
Economics 204 Summer/Fall 2025
Lecture 15–Friday August 15, 2025

Revised to add initial condition on page 9

Second Order Linear Differential Equations

Consider the second order differential equation y′′ =
cy + by′ with b, c ∈ R.

Rewrite this as a first order linear differential equation
in two variables:

ȳ(t) =

 y(t)
y′(t)



ȳ′(t) =

 y′(t)
y′′(t)



=

 0 1
c b


 y(t)
y′(t)



=

 0 1
c b

 ȳ

The eigenvalues are b±
√
b2+4c
2 , the roots of the equation

λ2 − bλ − c = 0. The qualitative behavior of the solu-
tions can be explicitly described from the coefficients b
and c, by determining whether the eigenvalues are real or
complex, and whether the real parts are negative, zero,
or positive. See Section 6 of the Differential Equations
Handout.
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Example Consider the second order linear differential
equation

y′′ = 2y + y′

As above, let

ȳ =

 y
y′


so the equation becomes

ȳ′ =

 0 1
2 1

 ȳ
The eigenvalues are the roots of the characteristic poly-
nomial

λ2 − λ− 2 = 0

Eigenvalues and corresponding eigenvectors are given by

λ1 = 2 v1 = (1, 2)
λ2 = −1 v2 = (1,−1)

From this information alone, we know the qualitative
properties of the solutions are as given in the phase plane
diagram (see Figure 1):

• Solutions are roughly hyperbolic in shape with asymp-
totes along the eigenvectors. Along the eigenvector v1,
the solutions flow off to infinity; along the eigenvector
v2, the solutions converge to zero.

• Solutions flow in directions consistent with flows along
asymptotes
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• On the y-axis, we have y′ = 0, which means that
everywhere on the y-axis (except at the stationary
point 0), the solution must have a vertical tangent.

• On the y′-axis, we have y = 0, so we have

y′′ = 2y + y′ = y′

Thus, above the y-axis, y′′ = y′ > 0, so y′ is increasing
along the direction of the solution; below the y-axis,
y′′ = y′ < 0, so y′ is decreasing along the direction of
the solution.

• Along the line y′ = −2y, y′′ = 2y − 2y = 0, so
y′ achieves a minimum or maximum where it crosses
that line.

The general solution is given by
 y(t)
y′(t)

 = MtxU,V (id)

 e
2(t−t0) 0
0 e−(t−t0)

MtxV,U(id)

 y(t0)
y′(t0)



=

 1 1
2 −1


 e

2(t−t0) 0
0 e−(t−t0)


 1/3 1/3
2/3 −1/3


 y(t0)
y′(t0)



=

 1 1
2 −1




e2(t−t0)

3
e2(t−t0)

3
2e−(t−t0)

3 −e−(t−t0)

3


 y(t0)
y′(t0)



=



e2(t−t0)+2e−(t−t0)

3
e2(t−t0)−e−(t−t0)

3

2e2(t−t0)−2e−(t−t0)

3
2e2(t−t0)+e−(t−t0)

3




y(t0)

y′(t0)


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=



y(t0)+y′(t0)
3 e2(t−t0) + 2y(t0)−y′(t0)

3 e−(t−t0)

2y(t0)+2y′(t0)
3 e2(t−t0) + −2y(t0)+y′(t0)

3 e−(t−t0)



The general solution has two real degrees of freedom; a
specific solution is determined by specifying initial condi-
tions y(t0) and y′(t0).

Because

ȳ =

 y
y′


it is easier to find the general solution by setting

y(t) = C1e
2(t−t0) + C2e

−(t−t0)

Then

y(t0) = C1 + C2

y′(t) = 2C1e
2(t−t0) − C2e

−(t−t0)

y′(t0) = 2C1 − C2

C1 =
y(t0) + y′(t0)

3

C2 =
2y(t0)− y′(t0)

3

y(t) =
y(t0) + y′(t0)

3
e2(t−t0) +

2y(t0)− y′(t0)

3
e−(t−t0)

Inhomogeneous Linear Differential Equations
with Nonconstant Coefficients
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Consider the inhomogeneous linear differential equation

y′ = M(t)y +H(t) (1)

where M is continuous function from t to the set of n×n
matrices; and H is continuous function from t to Rn.

There is a close relationship between solutions of the
inhomogeneous linear differential equation (1) and the
associated homogeneous linear differential equation

y′ = M(t)y (2)

Theorem 1 The general solution of the inhomoge-
neous linear differential equation (1) is

yh + yp

where yh is the general solution of the homogeneous
linear differential equation (2) and yp is any partic-
ular solution of the inhomogeneous linear differential
equation (1).

Proof: Fix any particular solution yp of inhomogeneous
equation (1). Suppose yh is any solution of the corre-
sponding homogeneous equation (2). Let yi(t) = yh(t) +
yp(t).

y′i(t) = y′h(t) + y′p(t)

= M(t)yh(t) +M(t)yp(t) +H(t)

= M(t)(yh(t) + yp(t)) +H(t)

= M(t)yi(t) +H(t)
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so yi is solution of inhomogeneous equation (1).

Conversely, suppose yi is any solution of inhomogenous
equation (1). Let yh(t) = yi(t)− yp(t).

y′h(t) = y′i(t)− y′p(t)

= M(t)yi(t) +H(t)−M(t)yp(t)−H(t)

= M(t)(yi(t)− yp(t))

= M(t)yh(t)

so yh is solution of homogeneous equation (2) and yi =
yh + yp.

Remark: To find general solution of inhomogeneous
equation:

1. Find general solution of homogeneous equation;

2. Find a particular solution of inhomogeneous equation;

3. Add these to get general solution of inhomogeneous
equation

In analogy with how we define ex for x ∈ R, for an
n× n matrix M we define

eM =
∞∑
k=0

Mk

k!
= I +M +

M 2

2
+ · · ·

and

etM =
∞∑
k=0

tkMk

k!
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The matrix exponential satisfies many properties analo-
gous to the exponential function in R and C. Here are
a few of the most important properties, which can be
established fairly directly from the definitions above.

• if D is a diagonal matrix with diagonal d1, . . . , dn,

eD =



ed1 0 · · · 0
0 ed2 · · · 0
... ... . . . ...
0 0 · · · edn



• eA+B = eAeB if AB = BA (this is not necessarily
valid for matrices A and B that do not commute)

• eP
−1AP = P−1eAP

• g(t) = etM is differentiable (in fact C∞) and g′(t) =
MetM

In particular, notice that if M is diagonalizable, so
M = P−1DP for a diagonal matrix D, then

eM = P−1eDP = P−1



ed1 0 · · · 0
0 ed2 · · · 0
... ... . . . ...
0 0 · · · edn


P

This observation will help tie the form of the general so-
lution we establish below for linear differential equations
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with constant coefficients to the results established in lec-
ture 14 for the diagonalizable case.

Theorem 2 Consider the inhomogeneous linear dif-
ferential equation (1), and suppose that M(t) is a
constant matrix M , independent of t. A particular
solution of the inhomogeneous linear differential equa-
tion (1), satisfying the initial condition yp(t0) = y0, is
given by

yp(t) = e(t−t0)My0 +
∫ t
t0
e(t−s)MH(s) ds (3)

Proof: We verify that yp solves (3):

yp(t) = e(t−t0)My0 +
∫ t
t0
e(t−s)MH(s) ds

= e(t−t0)My0 +
∫ t
t0
e(t−t0)Me−(s−t0)MH(s) ds

= e(t−t0)M
(
y0 +

∫ t
t0
e−(s−t0)MH(s) ds

)

y′p(t) = Me(t−t0)M
(
y0 +

∫ t
t0
e−(s−t0)MH(s) ds

)

+e(t−t0)M
(
e−(t−t0)MH(t)

)

= Myp(t) +H(t)

yp(t0) = e(t0−t0)My0 +
∫ t0
t0
e(s−t0)MH(s) ds

= y0

Example Consider the inhomogeneous linear differential
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equation y1
y2


′

=

 1 0
0 −1


 y1
y2

 +
 sin t
cos t

 ,y(0) =
 1
1


By Theorem 2, a particular solution is given by

yp(t)

= e(t−t0)My0 +
∫ t
t0
e(t−s)MH(s) ds

=

 e
t 0
0 e−t


 1
1

 + ∫ t
0

 e
(t−s) 0
0 e−(t−s)


 sin s
cos s

 ds

=

 e
t

e−t

 + ∫ t
0

 e
t−s sin s

es−t cos s

 ds

=

 e
t (1 +

∫ t
0 e

−s sin s ds)
e−t (1 +

∫ t
0 e

s cos s ds)


∫ t
0 e

−s sin s ds

= −e−s sin s
∣∣∣∣t0 −

∫ t
0 −e−s cos s ds

= −e−t sin t + e0 sin 0 +
∫ t
0 e

−s cos s ds

= −e−t sin t + −e−s cos s
∣∣∣∣t0 −

∫ t
0 −e−s(− sin s) ds

= −e−t sin t +−e−t cos t + e0 cos 0−
∫ t
0 e

−s sin s ds

= −e−t(sin t + cos t) + 1−
∫ t
0 e

−s sin s ds

2
∫ t
0 e

−s sin s ds

= −e−t(sin t + cos t) + 1∫ t
0 e

−s sin s ds

=
−e−t(sin t + cos t) + 1

2
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∫ t
0 e

s cos s ds

= es cos s|t0 −
∫ t
0 e

s(− sin s) ds

= et cos t− e0 cos 0 +
∫ t
0 e

s sin s ds

= et cos t− 1 + es sin s|t0 −
∫ t
0 e

s cos s ds

= et cos t− 1 + et sin t + e0 sin 0−
∫ t
0 e

s cos s ds

= et(sin t + cos t)− 1−
∫ t
0 e

s cos s ds

2
∫ t
0 e

s cos s ds = et(sin t + cos t)− 1
∫ t
0 e

s cos s ds =
et(sin t + cos t)− 1

2

yp(t) =

 e
t (1 +

∫ t
0 e

−s sin s ds)
e−t (1 +

∫ t
0 e

s cos s ds)



=


et

1 + −e−t(sin t+cos t)+1
2


e−t

1 + et(sin t+cos t)−1
2





=


et

3−e−t(sin t+cos t)
2


e−t

1+et(sin t+cos t)
2





=


3et−sin t−cos t)

2
e−t+sin t+cos t

2


Thus, the general solution of the original inhomogeneous
equation is given by y1

y2

 =

 C1e
t

C2e
−t

 +


3et−sin t−cos t
2

e−t+sin t+cos t
2


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=

 D1e
t − sin t+cos t

2

D2e
−t + sin t+cos t

2


where D1 and D2 are arbitrary real constants.

Nonlinear Differential Equations–Linearization

Nonlinear differential equations are very difficult to solve
in closed form. Specific techniques solve special classes of
equations. Numerical methods compute numerical solu-
tions of any ordinary differential equation. Linearization
provides qualitative information about the solutions of
nonlinear autonomous equations. The idea is to find sta-
tionary points of the equation, then study solutions of
linearized equation near the stationary points. This gives
a reasonably reliable guide to behavior of solutions of orig-
inal nonlinear equation.

Example: Pendulum The equation of motion of a
frictionless pendulum is a nonlinear autonomous differen-
tial equation

y′′ = −α2 sin y, α > 0

Here, y is the angle between the pendulum and a verti-
cal line. The fact that the motion follows this differential
equation is obtained by resolving the downward force of
gravity into two components, one tangent to the curve the
pendulum follows and one which is parallel to the pendu-
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lum; the latter component is canceled by the pendulum
rod.

This has much in common with all cyclical processes,
including processes such as business cycles. This equation
very difficult to solve exactly because of nonlinearity.

Define

ȳ(t) =

 y(t)
y′(t)


so differential equation becomes

ȳ′(t) =

 y2(t)
−α2 sin y1(t)


Let

F (ȳ) =

 y2
−α2 sin y1



Solve for stationary points: points ȳ such that F (ȳ) =
0:

F (ȳ) = 0 ⇒
 y2
−α2 sin y1

 =
 0
0


⇒ sin y1 = 0 and y2 = 0

⇒ y1 = nπ and y2 = 0

so set of stationary points is

{(nπ, 0) : n ∈ Z}
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Linearize the equation around each of the stationary
points: take the first order Taylor polynomial for F :

F (nπ + h, 0 + k) + o(|h| + |k|)

= F (nπ, 0) +



∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2




h

k



=

 0
0

 +
 0 1
−α2 cosnπ 0


 h
k



=

 0 1
(−1)n+1α2 0


 h
k



• For n even, the eigenvalues are solutions to

λ2 + α2 = 0

so λ1 = iα, λ2 = −iα

Close to (nπ, 0) for n even, the solutions spiral around
the stationary point. For y2 = y′1 > 0, y1 is increasing,
so the solutions move in a clockwise direction.

• For n odd, the eigenvalues solve λ2 − α2 = 0, so the
eigenvalues and eigenvectors are

λ1 = α, λ2 = −α

v1 = (1, α), v2 = (1,−α)

Close to (nπ, 0) for n odd, the solutions are roughly
hyperbolic in shape; along v2, they converge to the
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stationary point, while along v1, they diverge from
the stationary point. The solutions of the linearized
equation tend to infinity along v1. The stationary
point (nπ, 0) with n odd corresponds to the pendulum
pointing vertically upwards.

• From this information alone, we know the qualitative
properties of the solutions of the linearized equation
are as given in the phase plane diagram in Figure 2;
the solutions of the original equation will closely follow
these near the stable points:

– On the y-axis, we have y′ = 0, which means that
everywhere on the y-axis (except at the stationary
points), the solution must have a vertical tangent.

– Solve y′′ = −α2 sin y = 0, so y = nπ; thus, at
y = nπ, the derivative of y′ is zero, so the tangent
to the curve is horizontal.

• If the initial value of |y2| is sufficiently large, the solu-
tions of the original equation no follow longer closed
curves; this corresponds to the pendulum going “over
the top” rather than oscillating back and forth.

Nonlinear Differential Equations–Stability

Linearization provides information about qualitative prop-
erties of solutions of nonlinear differential equations near
the stationary points. Suppose ys is a stationary point:
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• If eigenvalues of linearized equation at ys all have
strictly negative real parts, there exists ε > 0 such
that, if |y(0)− ys| < ε, then limt→∞ y(t) = ys; all so-
lutions of the original nonlinear equation which start
sufficiently close to the stationary point ys converge
to ys.

• If eigenvalues of the linearized equation at ys all have
strictly positive real parts, no solution of the original
nonlinear equation converges to ys.

• If eigenvalues of the linearized equation at ys all have
real part zero, then the solutions of linearized equation
are closed curves around ys. This tells us little about
the solutions of nonlinear equation. They may

– follow closed curves around ys

– converge to ys

– converge to a limit closed curve around ys

– diverge from ys

– converge to ys along certain directions and diverge
from ys along other directions.

Determining Behavior of Solutions when Eigen-
values have Real Part Zero
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Example Consider the initial value problem y
′
1(t)
y′2(t)

 =

 −9y2(t) + 4y31(t) + 4y1(t)y
2
2(t)

4y1(t) + 9y21(t)y2(t) + 9y32(t)

 ,
y1(0) = 3, y2(0) = 0 (4)

ys =

 0
0

 is a stationary point. Linearization around ys

is

y′(t) =

 0 −9
4 0

 y
The characteristic equation is λ2 + 36 = 0, so the matrix
has distinct eigenvalues λ1 = 6i and λ2 = −6i; since both
have real part zero, we know the solutions of the linearized
differential equation follows closed curves around zero.
Eigenvectors are

v1 =

 3i/2
1

 and v2 =

 −3i/2
1


so change of basis matrices are

MtxU,V (id) =

 3i/2 −3i/2
1 1

 and MtxV,U(id) =

 −i/3 1/2
i/3 1/2



Then the solution of the linearized initial value problem
is

y =

 3i/2 −3i/2
1 1


 e

6ti 0
0 e−6ti


 −i/3 1/2

i/3 1/2


 3
0


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=

 3i/2 −3i/2
1 1


 −ie6ti/3 e6ti/2
ie−6ti/3 e−6ti/2


 3
0



=

 (e6ti + e−6ti)/2 (e6ti − e−6ti)3i/4
(e−6ti − e6ti)i/3 (e6ti + e−6ti)/2


 3
0



=

 cos 6t −3(sin 6t)/2
2(sin 6t)/3 cos 6t


 3
0



=

 3 cos 6t
2 sin 6t



since

e6ti + e−6ti = cos 6t + i sin 6t + cos(−6t) + i sin(−6t)

= cos 6t + i sin 6t + cos 6t− i sin 6t

= 2 cos 6t

e6ti − e−6ti = cos 6t + i sin 6t− cos(−6t)− i sin(−6t)

= cos 6t + i sin 6t− cos 6t + i sin 6t

= 2i sin 6t

Notice that

y21(t)

9
+
y22(t)

4
=

9 cos2 6t

9
+
4 sin2 6t

4
= cos2 6t + sin2 6t

= 1

so the solution of the linearized initial value problem is a
closed curve running counterclockwise around the ellipse
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with principal axes along the y1 and y2 axes, of length 3
and 2 respectively.

Let

G(y) =
y21
9
+
y22
4

and compute dG(y(t))
dt :

dG(y(t))

dt
=

(
∂G
∂y1

∂G
∂y2

)  y
′
1(t)
y′2(t)



=
(
2y1(t)

9
y2(t)
2

)  −9y2(t) + 4y31(t) + 4y1(t)y
2
2(t)

4y1(t) + 9y21(t)y2(t) + 9y32(t)


= −2y1(t)y2(t) + 8y41(t)/9 + 8y21(t)y

2
2(t)/9

+2y1(t)y2(t) + 9y21(t)y
2
2(t)/2 + 9y42(t)/2

= 8y41(t)/9 + 97y21(t)y
2
2(t)/18 + 9y42(t)/2

> 0

• y′(t) is tangent to the solution at every t, and y′(t)
always points outside the level curve of G through
y(t), as in Figure 4.

• Solution of initial value problem (4) spirals outward,
always moving to higher level curves of G.

• For G(y) ≥ 1 (i.e., outside the ellipse which the so-
lution of the linearized initial value problem follows),
easy to see that

8y41(t)/9+97y
2
1(t)y

2
2(t)/18+9y

4
2(t)/2 >

8

9

(
y21(t) + y22(t)

)2
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so dG(y(t))
dt is uniformly bounded away from zero, so

G(y(t)) = G(y(0)) +
∫ t
0
dG(y(s))

ds ds → ∞ as t → ∞.

• Linear terms become dwarfed by the higher order
terms, which will determine whether the solution con-
tinues to spiral as it heads off into the distance.

Consider instead the initial value problem y
′
1(t)
y′2(t)

 =

 −9y2(t)− 4y31(t)− 4y1(t)y
2
2(t)

4y1(t)− 9y21(t)y2(t)− 9y32(t)

 ,
y1(0) = 3, y2(0) = 0 (5)

The linearized initial value problem has not changed. As
before, compute

dG(y(t))

dt
=

(
∂G
∂y1

∂G
∂y2

)  y
′
1(t)
y′2(t)



=
(
2y1(t)

9
y2(t)
2

)  −9y2(t)− 4y31(t)− 4y1(t)y
2
2(t)

4y1(t)− 9y21(t)y2(t)− 9y22(t)


= −2y1(t)y2(t)− 8y41(t)/9− 8y21(t)y

2
2(t)/9

+2y1(t)y2(t)− 9y21(t)y
2
2(t)/2− 9y42(t)/2

= −8y41(t)/9− 97y21(t)y
2
2(t)/18− 9y42(t)/2

< 0

• y′(t) is tangent to the solution at every t, and y′(t)
always points inside the level curve of G through y(t),
as in Figure 4.
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• the solution of initial value problem (5) spirals inward,
always moving to lower level curves of G.

• Claim: y(t) →
 0
0

 as t → ∞.

– Note dG(y(t))
dt < 0 except at origin, so for all C > 0,

α = sup


dG(y(t))

dt
: C ≤ G(y(t)) ≤ G(y(0))

 < 0

since {y : C ≤ G(y) ≤ G(y(0))} is compact.

– If G(y(t)) ≥ C for all t,

G(y(t)) = G(y(0)) +
∫ t
0

dG(y(s))

ds
ds

≤ G(y(0)) + αt

→ −∞ as t → ∞

contradiction.

– Thus, G(y(t)) → 0 and the solution of initial value

problem (5) converges to stationary point

 0
0

 as

t → ∞.

In initial value problems (4) and (5), we were lucky to
some extent.

• We took G to be function whose level sets are the
solutions of the linearized differential equation, and
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found tangent to the solution always pointed outside
the level curve in (4) and always pointed inside the
level curve in (5).

• It is not hard to construct examples in which tangent
points outward at some points and inward at others,
so the value G(y(t)) is not monotonic.

– May be able to show by calculation thatG(y(t)) →
∞, so the solution disappears off into the distance

– May be able to show by calculation thatG(y(t)) →
0, so the solution converges to the stationary point.

– Alternative method is to choose a different func-
tion G, whose level sets are not solutions of lin-
earized equation, but for which one can prove that
dG(y(t))

dt is always positive or always negative; this
is called Liapunov’s Second Method.
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y

y’

v1

v2

y’ = -2y

Figure 1: Phase plane diagram for y′′ = 2y + y′.
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v1v1

v2v2

y’

y

Figure 2: Phase plane diagram for y′′ = α2 sin y.
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Figure 3: Phase plane diagram for y′′ = α2 sin y.

24



y1

y2

Figure 4: Behavior of solutions when eigenvalues have real part zero.
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