
Economics 204 Summer/Fall 2025

Lecture 12–Tuesday August 12, 2025

Inverse and Implicit Function Theorems, and Generic Methods:

In this lecture we develop some of the most important concepts and tools for comparative

statics. In many problems we are interested in how endogenously determined variables are

affected by exogenously given parameters. Here we study problems in which the variables of

interest are characterized as solutions to a parameterized family of equations.

To formalize, let X ⊆ Rn and A ⊆ Rp be open, and let f : X × A → Rm. For a given

a ∈ A, consider solutions x ∈ X to the family of equations

f(x, a) = 0

We want to characterize the set of solutions and study how this set depends on the parameter

a.

We start with a simple example, to which we return throughout the lecture. Consider

the function f : (0, 2π)×R → R defined by

f(x, a) = sin x+ a

Let X = (0, 2π). For fixed a, let fa(x) = f(x, a) = sinx+ a denote the perturbed function.

We are interested in the solutions x ∈ (0, 2π) to the equation

fa(x) = f(x, a) = sin x+ a = 0
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that is, the x ∈ (0, 2π) such that

sinx = −a

Let Ψ : A → 2X denote the solution correspondence, so

Ψ(a) = {x ∈ (0, 2π) : fa(x) = sinx+ a = 0}

Start with a = 0. For x ∈ (0, 2π),

f0(x) = sinx = 0 ⇐⇒ x = π

so Ψ(0) = {π}. Notice that for x near π, for example in the neighborhood (π/2, 3π/2), and

for a near 0, sin−1(a) remains single-valued and depends smoothly on a. In addition, we can

predict the direction of change: x is increasing in a. See Figure 1.

Now consider a = 1. For x ∈ (0, 2π),

f1(x) = sinx+ 1 = 0

⇐⇒ sinx = −1

⇐⇒ x =
3π

2

So Ψ(1) = {3π/2}. But note that for a′ > 1, Ψ(a′) = ∅, while for a < 1 close to 1, there are

two solutions near 3π/2, one above and one below 3π/2. Ψ is not lower hemicontinuous at

a = 1; see Figure 2. In this case, comparative statics predictions are problematic.

What distinguishes problems for which local comparative statics predictions are possible,

as in the case a = 0, from those for which comparative statics are impossible, as in the case

a = 1? The results of this lecture will provide some techniques for answering these questions.
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f0(x) = sin x

f-a (x) = sin x - a

fa (x) = sin x + a

Figure 1: Near x = π and a = 0 there is a unique solution to sinx+a = 0, which is increasing

in a.

Section 4.3 (Conclusion). Regular and Critical Points and Values

We start with an accounting point.

Suppose X ⊆ Rn is open. Suppose f : X → Rm is differentiable at x ∈ X, and let

W = {e1, . . . , en} denote the standard basis of Rn. Then dfx ∈ L(Rn,Rm), and

Rank dfx = dim Im (dfx)

= dim span {dfx(e1), . . . , dfx(en)}

= dim span {Df(x)e1, . . . , Df(x)en}

= dim span {column 1 of Df(x), . . . , column n of Df(x)}

= RankDf(x)
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f1 (x) = sin x + 1

fa (x) = sin x + a

fa’ (x) = sin x + a’

Figure 2: Near x = 3π
2

and a = 1, there is not a unique solution to sin x + a = 0 and the

solution correspodence is not lower hemicontinuous in a.

Thus,

Rank dfx ≤ min{m,n}

We say dfx has full rank if Rank dfx = min{m,n}, that is, is dfx has maximum possible rank.

Definition 1 Suppose X ⊆ Rn is open. Suppose f : X → Rm is differentiable on X.

• x is a regular point of f if Rank dfx = min{m,n}.

• x is a critical point of f if Rank dfx < min{m,n}.

• y is a critical value of f if there exists x ∈ f−1(y) such that x is a critical point of f .

• y is a regular value of f if y is not a critical value of f
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Remark: The definition of regular point and critical point above are the standard ones. In

de la Fuente (as well as in Mas-Colell, Whinston, and Green) a different definition is given,

in which m is used in place of min{m,n}. This implicitly assumes that m ≤ n. Notice

that if m ≤ n, so the domain of f has dimension greater than the range, then the two are

equivalent. If instead m > n, so the domain of f has dimension smaller than the range,

then since Rank dfx ≤ min{m,n} = n < m, every x ∈ X will be a critical point in the de la

Fuente and MWG definitions, and every y ∈ f(X) will be a critical value. In contrast, the

definition above labels a point regular if Df(x) has maximal rank, and critical otherwise.

Remark: Notice that if y ̸∈ f(X), so f−1(y) = ∅, then y is automatically a regular value of

f .

Example: Consider the function g : (0, 2π) → R defined by

g(x) = sin x

Then g = f0 from our opening example. Note that g′(x) = cosx, so g′(x) = 0 for x = π/2

and x = 3π/2. Dg(x) is the 1× 1 matrix (g′(x)), so Rank dgx = RankDg(x) = 1 if and only

if g′(x) ̸= 0. Thus, the critical points of g are π/2 and 3π/2, and the set of regular points of

g is (
0,

π

2

)
∪

(
π

2
,
3π

2

)
∪

(
3π

2
, 2π

)

The critical values of g are g(π/2) = sin(π/2) = 1 and g(3π/2) = sin(3π/2) = −1, and

the set of regular values of g is

(−∞,−1) ∪ (−1, 1) ∪ (1,∞)
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In particular, notice that 0 is not a critical value of g.

Given a ∈ R, as above consider the perturbed function

fa(x) = g(x) + a

Notice that f ′
a(x) = g′(x), so the critical points of fa are the same as those of g, π/2 and

3π/2.

For a close to zero, the solution to the equation

fa(x) = 0

near x = π moves smoothly with respect to changes in a. Notice that the direction the

solution moves is determined by the sign of f ′
a.

Now let a = 1. Since 3π/2 is a critical point of f1, 0 is a critical value of f1.

Inverse Function Theorem:

Theorem 2 (Thm. 4.6, Inverse Function Theorem) Suppose X ⊆ Rn is open, f :

X → Rn is C1 on X, and x0 ∈ X. If detDf(x0) ̸= 0 (i.e. x0 is a regular point of f) then

there are open neighborhoods U of x0 and V of f(x0) such that

f : U → V is one-to-one and onto

f−1 : V → U is C1

Df−1(f(x0)) = [Df(x0)]
−1

If in addition f ∈ Ck, then f−1 ∈ Ck.
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Proof: Read the proof in de la Fuente. This is pretty hard. The idea is that since

detDf(x0) ̸= 0, then dfx0 : Rn → Rn is one-to-one and onto. You need to find a neighbor-

hood U of x0 sufficiently small such that the Contraction Mapping Theorem implies that f

is one-to-one and onto.

To see the formula for Df−1, let idU denote the identity function from U to U and I

denote the n× n identity matrix. Then

Df−1(f(x0))Df(x0) = D(f−1 ◦ f)(x0)

= D( idU(x0))

= I

⇒ Df−1(f(x0)) = [Df(x0)]
−1

Remark: f is one-to-one only on U ; it need not be one-to-one globally. Thus f−1 is only a

local inverse.

Example: Let g : (0, 2π) → R be given by g(x) = sinx as above, and let x0 = π. Then

g′(x0) = cos π = −1 ̸= 0, so by the inverse function theorem there exists an open set

U ⊆ (0, 2π) with π ∈ U , an open set V ⊆ R with 0 = g(π) ∈ V and a C1 function

h : V → U such that g(h(v)) = v for all v ∈ V .

Notice that at x = 3π/2, g′(x) = cos(3π/2) = 0, and g has no local inverse function there:

for every open neighborhood U of 3π/2 and every open neighborhood V of −1 = g(3π/2),

there exists v ∈ V and x1 ̸= x2 ∈ U such that g(x1) = sinx1 = v = sinx2 = g(x2).
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Remark: Read Section 4.5 on your own.

Section 5.2. Implicit Function Theorem

Theorem 3 (Thm. 2.2, Implicit Function Theorem) Suppose X ⊆ Rn and A ⊆ Rp

are open and f : X × A → Rn is C1. Suppose f(x0, a0) = 0 and det(Dxf(x0, a0)) ̸= 0, i.e.

x0 is a regular point of f(·, a0). Then there are open neighborhoods U of x0 (U ⊆ X) and

W of a0 such that

∀a ∈ W ∃!x ∈ U s.t. f(x, a) = 0

For each a ∈ W let g(a) be that unique x. Then g : W → X is C1 and

Dg(a0) = − [Dxf(x0, a0)]
−1 [Daf(x0, a0)]

If in addition f ∈ Ck, then g ∈ Ck.

Proof: Use the Inverse Function Theorem in the right way. Why is the formula for Dg

correct? Assuming the implicit function exists and is differentiable,

0 = Df(g(a), a)(a0)

= Dxf(x0, a0)Dg(a0) +Daf(x0, a0)

Dg(a0) = −[Dxf(x0, a0)]
−1Daf(x0, a0)

The following argument outlines the proof that g is differentiable:

f(x0, a0 + h) = f(x0, a0) +Daf(x0, a0)h+ o(h)

= Daf(x0, a0)h+ o(h)
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Solve for ∆x that brings f back to zero:

0 = f(x0 +∆x, a0 + h)

= f(x0, a0 + h) +Dxf(x0, a0 + h)∆x+ o(∆x)

= f(x0, a0) +Daf(x0, a0)h+Dxf(x0, a0 + h)∆x+ o(∆x) + o(h)

= Daf(x0, a0)h+Dxf(x0, a0 + h)∆x+ o(∆x) + o(h)

Dxf(x0, a0 + h)∆x = −Daf(x0, a0)h+ o(∆x) + o(h)

Because f is C1 and the determinant is a continuous functions of the entries of the matrix,

detDxf(x0, a0 + h) ̸= 0 for h sufficiently small, so

∆x = − [Dxf(x0, a0 + h)]−1Daf(x0, a0)h+ o(∆x) + o(h)

= − [Dxf(x0, a0) + o(1)]−1Daf(x0, a0)h+ o(∆x) + o(h) since f ∈ C1

= − [Dxf(x0, a0)]
−1Daf(x0, a0)h+ o(∆x) + o(h) since f ∈ C1

Then

|∆x+ o(∆x)| = O(h)

⇒ |∆x| = O(h)

⇒ o(∆x) = o(h)

⇒ ∆x = − [Dxf(x0, a0)]
−1Daf(x0, a0)h+ o(h)

By the definition of the derivative,

Dg(a0) = − [Dxf(x0, a0)]
−1Daf(x0, a0)
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Corollary 4 Suppose X ⊆ Rn and A ⊆ Rp are open and f : X × A → Rn is C1. If 0 is a

regular value of f(·, a0), then the correspondence

a 7→ {x ∈ X : f(x, a) = 0}

is lower hemicontinuous at a0.

Proof: If 0 is a regular value of f(·, a0), then given any x0 ∈ {x ∈ X : f(x, a0) = 0},

we can find a local implicit function g; in other words, if a is sufficiently close to a0, then

g(a) ∈ {x ∈ X : f(x, a) = 0}; the continuity of g then shows that the correspondence

{x ∈ X : f(x, a) = 0} is lower hemicontinuous at a0.

Example: Again we return to our opening example: f : (0, 2π) × R → R defined by

f(x, a) = sinx + a. Let x0 = π and a0 = 0. Then f(x0, a0) = sinπ = 0 and Dxf(x0, a0) =

cos π = −1 ̸= 0. So x0 = π is a regular point of f(·, a0). By the Implicit Function Theorem,

there are open neighborhoods U containing π and W containing 0 and a C1 function h :

W → U such that f(h(a), a) = 0 for every a ∈ W and such that

Dh(a0) = −[cosπ]−1 · 1 = 1

So the local solution is increasing in a near a0 (as we saw above).

Again notice that at x = 3π/2 and a = 1, Dxf(x, a) = 0 and no local implicit function

exists: for every open neighborhood U of 3π/2 and W of 1, for any a′ > 1 there are no

x′ ∈ U such that f(x′, a′) = sinx′ + a′ = 0.

Transversality and Genericity
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Definition 5 Suppose A ⊆ Rn. A has Lebesgue measure zero if for every ε > 0 there is a

countable collection of rectangles I1, I2, . . . such that

∞∑
k=1

Vol (Ik) < ε and A ⊆
∞⋃
k=1

Ik

Here by a rectangle we mean Ik = ×n
j=1(a

k
j , b

k
j ) for some akj < bkj ∈ R, and

Vol (Ik) =
n∏

j=1

|bkj − akj |

Notice that this defines Lebesgue measure zero without defining Lebesgue measure.

Examples:

1. “Lower-dimensional” sets have Lebesgue measure zero. For example,

A = {x ∈ R2 : x2 = 0}

has measure zero. See Figure 3.

2. Any finite set has Lebesgue measure zero in Rn.

3. If An has Lebesgue measure zero ∀n then ∪n∈NAn has Lebesgue measure zero.

4. Q and every countable set has Lebesgue measure zero.

5. No open set in Rn has Lebesgue measure zero.

If O ⊂ Rn is open, then there exists a rectangle R such that R̄ ⊆ O and such that

Vol (R) = r > 0. If {Ij} is any collection of rectangles such that O ⊆ ∪∞
j=1Ij, then

R̄ ⊆ O ⊆ ∪∞
j=1Ij, so

∑∞
j=1 Vol (Ij) ≥ Vol (R) = r > 0. See Figure 4.
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This is a natural formulation of the notion that A is a small set. Without specifying a

probability measure explicitly, this expresses the idea that if x ∈ Rn is chosen at random,

the probability that x ∈ A is zero.

A function may have many critical points; for example, if a function is constant on an

interval, then every element of the interval is a critical point. But it can’t have many critical

values.1

Theorem 6 (Thm. 2.4, Sard’s Theorem) Let X ⊆ Rn be open, and f : X → Rm be Cr

with r ≥ 1 + max{0, n −m}. Then the set of all critical values of f has Lebesgue measure

zero.

Proof: First, we give a false proof that conveys the essential idea as to why the theorem

is true; it can be turned into a correct proof. Suppose m = n. Let C be the set of critical

points of f , V the set of critical values. Then

Vol (V ) = Vol (f(C))

≤
∫
C
| detDf(x)| dx (equality if f is one-to-one)

=
∫
C
0 dx

= 0

Now, we outline how to turn this into a proof. First, show that we can write X = ∪j∈NXj,

where each Xj is a compact subset of [−j, j]n. Let Cj = C ∩Xj. Fix j for now. Since f is

1If m > n, then every x ∈ X is critical using de la Fuente’s definition, because RankDf(x) ≤ n < m.

Thus, every y ∈ f(X) is a critical value, using de la Fuente’s definition. This does not contradict Sard’s

Theorem, since one can show that f(X) is a set of Lebesgue measure zero when m > n and f ∈ C1.
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C1,

xk → x ⇒ detDf(xk) → detDf(x)

{xk} ⊆ Cj, xk → x ⇒ detDf(x) = 0 ⇒ x ∈ Cj

so Cj is closed, hence compact. Since X is open and Cj is compact, there exists δ1 > 0 such

that

Bδ1 [Cj] = ∪x∈Cj
Bδ1 [x] ⊆ X

Bδ1 [Cj] is bounded, and, using the compactness of Cj, one can show it is closed, so it is

compact. Since detDf(x) is continuous on Bδ1 [Cj], it is uniformly continuous on Bδ1 [Cj].

Then given ε > 0, we can find δ ≤ δ1 such that Bδ[Cj] ⊆ [−2j, 2j]n and

x ∈ Bδ[Cj] ⇒ | detDf(x)| ≤ ε

2 · 4njn

Then

f(Cj) ⊆ f(Bδ[Cj])

Vol (f(Bδ[Cj])) ≤
∫
[−2j,2j]n

ε

2 · 4njn
dx

=
ε

2

Since f is C1, show that f(Cj) can be covered by a countable collection of rectangles of total

volume less than ε. Since ε > 0 is arbitrary, f(Cj) has Lebesgue measure zero. Then

f(C) = f (∪j∈NCj) = ∪n∈Nf(Cj)

is a countable union of sets of Lebesgue measure zero, so f(C) has Lebesgue measure zero.
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Remark: Sard’s Theorem has a number of powerful implications. Given a randomly chosen

function f , it is very unlikely that zero will be a critical value of f . If by some fluke zero is a

critical value of f , then a slight perturbation of f will make zero a regular value. We return

to a more wide-ranging version of this statement below.

Example: Let g : (0, 2π) → R be given by g(x) = sinx. We calculated by hand above that

the set of critical values of g is {−1, 1}. Since this set is finite, it has Lebesgue measure zero.

Let g : Rn → Rn be C1. Consider the family of n equations in n variables:

g(x) = 0

For example, consider Figure 5. Here for some x such that g(x) = 0, rank (Dg(x)) < n.

That is, some x ∈ g−1(0) is a critical point of g, thus 0 is a critical value of g. By Sard’s

Theorem, almost every a ̸= 0 is a regular value of g. So for almost every a, that is for

a outside a set of Lebesgue measure 0, Dg(x) has full rank for every x ∈ g−1(a), that is,

for every x solving g(x) = a. For any such a and any x ∈ g−1(a), we can use the Inverse

Function Theorem to show that a local inverse x(a) exists, and give a formula for Dx(a).

We can rephrase this observation by thinking about a family of equations indexed by a

set of parameters as follows. Let f : Rn ×Rn → Rn be given by

f(x, a) = g(x)− a

By Sard’s Theorem, there exists a set A of Lebesgue measure zero such that for each a ̸∈ A,

Dxf(x, a) has full rank k at every x such that f(x, a) = 0. Thus 0 is a regular value of f(·, a)

for every a ̸∈ A.
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Fix a∗ ̸∈ A and x∗ such that f(x∗, a∗) = 0. By the Implicit Function Theorem, there

exist open sets A∗ containing a∗ and X∗ containing x∗, and a C1 function x : A∗ → X∗ such

that

• x(a∗) = x∗

• f(x(a), a) = 0 for every a ∈ A∗

• if (x, a) ∈ X∗ × A∗ then

f(x, a) = 0 ⇐⇒ x = x(a)

that is, x∗ is locally unique, and x(a) is locally unique for each a ∈ A∗

• Dx(a∗) = −[Dxf(x
∗, a∗)]−1Daf(x

∗, a∗)

We would like a more general result along these lines that allows for a richer class of

parameterizations in which parameters need not enter linearly, the parameter set may have

dimension different from the set of variables x, and the number of equations m might differ

from the number of endogenous variables n. This is what the Transversality Theorem gives.

Suppose f : Rn × Rp → Rm is C1. We are interested in studying the parameterized

family of equations

f(x, a) = 0

where, as above, we interpret a ∈ Rp to be a vector of parameters that indexes the function

f(·, a). For a given a, we are interested in the set of solutions {x ∈ X : f(x, a) = 0} and the

way that this correspondence depends on a. If f is separable in a, that is, f(x, a) = g(x)+a,

then we can use Sard’s Theorem, as above, but separability is not required. If f depends on
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a in a nonseparable fashion, it is enough that from any solution f(x, a) = 0, any directional

change in f can be achieved by arbitrarily small changes in x and a. This is formalized in

the Transversality Theorem.

Theorem 7 (Thm. 2.5’, Transversality Theorem) Let X ⊆ Rn and A ⊆ Rp be open,

and f : X × A → Rm be Cr with r ≥ 1 + max{0, n−m}. Suppose that 0 is a regular value

of f . Then there is a set A0 ⊆ A such that A \ A0 has Lebesgue measure zero and for all

a ∈ A0, 0 is a regular value of fa = f(·, a).

Remark: Notice the important difference between the statement that 0 is a regular value

of f (one of the assumptions of the Transversality Theorem), and the statement that 0 is a

regular value of fa for a fixed a ∈ A0 (part of the conclusion of the Transversality Theorem).

0 is a regular value of f if and only if Df(x, a) has full rank for every (x, a) such that

f(x, a) = 0. Instead, for fixed a0 ∈ A0, 0 is a regular value of fa0 = f(·, a0) if and only if

Dxf(x, a0) has full rank for every x such that fa0(x) = f(x, a0) = 0.

Remark: Consider the important special case in which n = m, so we have as many equations

(m) as endogenous variables (n). Notice that this is also the case in the example above with

linear perturbations that we analyzed using Sard’s Theorem. In this case, with n = m,

suppose f is C1 (note that 1 = 1 + max{0, n − n}). If 0 is a regular value of f , that is,

Df(x, a) has rank n = m for every (x, a) such that f(x, a) = 0, then by the Transversality

Theorem there is a set A0 ⊂ A such that A \ A0 has Lebesgue measure zero and for every

a0 ∈ A0, Dxf(x, a0) has rank n = m for all x such that f(x, a0) = 0. Fix a0 ∈ A0 and x0

such that f(x0, a0) = 0. As above, by the Implicit Function Theorem, there exist open sets
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A∗ containing a0 and X∗ containing x0, and a C1 function x : A∗ → X∗ such that

• x(a0) = x0

• f(x(a), a) = 0 for every a ∈ A∗

• if (x, a) ∈ X∗ × A∗ then

f(x, a) = 0 ⇐⇒ x = x(a)

that is, x0 is locally unique, and x(a) is locally unique for each a ∈ A∗

• Dx(a0) = −[Dxf(x0, a0)]
−1Daf(x0, a0)

Example: Again we return to the opening example: f : (0, 2π) × R → R defined by

f(x, a) = sinx + a. Then for any (x, a) such that f(x, a) = 0, Df(x, a) = (cosx, 1) which

has rank 1 = min{2, 1}. Thus 0 is a regular value of f . (Notice we have shown something

stronger, that any value c is a regular value of f , since we did not use the fact that f(x, a) =

sinx+ a = 0.) Set A0 = R \ {−1, 1}. Since {−1, 1} is a finite set, it has Lebesgue measure

zero in R. Again we have already calculated by hand that for any a ∈ A0, 0 is a regular

value of fa = f(·, a).
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Figure 3: The set A = {x ∈ R2 : x2 = 0} has Lebesgue measure zero in R2.

O

R

Figure 4: An open set O does not have Lebesgue measure zero.
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Figure 5: x1 and x2 are critical points of g. Almost every value a ̸= 0 is a regular value of g.
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