Economics 204 Summer/Fall 2025

Lecture 11-Monday August 11, 2025

Sections 4.1-4.3 (Unified)

Definition 1 Let f: I — R, where I C R is an open interval. f is differentiable at x € I if

i fE ) = fl@) _
h—0

for some a € R.

This is equivalent to da € R such that:

[z +h) = (f(x) + ah)

H h =0
h) — h
& Ve>030>0st. 0<|h|<d= flw+h) h(f(x)+a ) <e
h) — h
& Ve>030>0st. 0< || <d= G+ h) |]§|f(x)+a ) <e
o W)~ (@) )]
h—0 |h|
Recall that the limit considers h near zero, but not h = 0.
Definition 2 If X C R" is open, f : X — R™ is differentiable at x € X if!
— T
A, € LR R™) st. Gim_ LEFR U@ LMD, (1)

h—0,heR™ | h\

f is differentiable if it is differentiable at all x € X.

'Recall | - | denotes the Euclidean distance.



Note that T} is uniquely determined by Equation (1). h is a small, nonzero element
of R"; h — 0 from any direction, from above, below, along a spiral, etc. The definition
requires that one linear operator T, works no matter how h approaches zero. In this case,

f(z) + T,(h) is the best linear approximation to f(x + h) for small h.
Notation:
e y=0O(|h|") as h — 0 — read “y is big-Oh of |h|"” — means
JK,6 > 0s.t. |h| <0 =|y| < K|h|"

e y=o0(|h|") as h — 0 — read “y is little-oh of |h|"” — means

oyl
ha0|h|”

0

Note that the statement y = O(|h|"™!) as h — 0 implies y = o(|h|") as h — 0.

Also note that if y is either O(|h|™) or o(|h|™), then y — 0 as h — 0; the difference in

whether y is “big-Oh” or “little-oh” tells us something about the rate at which y — 0.

Using this notation, note that f is differentiable at = < 37, € L(R"™, R™) such that

fx+h)= f(x)+T.(h)+o(h) as h — 0

Notation:

e df, is the linear transformation T},

e Df(x) is the matrix of df, with respect to the standard basis.

This is called the Jacobian or Jacobian matrix of f at x
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o Er(h) = f(x+h)— (f(z)+df.(h)) is the error term

Using this notation,

f is differentiable at x < E;(h) = o(h) as h — 0

Now compute Df(z) = (a;;). Let {ei,...,e,} be the standard basis of R". Look in

direction e; (note that |ye;| = |v]).

o(v) = flz+e;)— (f(x)+ Tulve;))

0
all DY al] DY aln 0
= fle+vye) = | flo)+| + -+ o ~
aml DY a/m‘] DY amn 0
0
Ya,;
= fle+e) — [ fl2) +
Ylmg
Fori=1,...,m, let f* denote the i** component of the function f:

fila +vey) — (fl(l’) + 7%’) = o(7)
oft

SO a;; = ()

(‘31;]-




Theorem 3 (Thm. 3.3) Suppose X C R" is open and f : X — R™ is differentiable at

reX. Thenngi_existsatxforlgigm,lgjgn, and
J

Woz) - o(x)
Df(x) =
U () - U(x)

i.e. the Jacobian at x is the matrix of partial derivatives at x.

Remark: If f is differentiable at x, then all first-order partial derivatives ngi- exist at z.
J
However, the converse is false: existence of all the first-order partial derivatives does not

imply that f is differentiable. The missing piece is continuity of the partial derivatives:

Theorem 4 (Thm. 3.4) If all the first-order partial derivatives ng% 1<i<m,1<j5<

n) ezist and are continuous at x, then f is differentiable at x.

Directional Derivatives:

Suppose X C R™ open, f: X — R™ is differentiable at z, and |u| = 1.

f(x+u) = (f(x) + Tp(yu)) = o(y) as vy = 0
= [z +yu) = (f(x) +7Te(u) = o(y) as v — 0

i.e. the directional derivative in the direction u (with |u| = 1) is

Df(x)u e R™



Theorem 5 (Thm. 3.5, Chain Rule) Let X C R", Y C R™ be open, f : X — Y,
g:Y - RP. Letxg € X and F = go f. If f is differentiable at xo and g is differentiable at

f(xg), then F = go f is differentiable at xy and
deo = dgf(xo) © dfxo
(composition of linear transformations)

DF(x9) = Dg(f(z0))Df(x0)

(matriz multiplication)

Remark: The statement is exactly the same as in the univariate case, except we replace the
univariate derivative by a linear transformation. The proof is more or less the same, with a

bit of linear algebra added.

Theorem 6 (Thm. 1.7, Mean Value Theorem, Univariate Case) Leta,b € R. Sup-
pose f : [a,b] — R is continuous on |a,b] and differentiable on (a,b). Then there exists

c € (a,b) such that

that s, such that

Then g(a) =0 = g(b). See Figure 1. Note that for x € (a,b),

f(b) — fla)
b—a



so it suffices to find ¢ € (a, b) such that ¢'(c) = 0.

Case I If g(z) = 0 for all z € [a, b], choose an arbitrary ¢ € (a,b), and note that ¢'(c) = 0,

so we are done.

Case II: Suppose g(z) > 0 for some x € [a,b]. Since g is continuous on [a, b], it attains
its maximum at some point ¢ € (a,b). Since g is differentiable at ¢ and ¢ is an interior point

of the domain of g, we have ¢'(¢) = 0, and we are done.

Case IIL: If g(z) < 0 for some z € [a,b], the argument is similar to that in Case II. m

Remark: The Mean Value Theorem is useful for estimating bounds on functions and error

terms in approximation of functions.

Notation:
Ux,y) ={ax+(1—a)y:a€0,1]}

is the line segment from z to y.

Theorem 7 (Mean Value Theorem) Suppose f : R" — R is differentiable on an open

set X CR™, z,y € X and l(xz,y) C X. Then there exists z € {(x,y) such that

fly) = f(x) = Df(2)(y — =)

Remark: This statement is different from Theorem 3.7 in de la Fuente. Notice that the
statement is exactly the same as in the univariate case. For f : R" — R™, we can apply the

Mean Value Theorem to each component, to obtain zi, ..., 2z, € ¢(x,y) such that

i) = f'(@) = Df'(z)(y —x)

6



However, we cannot find a single z which works for every component. Note that each

z; € l(x,y) C R"; there are m of them, one for each component in the range.

The following result plays the same role in estimating function values and error terms for

functions taking values in R™ as the Mean Value Theorem plays for functions from R to R.

Theorem 8 Suppose X C R™ is open and f : X — R™ s differentiable. If v,y € X and

l(x,y) C X, then there exists z € £(x,y) such that

[f(y) = f(o)] < df(y — )|

< |ldfellly — |

Remark: To understand why we don’t get equality, consider f : [0,1] — R? defined by
f(t) = (cos 2wt sin 27t)

f maps [0, 1] to the unit circle in R?. Note that f(0) = f(1) = (1,0), so |f(1) — f(0)| = 0.

However, for any z € [0, 1],

|df.(1 —0)| = |27(—sin27z,cos2mz)|
= 27r\/ sin’ 27z + cos? 2wz
= 27

Section 4.4. Taylor’s Theorem

Theorem 9 (Thm. 1.9, Taylor’s Theorem in R') Let f : I — R be n-times differen-

tiable, where I C R is an open interval. If x,x + h € I, then

n—1 r(k) hk
feen) =+ IoP e,
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where f*) is the k'™ derivative of f and

SO (x4 AR)RT

E,
n!

for some A € (0,1)

Motivation: Let

n_£R) () RE
Tu(h) = f(x)+ l;f]ijh
" x 2 (n) x)h?
= f(l’)—i-f/(x)h—i—f (2)h _|_..._|_f7(1!)h
7.0) = f(@)
(n) T n—1
T,(h) = f'(z)+ f"(z)h+ +f(n(—)l11)u
T,0) = f'(x)
f(”)(x)hn—Q

Ti(h) = f'(x)+-+

The proof of the formula for the remainder F,, is essentially the Mean Value Theorem:;
the problem in applying it is that the point x 4+ AA is not known in advance.
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Theorem 10 (Alternate Taylor’s Theorem in R!') Let f : I — R be n times differen-

tiable, where I C R is an open interval and x € I. Then

f(a:+h):f(x)+zn:W+o(h") as h — 0
k=1 :

If [ is (n+ 1) times continuously differentiable (i.e. all derivatives up to order n + 1 exist

and are continuous), then

fth) = fla)+ 3 DR

k=1

+0 (h”“) as h =0

Remark: The first equation in the statement of the theorem is essentially a restatement of
the definition of the n** derivative. The second statement is proven from Theorem 1.9, and
the continuity of the derivative, hence the boundedness of the derivative on a neighborhood

of z.

Definition 11 Let X C R” be open. A function f : X — R™ is continuously differentiable

on X if

e f is differentiable on X and

e df, is a continuous function of z from X to L(R"™, R™), with operator norm ||df,||

f is C* if all partial derivatives of order less than or equal to k exist and are continuous in

X.

Theorem 12 (Thm. 4.3) Suppose X C R™ is open and f: X — R™. Then f is continu-
ously differentiable on X if and only if f is C*.
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Remark: The notation in Taylor’s Theorem is difficult. If f : R* — R™, the quadratic
terms are not hard for m = 1; for m > 1, we handle each component separately. For cubic

and higher order terms, the notation is a mess.

Linear Terms:

Theorem 13 Suppose X C R"™ is open and x € X. If f : X — R™ 1is differentiable, then

fx+h)=f(x)+ Df(x)h+o(h) as h — 0
The previous theorem is essentially a restatement of the definition of differentiability.

Theorem 14 (Corollary of 4.4) Suppose X C R"™ is open and x € X. If f: X — R™ is
C?, then

fx+h) = f(z)+ Df(@)h+ O (|h?) ash—0

Quadratic Terms:

We treat each component of the function separately, so consider f: X — R, X C R" an

open set. Let

82 f o2 f 0% f
8727%(1’1) Ox2011 (l’) T Bznom (l’)
82f 82]“ 82f

D*f(z) = e (@) Hz@) o g (@)

o 2
@ e
feC® = o 77
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= D?f(x) is symmetric
= D?f(x) has an orthonormal basis of eigenvectors

and thus can be diagonalized

Theorem 15 (Stronger Version of Thm. 4.4) Let X C R" be open, f : X - R, f €

C*(X), and x € X. Then
flx+n) = f(z)+ Df(zx)h + ;hT(D2f(x))h +o(|h?) ash—0
If feC?

flz+h) = f(z)+ Df(x)h+ ;hT(sz(x))h +0 (|h*) ash—0

Remark: de la Fuente assumes X is convex. X is said to be convez if, for every xz,y € X

and a € [0,1], ar + (1 — a)y € X. Notice we don’t need this. Since X is open,
re€X =30>0st Bs(z) C X

and Bs(x) is convex.

Definition 16 We say f has a saddle at = if Df(x) = 0 but f has neither a local maximum

nor a local minimum at z.

Corollary 17 Suppose X C R" is open and v € X. If f : X — R is C?, then there is
an orthonormal basis {v1,...,v,} and corresponding eigenvalues M1, ..., \, € R of D*f(z)

such that

flx+h) = flz+ynv+--+70)

n

= S+ X DI+ 5> A o (1)

i=1 i=1
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where v; = h - v;.

1. If f € C3, we may strengthen o (|v[*) to O (|7]?).

2. If f has a local maximum or local minimum at x, then

Df(x)=0
3. If Df(x) =0, then
Ay A >0 = f has a local minimum at x
AMyoo s A <0 = f has a local maximum at x

Ai <0 for some i, \j >0 for some j = f has a saddle at x
Aoy Ap >0, N\ >0 for somei = f has a local minimum
or a saddle at x
A, A <0, N <0 for some i = f has a local maximum
or a saddle at x

AM=--=X=0 gives no information.

Proof: (Sketch) From our study of quadratic forms, we know the behavior of the quadratic
terms is determined by the signs of the eigenvalues. If \; = 0 for some i, then we know
that the quadratic form arising from the second partial derivatives is identically zero in the
direction v;, and the higher derivatives will determine the behavior of the function f in the
direction v;. For example, if f(z) = 2?3, then f/(0) = 0, f”(0) = 0, but we know that f has
a saddle at x = 0; however, if f(z) = z*, then again f’(0) = 0 and f”(0) = 0 but f has a
local (and global) minimum at z = 0.m
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f(b)

f(a)

Figure 1: The Mean Value Theorem.
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