
Economics 204 Summer/Fall 2025

Lecture 10–Friday August 8, 2025

Diagonalization of Symmetric Real Matrices (from Handout)

Definition 1 Let

δij =


1 if i = j

0 if i ̸= j

A basis V = {v1, . . . , vn} of Rn is orthonormal if vi · vj = δij.

In other words, a basis is orthonormal if each basis element has unit length ( ∥vi∥2 = vi ·vi = 1

for each i), and distinct basis elements are perpendicular (vi · vj = 0 for i ̸= j).

Remark: Suppose that x =
∑n

j=1 αjvj where {v1, . . . , vn} is an orthonormal basis of Rn.

Then

x · vk =

 n∑
j=1

αjvj

 · vk

=
n∑

j=1

αj(vj · vk)

=
n∑

j=1

αjδjk

= αk

so

x =
n∑

j=1

(x · vj)vj

Example: The standard basis of Rn is orthonormal.
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Recall that for a real n×m matrix A, A⊤ denotes the transpose of A: the (i, j)th entry

of A⊤ is the (j, i)th entry of A. So the ith row of A⊤ is the ith column of A.

Definition 2 A real n× n matrix A is unitary if A⊤ = A−1.

Theorem 3 A real n×n matrix A is unitary if and only if the columns of A are orthonormal.

Proof: Let vj denote the jth column of A.

A⊤ = A−1 ⇐⇒ A⊤A = I

⇐⇒ vi · vj = δij ∀i, j

⇐⇒ {v1, . . . , vn} is orthonormal

If A is unitary, let V be the set of columns of A and W be the standard basis of Rn.

Since A is unitary, it is invertible, so V is a basis of Rn.

A⊤ = A−1 = MtxV,W (id)

Since V is orthonormal, the transformation between bases W and V preserves all geometry,

including lengths and angles.

Theorem 4 Let T ∈ L(Rn,Rn) and W be the standard basis of Rn. Suppose that MtxW (T )

is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis

V = {v1, . . . , vn} of Rn consisting of eigenvectors of T , so that MtxW (T ) is diagonalizable:

MtxW (T ) = MtxW,V (id) ·MtxV (T ) ·MtxV,W (id)
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where MtxV T is diagonal and the change of basis matrices MtxV,W (id) and MtxW,V (id) are

unitary.

Proof: (Sketch) The proof of the theorem requires a lengthy digression into the linear algebra

of complex vector spaces. Here is a very brief outline.

1. Let M = MtxW (T ).

2. The inner product in Cn is defined as follows:

x · y =
n∑

j=1

xj · yj

where c̄ denotes the complex conjugate of any c ∈ C; note that this implies that

x · y = y · x. The usual inner product in Rn is the restriction of this inner product on

Cn to Rn.

3. Given any complex matrix A, define A∗ to be the matrix whose (i, j)th entry is aji;

in other words, A∗ is formed by taking the complex conjugate of each element of the

transpose of A. It is easy to verify that given x, y ∈ Cn and a complex n × n matrix

A, Ax · y = x · A∗y. Since M is real and symmetric, M∗ = M .

4. If M is real and symmetric, and λ ∈ C is an eigenvalue of M , with eigenvector x ∈ Cn,

then

λ|x|2 = λ(x · x)

= (λx) · x

= (Mx) · x
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= x · (M∗x)

= x · (Mx)

= x · (λx)

= (λx) · x

= λ(x · x)

= λ|x|2

= λ̄|x|2

which proves that λ = λ̄, hence λ ∈ R.

5. IfM is real (not necessarily symmetric) and λ ∈ R is an eigenvalue, then det(M−λI) =

0 ⇒ ∃v ∈ Rn s.t. (M − λI)v = 0, so there is at least one real eigenvector. Symmetry

implies that, if λ has multiplicity m, there are m independent real eigenvectors corre-

sponding to λ (but unfortunately we don’t have time to show this). Thus, there is a

basis of eigenvectors, hence M is diagonalizable over R.

6. If M is real and symmetric, eigenvectors corresponding to distinct eigenvalues are

orthogonal: Suppose that Mx = λx and My = ρy with ρ ̸= λ. Then

λ(x · y) = (λx) · y

= (Mx) · y

= (Mx)⊤y

=
(
x⊤M⊤

)
y

=
(
x⊤M

)
y
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= x⊤(My)

= x⊤(ρy)

= x · (ρy)

= ρ(x · y)

so (λ− ρ)(x · y) = 0; since λ− ρ ̸= 0, we must have x · y = 0.

7. Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:

• Let Xλ = {x ∈ Rn : Mx = λx}, the set of all eigenvectors corresponding to λ.

Notice that if Mx = λx and My = λy, then

M(αx+ βy) = αMx+ βMy = αλx+ βλy = λ(αx+ βy)

so Xλ is a vector subspace. Thus, given any basis of Xλ, we wish to find an

orthonormal basis ofXλ; all elements of this orthonormal basis will be eigenvectors

corresponding to λ.

• Suppose Xλ is m-dimensional and we are given independent vectors x1, . . . , xm ∈

Xλ. The Gram-Schmidt method finds an orthonormal basis {v1, . . . , vm} for Xλ.

• Let v1 =
x1

|x1| . Note that |v1| = 1.

• Suppose we have found an orthonormal set {v1, . . . , vk} such that span {v1, . . . , vk} =

span {x1, . . . , xk}, with k < m. Let

yk+1 = xk+1 −
k∑

j=1

(xk+1 · vj)vj, vk+1 =
yk+1

|yk+1|

•

span {v1, . . . , vk+1} = span {v1, . . . , vk, vk+1}
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= span {v1, . . . , vk, yk+1}

= span {v1, . . . , vk, xk+1}

= span {x1, . . . , xk, xk+1}

• For i = 1, . . . , k,

yk+1 · vi =

xk+1 −
k∑

j=1

(xk+1 · vj)vj

 · vi

= xk+1 · vi −
K∑
j=1

(xk+1 · vj)(vj · vi)

= xk+1 · vi −
K∑
j=1

(xk+1 · vj)δij

= xk+1 · vi − xk+1 · vi

= 0

vk+1 · vi =
yk+1 · vi
|yk+1|

=
0

|yk+1|

= 0

|vk+1| =
|yk+1|
|yk+1|

= 1

Application to Quadratic Forms

Consider a quadratic form

f(x1, . . . , xn) =
n∑

i=1

αiix
2
i +

∑
i<j

βijxixj (1)
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Let

αij =


βij

2
if i < j

βji

2
if i > j

Let

A =



α11 · · · α1n

...
. . .

...

αn1 · · · αnn


so

f(x) = x⊤Ax

Example: Let

f(x) = αx2
1 + βx1x2 + γx2

2

Let

A =

 α β
2

β
2

γ


so A is symmetric and

(x1, x2)

 α β
2

β
2

γ


 x1

x2



= (x1, x2)

 αx1 +
β
2
x2

β
2
x1 + γx2


= αx2

1 + βx1x2 + γx2
2

= f(x)

Returning to the general quadratic form in Equation (1), A is symmetric, so let V =

{v1, . . . , vn} be an orthonormal basis of eigenvectors of A with corresponding eigenvalues
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λ1, . . . , λn. Then

A = U⊤DU

where D =



λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λn


and U = MtxV,W (id) is unitary

The columns of U⊤ (the rows of U) are the coordinates of v1, . . . , vn, expressed in terms of

the standard basis W .

Given x ∈ Rn, recall

x =
n∑

i=1

γivi where γi = x · vi

Then

f(x) = f
(∑

γivi
)

=
(∑

γivi
)⊤

A
(∑

γivi
)

=
(∑

γivi
)⊤

U⊤DU
(∑

γivi
)

=
(
U

∑
γivi

)⊤
D

(
U

∑
γivi

)
=

(∑
γiUvi

)⊤
D

(∑
γiUvi

)

= (γ1, . . . , γn)D



γ1

...

γn


=

∑
λiγ

2
i
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The equation for the level sets of f is

n∑
i=1

λiγ
2
i = C

• If λi ≥ 0 for all i, the level set is an ellipsoid, with principal axes in the directions

v1, . . . , vn. The length of the principal axis along vi is
√
C/λi if C ≥ 0 (if λi = 0, the

level set is a degenerate ellipsoid with principal axis of infinite length in that direction).

The level set is empty if C < 0. See Figure 1.

• If λi ≤ 0 for all i, the level set is an ellipsoid, with principal axes in the directions

v1, . . . , vn. The length of the principal axis along vi is
√
C/λi if C ≤ 0 (if λi = 0, the

level set is a degenerate ellipsoid with principal axis of infinite length in that direction).

The level set is empty if C > 0.

• If λi > 0 for some i and λj < 0 for some j, the level set is a hyperboloid. For example,

suppose n = 2, λ1 > 0, λ2 < 0. The equation is

C = λ1γ
2
1 + λ2γ

2
2

=
(√

λ1γ1 +
√
|λ2|γ2

)(√
λ1γ1 −

√
|λ2|γ2

)

This is a hyperbola with asymptotes

0 =
√
λ1γ1 +

√
|λ2|γ2

⇒ γ1 = −
√
|λ2|
λ1

γ2

0 =
(√

λ1γ1 −
√
|λ2|γ2

)
⇒ γ1 =

√
|λ2|
λ1

γ2

See Figure 2. This proves the following corollary of Theorem 4.
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Corollary 5 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if λi ≥ 0 for all i; the level sets of f are

ellipsoids with principal axes aligned with the orthonormal eigenvectors v1, . . . , vn.

2. f has a global maximum at 0 if and only if λi ≤ 0 for all i; the level sets of f are

ellipsoids with principal axes aligned with the orthonormal eigenvectors v1, . . . , vn.

3. If λi < 0 for some i and λj > 0 for some j, then f has a saddle point at 0; the level

sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors

v1, . . . , vn.

Section 3.4. Linear Maps between Normed Spaces

Definition 6 Suppose X, Y are normed vector spaces and T ∈ L(X, Y ). We say T is

bounded if

∃β ∈ R s.t. ∥T (x)∥Y ≤ β∥x∥X ∀x ∈ X

Note this implies that T is Lipschitz with constant β.

Theorem 7 (Thms. 4.1, 4.3) Let X, Y be normed vector spaces and T ∈ L(X, Y ). Then

T is continuous at some point x0 ∈ X

⇐⇒ T is continuous at every x ∈ X

⇐⇒ T is uniformly continuous on X
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⇐⇒ T is Lipschitz

⇐⇒ T is bounded

Proof: Suppose T is continuous at x0. Fix ε > 0. Then there exists δ > 0 such that

∥z − x0∥ < δ ⇒ ∥T (z)− T (x0)∥ < ε

Now suppose x is any element ofX. If ∥y−x∥ < δ, let z = y−x+x0, so ∥z−x0∥ = ∥y−x∥ < δ.

∥T (y)− T (x)∥

= ∥T (y − x)∥

= ∥T (y − x+ x0 − x0))∥

= ∥T (z)− T (x0)∥

< ε

which proves that T is continuous at every x, and uniformly continuous.

We claim that T is bounded if and only if T is continuous at 0. Suppose T is not bounded.

Then

∃{xn} s.t. ∥T (xn)∥ > n∥xn∥ ∀n

Note that xn ̸= 0. Let ε = 1. Fix δ > 0 and choose n such that 1
n
< δ. Let

x′
n =

xn

n∥xn∥

∥x′
n∥ =

∥xn∥
n∥xn∥

=
1

n

< δ
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∥T (x′
n)− T (0)∥ = ∥T (x′

n)∥

=
1

n∥xn∥
∥T (xn)∥

>
n∥xn∥
n∥xn∥

= 1

= ε

Since this is true for every δ, T is not continuous at 0. Therefore, T continuous at 0 implies

T is bounded. Now, suppose T is bounded, so find M such that ∥T (x)∥ ≤ M∥x∥ for every

x ∈ X. Given ε > 0, let δ = ε/M . Then

∥x− 0∥ < δ ⇒ ∥x∥ < δ

⇒ ∥T (x)− T (0)∥ = ∥T (x)∥ < Mδ

⇒ ∥T (x)− T (0)∥ < ε

so T is continuous at 0.

Thus, we have shown that continuity at some point x0 implies uniform continuity, which

implies continuity at every point, which implies T is continuous at 0, which implies that T

is bounded, which implies that T is continuous at 0, which implies that T is continuous at

some x0, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M . Then

∥T (x)− T (y)∥ = ∥T (x− y)∥

≤ M∥x− y∥

so T is Lipschitz with constant M ; conversely, if T is Lipschitz with constant M , then T is
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bounded with constant M . So all the statements are equivalent.

Every linear map on a finite-dimensional normed vector space is bounded (and thus contin-

uous, uniformly continuous, and Lipschitz continuous).

Theorem 8 (Thm. 4.5) Let X, Y be normed vector spaces with dimX = n. Every

T ∈ L(X, Y ) is bounded.

Proof: See de la Fuente.

Definition 9 A topological isomorphism between normed vector spaces X and Y is a linear

transformation T ∈ L(X, Y ) that is invertible (one-to-one, onto), continuous, and has a

continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological

isomorphism T : X → Y .

Suppose X and Y are normed vector spaces. We define

B(X, Y ) = {T ∈ L(X, Y ) : T is bounded}

∥T∥B(X,Y ) = sup

{
∥T (x)∥Y
∥x∥X

, x ∈ X, x ̸= 0

}

= sup{∥T (x)∥Y : ∥x∥X = 1}

Theorem 10 (Thm. 4.8) Let X, Y be normed vector spaces. Then

(
B(X, Y ), ∥ · ∥B(X,Y )

)

is a normed vector space.
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Proof: See de la Fuente.

Theorem 11 (Thm. 4.9) Let T ∈ L(Rn,Rm) (= B(Rn,Rm)) with matrix A = (aij) with

respect to the standard bases. Let

M = max{|aij| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

Then

M ≤ ∥T∥ ≤ M
√
mn

Proof: See de la Fuente.

Theorem 12 (Thm. 4.10) Let R ∈ L(Rm,Rn) and S ∈ L(Rn,Rp). Then

∥S ◦R∥ ≤ ∥S∥∥R∥

Proof: See de la Fuente.

Define

Ω(Rn) = {T ∈ L(Rn,Rn) : T is invertible}

Theorem 13 (Thm. 4.11’) Suppose T ∈ L(Rn,Rn) and E is the standard basis of Rn.

Then

T is invertible

⇔ kerT = {0}

⇔ det (MtxE(T )) ̸= 0
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⇔ det (MtxV,V (T )) ̸= 0 for every basis V

⇔ det (MtxV,W (T )) ̸= 0 for every pair of bases V,W

Theorem 14 (Thm. 4.12) If S, T ∈ Ω(Rn), then S ◦ T ∈ Ω(Rn) and

(S ◦ T )−1 = T−1 ◦ S−1

Theorem 15 (Thm. 4.14) Let S, T ∈ L(Rn,Rn). If T is invertible and

∥T − S∥ <
1

∥T−1∥

then S is invertible. In particular, Ω(Rn) is open in L(Rn,Rn) = B(Rn,Rn).

Proof: See de la Fuente.

Theorem 16 (4.15) The function (·)−1 : Ω(Rn) → Ω(Rn) that assigns T−1 to each T ∈

Ω(Rn) is continuous.

Proof: See de la Fuente.
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v1

v2

√ c/λ2

√ c/λ1

λ1 > 0, λ2 > 0

Figure 1: If λ1, λ2 > 0 and C > 0, the level set is an ellipsoid, with principal axes in the

directions v1, v2. The length of the principal axis along vi is
√
C/λi.
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v1

v2

λ1 > 0, λ2 < 0

γ1 = √ |λ2|/λ1

Figure 2: If λ1 > 0 and λ2 < 0, the level set is a hyperbola with asymptotes γ1 =
√

|λ2|
λ1

γ2.
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