Economics 204 Summer/Fall 2025

Lecture 3—Wednesday July 30, 2025

Section 2.1. Metric Spaces and Normed Spaces

Here we seek to generalize notions of distance and length in R"™ to abstract settings.

Definition 1 A metric space is a pair (X,d), where X is aset and d : X x X — R, a

function satisfying

1. d(z,y) >0, d(z,y) =0 =y Vr,ye X

2. d(z,y) = d(y,z) Vz,y € X

3. triangle inequality:

d(x,z) <d(x,y) +d(y,z) Vo,y,z € X

A function d : X x X — R, satisfying 1-3 is called a metric on X.

A metric gives a notion of distance between elements of X.

Definition 2 Let V' be a vector space over R. A norm on V is a function || - || : V' — R4

satisfying
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3. triangle inequality:
lz+yll < llzll + llyll Yo,y € V
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4. |az| = |af||z|| Va e R,z € V

A normed vector space is a vector space over R equipped with a norm.

A norm gives a notion of length of a vector in V.

Example: In R”, the standard notion of distance between two vectors x and y measures

the length of the difference x — y, i.e., d(x,y) = ||z — y|| = \/2?21(371 — ;)2
In an abstract normed vector space, the norm can be used analogously to define a notion
of distance.
Theorem 3 Let (V.|| -||) be a normed vector space. Let d:V x V = R, be defined by
d(v,w) = [lv—wl|

Then (V,d) is a metric space.



Proof: We must verify that d satisfies all the properties of a metric.

1. Let v,w € V. Then by definition, d(v,w) = ||[v — w| > 0 (why?), and

dv,w)=0 & |v—w||=0
&S v—w=0
& (v+(—w)+w=w

& v+ ((—w)+w) =w

2. First, note that forany x € V, 0-2 = (04+0)-2 =0-24+0-2,80 0-2 = 0. Then
0=0-z2=(01-1)-2=1-24+(-1)- 2 =2+ (—1) -z, so we have (—1) -z = (—x).

Then let v,w € V.

d(v,w) = v —wl|



3. Let u,w,v e V.
d(u, w) = |Ju—wl
= |lu+ (—v+v)—w|
= flu—v+v—w]
< lu—of +lv—wl

= d(u,v)+ d(v,w)

Thus d is a metricon V. m

Examples of Normed Vector Spaces

e E": n-dimensional Euclidean space.

n

V=R" |zl =lz] = | >_(:)?

=1

n
V =R", ||z|]1 = X |z (the “taxi cab” norm or L' norm)
i=1

V =R", ||7]lcc = max{|z1],...,|x,|} (the maximum norm, or sup norm, or L> norm)

C([0,1]), [[fllee = sup{[f(£)] : t € [0, 1]}

o C([0,1]), Ifllz =/ Jo (f(t))*dt

C([0. 1), Ifll = Jo IF ()] dt

~—

Theorem 4 (Cauchy-Schwarz Inequality)

(5m)

If v,w € R™, then
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Figure 1: 6 is the angle between v and w.
lo-wl* < o |w]?

jv-w| <ol

Proof: Read the proof in de La Fuente. m

The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in E™.
Deriving the triangle inequality in E" from the Cauchy-Schwarz inequality is a good exercise.
The Cauchy-Schwarz inequality can also be viewed as a consequence of geometry in R2, in
particular the law of cosines. Note that for v,w € R?, v-w = |v||w|cos® where 0 is the

angle between v and w; see Figure 1.1

Notice that a given vector space may have many different norms. As a trivial example,
if || - || is @ norm on a vector space V, so are 2| - || and 3|| - || and k|| - || for any & > 0. Less

trivially, R™ supports many different norms as in the examples above. Different norms on a

1From the law of cosines, (v—w)-(v—w) = v-v+w-w—2v||w| cos §. On the other hand, (v—w)-(v—w) =

veov—20-w+w-w,sov-w= |v||w|cosb.



given vector space yield different geometric properties; for example, see Figure 2 for different

norms on R?Z.

Definition 5 Two norms |- || and || - ||* on the same vector space V are said to be Lipschitz-

equivalent ( or equivalent ) if Im, M > 0 s.t. Vo € V|
mllz] < =" < M|

Equivalently, 3m, M > 0 s.t. Vx € V,z # 0,

If two norms are equivalent, then they define the same notions of convergence and con-
tinuity. For topological purposes, equivalent norms are indistinguishable. For example,
suppose two norms || - || and || - ||* on the vector space V' are equivalent, and fix z € V. Let
B.(z,]| - ||) denote the || - ||-ball of radius £ about x; similarly, let B.(z,|| - ||*) denote the

| - ||*-ball of radius & about z. That is,

Be(z,|-) = {yeV:lz—yll <e}

Be(a, || -Y) = {yeV:lz—yll" <e}

Then for any € > 0,

See Figure 3.

In R" (or any finite-dimensional normed vector space), all norms are equivalent. This
says roughly that, up to a difference in scaling, for topological purposes there is a unique

norm in R”.



Theorem 6 All norms on R" are equivalent.?

However, infinite-dimensional spaces support norms that are not equivalent. For example,

on C([0,1]), let f, be the function

L—nt ifte 0L
fn(t) =
0 ifte(%,q

Then

1
ol 3 _ 1,

falloe 1 2n

Definition 7 In a metric space (X, d), a subset S C X is bounded if 3x € X, € R such

that Vs € S, d(s,z) < .

In a metric space (X, d), define

B.(x) = {ye X :dy,z) <e}
= open ball with center x and radius €
Bla] = {yeX:dy,z) <e}

= closed ball with center x and radius €

We can use the metric d to define a generalization of “radius”. In a metric space (X, d),

define the diameter of a subset S C X by

diam (S) = sup{d(s, s’) : 5,5 € S}

2The statement of the theorem in de la Fuente (Theorem 10.8, p. 107) is correct, but the proof has a

problem.



Similarly, we can define the distance from a point to a set, and distance between sets, as

follows:

d(A,z) = grélgd(a,x)

d(A,B) = ;Iglgd(B,a)

= inf{d(a,b):a € A,b € B}

Note that d(A, z) cannot be a metric (since a metric is a function on X x X, the first and
second arguments must be objects of the same type); in addition, d(A, B) does not define a

metric on the space of subsets of X (why?).?

Section 2.2. Convergence of Sequences in Metric Spaces

Definition 8 Let (X, d) be a metric space. A sequence {x,} converges to x (written x, — x

or lim,, o 7, = z) if
Ve >03N(e) € Ns.t. n> N(e) = d(z,,z) <e
Notice that this is exactly the same as the definition of convergence of a sequence of real

numbers, except we replace the standard measure of distance |- | in R by the general metric

d.

Theorem 9 (Uniqueness of Limits) In a metric space (X,d), if x,, — = and x, — 2,

then x = 2'.

3 Another, more useful notion of the distance between sets is the Hausdorff distance, given by d(4, B) =

max {sup,¢ 4 infpc g d(a,b), supyc g infaeca d(a,b)}.



4 €
Tn \J
= ._ d(xéx’)
4
0 €
!

Let

Then there exist N(g) and N'(g) such that
n>N() = dz,,x)<e

n>N() = dz,2)<e

Choose
n > max{N(g), N'(¢)}
Then
d(z,2") < d(z,z,) + d(x,, 2)

< e€+¢



a contradiction.m

Definition 10 An element c is a cluster point of a sequence {x,} in a metric space (X, d)

if Ve >0, {n:x, € B-(c)} is an infinite set. Equivalently,

Ve >0,N € N dn> N s.t. z, € B(c)

Example:

1—% if n even
T, =

% if n odd

For n large and odd, x,, is close to zero; for n large and even, x,, is close to one. The sequence

does not converge; the set of cluster points is {0, 1}.
If {z,} is a sequence and ny < ny < ng < --- then {z,, } is called a subsequence.

Note that a subsequence is formed by taking some of the elements of the parent sequence,

i the same order.

Example: z, = %, so {z,} = (1, 235, ) If ny = 2k, then {z,, } = (%, 5 )

Theorem 11 (2.4 in De La Fuente, plus ...) Let (X,d) be a metric space, ¢ € X, and
{z,} a sequence in X. Then c is a cluster point of {x,} if and only if there is a subsequence

{zn, } such that imy_,o x,, = c.

Proof: Suppose ¢ is a cluster point of {x,}. We inductively construct a subsequence that
converges to ¢. For k =1, {n : z,, € By(c)} is infinite, so nonempty; let
ny =min{n : x, € Bi(c)}

10



Now, suppose we have chosen n; < ny < --- < nyg such that

T, EB%(C) forj=1,....k
{n:x, € B%H(c)} is infinite, so it contains at least one element bigger than ny, so let

Ngy1 = min {n in>ng, T, € Bk%l(c)}
Thus, we have chosen ny; < ny < --- < ng < ngy1 such that
Tn, € B%(C) forj=1,...,kk+1
Thus, by induction, we obtain a subsequence {xz,, } such that
T, € B%(c)

Given any € > 0, by the Archimedean property, there exists N(g) > 1/e.

k> N(e) = wx, € B%(c)

= I, € Bc)

SO

ZTn, — Ccas k — 00

Conversely, suppose that there is a subsequence {z,, } converging to c¢. Given any € > 0,

there exists K € N such that
k>K = d(z,,, c) <e=x, € Bc)

Therefore,

{" ST, € Be(c)} 2 {"K+1,TLK+27HK+3; . }

11



Since ng 41 < Ny < Ngys < -+, this set is infinite, so ¢ is a cluster point of {x,}. m

Section 2.3. Sequences in R and R™

Definition 12 A sequence of real numbers {z,} is increasing (decreasing) if x,y1 > =,

(Tpg1 < ) for all n.

Definition 13 If {x,} is a sequence of real numbers, {z,} tends to infinity (written x,, — oo
or limx,, = c0) if

VK €e RIN(K)st. n>N(K)=uz,>K

Similarly define z,, - —o0 or lim x,, = —o0.

Notice we don’t say the sequence converges to infinity; the term “converge” is limited to the

case of finite limits.

Theorem 14 (Theorem 3.1°) Let {x,} be an increasing (decreasing) sequence of real num-
bers. Then lim,_,o x, = sup{z, : n € N} ( lim, .o z, = inf{x, : n € N} ). In particular,
the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case. m

Lim Sups and Lim Infs:*

Consider a sequence {z,} of real numbers. Let

a, = sup{zy:k>n}

4See the handout for this material.
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= sup{Tn, Tni1, Tnio,---}

Bn = inf{z,:k>n}

Either a,, = +oo for all n, or o, € R and oy > ay > a3 > ---. Either £, = —oo for all n,

or B, € Rand 8 < B, < B3 < -+

Definition 15

+o0o if oy, = 400 for all n
limsupz, =
n—o0
lim «v,, otherwise.
—oo if B, = —oo for all n
liminfx, =
n—oo
lim 3, otherwise.

Theorem 16 Let {x,} be a sequence of real numbers. Then

lim, 00 2, =7 € RU {—00, 00}

& limsup,,_,, p, = liminf, oz, =7

Theorem 17 (Theorem 3.2, Rising Sun Lemma) FEuvery sequence of real numbers con-

tains an increasing subsequence or a decreasing subsequence or both.

O 4= 4= 4 4 4 & 4 4= = 4= +— +— S

° ° ° @ 0 — { 4 4 +— — +— « U
° ° ° e e o0 <+ <+ <+ N
[ ] [ ] [ ]
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Proof: Let

S={seN:x;>ux, Vn>s}

Either S is infinite, or S' is finite.

If S is infinite, let

ny = minS
ny = min(S\ {n1})

ng = min (S \ {ny,n2})

N1 = min(S\{nl,n27-"7nk})

Then n; <ng <ng < ---.

Ty > T, since ny € S and ny > ny

Ty > Ty since ny € S and nz > no

Ty, > Ty, since ng € S and ngiq > ny

so {xy, } is a strictly decreasing subsequence of {x,,}.

If S is finite and nonempty, let n; = (max S) + 1; if S =0, let n; = 1. Then

ny €S so dng >ng st xy, > T,
ny €S so dng >ng st x,, > Ty,

14



ng €S so I >ng st Ty, > Ty,

so {xn, } is a (weakly) increasing subsequence of {x,}. m

Theorem 18 (Thm. 3.3, Bolzano-Weierstrass) Every bounded sequence of real num-

bers contains a convergent subsequence.

Proof: Let {z,} be a bounded sequence of real numbers. By the Rising Sun Lemma, find
an increasing or decreasing subsequence {x,, }. If {z,, } is increasing, then by Theorem 3.1’
limz,, = sup{z,, : k € N} <sup{z, : n € N} < oo, since the sequence is bounded; since
the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it

converges. m
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Figure 2: The unit ball around 0 in different norms on R?: standard || - |2, || - ||1 (L' or taxi

cab norm) and || - ||« (sup norm or L* norm).
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norms on R" are equivalent

Figure 3: All norms on R" are equivalent.
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