriction of this inner product on

C" to R™.

3. Given any complex matrix A, define A* to be the matrix whose (i, )" entry is aj;
in other words, A* is formed by taking the complex conjugate of each element of the
transpose of A. It is easy to verify that given z,y € C" and a complex n X n matrix

A, Az -y = x - A*y. Since M is real and symmetric, M* = M.

4. If M is real and symmetric, and A € C is an eigenvalue of M, with eigenvector x € C",

then



which proves that A = ), hence A € R.

. If M is real (not necessarily symmetric) and A € R is an eigenvalue, then det(M—\I) =
0= JveR"st. (M — A)v=0,so there is at least one real eigenvector. Symmetry
implies that, if A has multiplicity m, there are m independent real eigenvectors corre-
sponding to A (but unfortunately we don’t have time to show this). Thus, there is a

basis of eigenvectors, hence M is diagonalizable over R.

. If M is real and symmetric, eigenvectors corresponding to distinct eigenvalues are

orthogonal: Suppose that Mz = Ax and My = py with p # A. Then
AMz-y) = (Ar)-y

= (Mz)-y

= (Mz)Ty



= plz-y)
so (A —p)(z - y) = 0; since A — p # 0, we must have z -y = 0.
7. Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:

o Let X, = {z € R": Ma = Az}, the set of all eigenvectors corresponding to A.

Notice that if Mx = Ax and My = Ay, then
M(ax + By) = aMx + BMy = adz + By = Moz + By)

so X, is a vector subspace. Thus, given any basis of X, we wish to find an
orthonormal basis of X; all elements of this orthonormal basis will be eigenvectors

corresponding to .

e Suppose X is m-dimensional and we are given independent vectors zy, ..., 2, €
X). The Gram-Schmidt method finds an orthonormal basis {vy, ..., v,} for X,.
e Let vy = 7. Note that lv1] = 1.

e Suppose we have found an orthonormal set {vy, . .., v; } such that span {vy, ..., v} =

span {x1,..., 2}, with & < m. Let

k

Yk+1 = Tht1 — Z($k+1 "Uj)vja V41 = das
j=1 |yk+1’
[ J
span {vy,..., vk} = span{vi,..., Uk, Vkt1}
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= Sspan {Uh s 7vk7yk+1}
= Spal {Ub s 7/Ukawk+1}

= Span {1'1, s 7xk7$k+l}

e Fori=1,... k,

k
Y1 -V = ($k+1 - Z(xk-&-l : Uj)vj) %

j=1
K
= Tpyr- Vi — Y (Tryr - 05) (0 - v;)
=1
K
= Tpsr Vi — D (Tes1 - V)05
=1

= Tk+1 Vi — Tyl " Uy

= 0

Yk+1 - V4

|yk+1|
0

|yk+1|

= 0

Vg1 -V =

‘ykJrl‘
‘ykJrl‘

=1

’Uk+1| =

Application to Quadratic Forms

Consider a quadratic form

floy, .. xy) = 2”: i + Z Bijwix; (1)
i=1

1<j



Let

- ifi <
Oéij =
G if > j
Let
Q11 o Qg
A=
Ap1 0 Qpp
SO
f(z) =2"Ax

Example: Let

flz) = ozxf + Brixo + 795;

Let
A= ) g
£
so A is symmetric and
« g T
(xla 1’2)
§ Y 4%)
ar, + gl’g
- (xla IQ)
§x1 + VT2

= a:v% + Bx1xe + ’yxg

= [flx)

Returning to the general quadratic form in Equation (1), A is symmetric, so let V' =
{v1,...,v,} be an orthonormal basis of eigenvectors of A with corresponding eigenvalues
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Aty .-y Ap. Then

A = U'DU
A0 0
0 X 0
where D =
0 0 An
and U = Mtzyw/(id) is unitary
The columns of U (the rows of U) are the coordinates of v, ..., v,, expressed in terms of

the standard basis W.

Given x € R", recall

n
T = Z’yﬂ;i where v; = x - v;
i=1

Then

f@) = f( )

= (Zow) A(Xom)

= (X)) UTDU (X )

= (U w) DU )

= (X Uw) D(XAUv)
o

= (m,.--,W)D

= Z )\2%'2



The equation for the level sets of f is
Z Aﬂz’z =C
i=1

o If \; > 0 for all 7, the level set is an ellipsoid, with principal axes in the directions
v1,...,U,. The length of the principal axis along v; is \/C/A; if C > 0 (if \; = 0, the
level set is a degenerate ellipsoid with principal axis of infinite length in that direction).

The level set is empty if C' < 0. See Figure 1.

o If )\, < 0 for all 7, the level set is an ellipsoid, with principal axes in the directions
U1, ...,y The length of the principal axis along v; is {/C/\; if C' < 0 (if A\; = 0, the
level set is a degenerate ellipsoid with principal axis of infinite length in that direction).

The level set is empty if C' > 0.

o If \; > 0 for some ¢ and A\; < 0 for some 7, the level set is a hyperboloid. For example,

suppose n = 2, \; > 0, Ay < 0. The equation is

C = M2 4 M2

- (Vo) (o)

This is a hyperbola with asymptotes

\/)\»171 + /A2l

_ A
=M = — )\772
(\/771 A2 ’72)
A
=N = |)\j|’72

See Figure 2. This proves the following corollary of Theorem 4.
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Corollary 5 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if \; > 0 for all i; the level sets of f are

ellipsoids with principal azes aligned with the orthonormal eigenvectors vy, ..., v,.

2. f has a global maximum at 0 if and only if \; < 0 for all i; the level sets of f are

ellipsoids with principal azes aligned with the orthonormal eigenvectors vy, ..., v,.

3. If \; <0 for some ¢ and \; > 0 for some j, then f has a saddle point at 0; the level
sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors

Viy...,Up.

Section 3.4. Linear Maps between Normed Spaces

Definition 6 Suppose X,Y are normed vector spaces and T € L(X,Y). We say T is

bounded if

I8 € Rst. |T(@)|y < Blzflx VaeX

Note this implies that T is Lipschitz with constant .

Theorem 7 (Thms. 4.1, 4.3) Let X,Y be normed vector spaces and T € L(X,Y). Then

T 1s continuous at some point xog € X
<= T is continuous at every x € X

< T is uniformly continuous on X
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<= T 1is Lipschitz

<= T is bounded

Proof: Suppose T is continuous at xy. Fix € > 0. Then there exists 6 > 0 such that

Iz = xoll <6 = |T(2) = T(wo)|| <

Now suppose z is any element of X. If ||y—z| < 6, let z = y—x+xg, so ||z—xo|| = [|[y—z| < J.
IT(y) =T ()|
= Ty -2

= T(y — 2+ 29 — 20))

= [T(z) = T(zo)ll

which proves that 7' is continuous at every z, and uniformly continuous.

We claim that T" is bounded if and only if 7" is continuous at 0. Suppose 7" is not bounded.
Then
Haz,} st ||T(x,)| > nl|zn]] Vn
Note that z, # 0. Let ¢ = 1. Fix § > 0 and choose n such that % < 9. Let

Tn

nflz |
n|z||
1

n

< 4
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1T () =TOI = IT(,)ll

Since this is true for every ¢, T is not continuous at 0. Therefore, T continuous at 0 implies
T is bounded. Now, suppose T is bounded, so find M such that | T(x)|| < M||z|| for every

x € X. Given ¢ > 0, let 6 =¢/M. Then
|z =0 <6 = || <0
= |T(z) =TO)| = [T(2)[| < Ms
= |T(x)-TO)] <e

so 71" is continuous at 0.

Thus, we have shown that continuity at some point xy implies uniform continuity, which
implies continuity at every point, which implies T" is continuous at 0, which implies that T’
is bounded, which implies that 7" is continuous at 0, which implies that 7T is continuous at

some xg, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then
1T(x) =Tl = [T(z -yl
< Mz -y

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is

12



bounded with constant M. So all the statements are equivalent. m

Every linear map on a finite-dimensional normed vector space is bounded (and thus contin-

uous, uniformly continuous, and Lipschitz continuous).

Theorem 8 (Thm. 4.5) Let X, Y be normed vector spaces with dim X = n. Every

T e L(X,Y) is bounded.
Proof: See de la Fuente. m

Definition 9 A topological isomorphism between normed vector spaces X and Y is a linear
transformation 7' € L(X,Y) that is invertible (one-to-one, onto), continuous, and has a

continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological

isomorphism 7' : X — Y.

Suppose X and Y are normed vector spaces. We define

B(X,Y) = {T € L(X,Y):T is bounded}

T
T|pxy)y = sup M,QZGX,LE 0
(X.Y)
] x

= sup{[|T(z)]ly : [l=lx =1}

Theorem 10 (Thm. 4.8) Let X,Y be normed vector spaces. Then

(BEXY), |- [lseey)

s a normed vector space.
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Proof: See de la Fuente. m

Theorem 11 (Thm. 4.9) Let T € L(R", R™) (= B(R",R™)) with matriz A = (a;;) with

respect to the standard bases. Let

M = max{|a;;| : 1 <i<m,1<j<n}

Then

M <||T| < My/mn

Proof: See de la Fuente. m

Theorem 12 (Thm. 4.10) Let R € L(R™,R") and S € L(R™,RP). Then

150 Bl < [[STIR]

Proof: See de la Fuente. m

Define

QR") ={T € L(R",R") : T is invertible}

Theorem 13 (Thm. 4.11°) Suppose T' € L(R™,R"™) and E is the standard basis of R™.

Then

T is invertible
& kerT = {0}
& det (Mtxg(T)) #0
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& det (Mtayy(T)) # 0 for every basis V

& det (Mteyw(T)) # 0 for every pair of bases V,W

Theorem 14 (Thm. 4.12) IfS,T € Q(R"), then SoT € Q(R") and

(So T)_l =T 1lo8 !

Theorem 15 (Thm. 4.14) Let S,T € L(R",R"). If T is invertible and

1
1T =S < 57z
171

then S is invertible. In particular, Q(R") is open in L(R™,R") = B(R™,R").
Proof: See de la Fuente. m

Theorem 16 (4.15) The function (-)~' : Q(R") — Q(R™) that assigns T~ to each T €

Q(R™) is continuous.

Proof: See de la Fuente. m
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A>0,A,>0

Figure 1: If Ay, Ao > 0 and C' > 0, the level set is an ellipsoid, with principal axes in the

directions vy, vy. The length of the principal axis along v; is /C/\;.
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A >0,A, <0

V1=V [A2|/A

Figure 2: 11 € level se [§ W = [22]
b )\1 >0 2
s th i {
1 lsllsahprbol Y
a 1 h as
y ymptotes = A
1 /\? V2-
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