Economics 204 Summer/Fall 2025

Lecture 4—Thursday July 31, 2025

Section 2.4. Open and Closed Sets

Definition 1 Let (X, d) be a metric space. A set A C X is open if

Ve e Ade>0st. B(x) CA

A set C' C X is closed if X \ C is open.

See Figure 1.

Example: (a,b) is open in the metric space E! (R with the usual Euclidean metric). Given
z € (a,b), a <x <b. Let

e =min{r —a,b—x} >0
Then
y€ B(x) = ye(x—e,x+e)
C (w—(v—a)o+(b-2)
= <a7b)
so B:(z) C (a,b), so (a,b) is open.

Notice that € depends on z; in particular, ¢ gets smaller as x nears the boundary of the

set.



Example: In E', [a,b] is closed. R\ [a,b] = (—00,a) U (b, o) is a union of two open sets,

which must be open.

Example: In the metric space [0,1], [0,1] is open. With [0,1] as the underlying metric

space, B.(0) ={z € [0,1] : |z — 0] <&} =[0,¢).

Thus, openness and closedness depend on the underlying metric space as well as on the

set.

Example: Most sets are neither open nor closed. For example, in E!, [0,1]U(2, 3) is neither

open nor closed.

Example: An open set may consist of a single point. For example, if X = N and d(m,n) =
|m — n|, then Bys(1) = {m € N : |m — 1] < 1/2} = {1}. Since 1 is the only element of the

set {1} and By/o(1) = {1} C {1}, the set {1} is open.

Example: In any metric space (X, d) both ) and X are open, and both () and X are closed.

To see that () is open, note that the statement
Ve e Ie >0 B.(x) C0

is vacuously true since there aren’t any x € (). To see that X is open, note that since B.(z)
is by definition {z € X : d(z,x) < €}, it is trivially contained in X. Since ) is open, X is

closed; since X is open, () is closed.

Example: Open balls are open sets. Suppose y € B.(z). Then d(z,y) < e. Let § =

e —d(z,y) > 0. If d(z,y) <, then

d(z,z) < d(z,y)+d(y,x)
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< 0+d(z,y)

= e—d(z,y) +d(z,y)

so Bs(y) C Be(x), so B.(x) is open.

Theorem 2 (Thm. 4.2) Let (X,d) be a metric space. Then

1. 0 and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable) collection of open sets is

open.

3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already shown this.
2. Suppose {Ax}aea is a collection of open sets.

S UAA = E')\()EAS.t.ZL‘EA)\O
AEA

= de > 0s.t. Bg(x) - A>\0 - U A)\
AEA

S0 Uxea Ay is open.
3. Suppose Ay, ..., A, C X are open sets. If x € N A;, then

r€ A, x €Ay, ...,k €A,
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SO

dey >0,...,6, >0s.t. B, (z) CAy,...,B., (x) C A,

Let

e =min{ey,...,e,} >0

(Note this is where we need the fact that we are taking a finite intersection. The
infimum of an infinite set of positive numbers could be zero. And the intersection of

an infinite collection of open sets need not be open.)

Then

SO

which proves that N}’ A; is open.

Definition 3 e The interior of A, denoted int A, is the largest open set contained in A

(the union of all open sets contained in A).

e The closure of A, denoted A, is the smallest closed set containing A (the intersection

of all closed sets containing A)

e The exterior of A, denoted ext A, is the largest open set contained in X \ A.

e The boundary of A, denoted 04 = (X \ A)N A



Example: Let A =[0,1] U (2,3). Then

intA = (0,1)U(2,3)
A = [0,1]U]2,3]
ext A = int(X\A)

= (—00,0)U(1,2) U (3,+00)

0A = (X\A)NnA
= ((—00,0] U [1,2] U [3,+00)) N ([0,1] U [2,3])

= {0,1,2,3}

Theorem 4 (Thm. 4.13) A set A in a metric space (X,d) is closed if and only if

{zn,} CAz,—w2reX=>2€A

Proof:! Suppose A is closed. Then X \ A is open. Consider a convergent sequence x, —

x € X, withz,, € Aforalln. If x ¢ A, x € X\ A, so there is some ¢ > 0 such that

B.(z) € X \ A. (See Figure 2.) Since z,, — x, there exists N(¢) such that

n> N(e) = x, € B(z)
= r, € X\A

= x, ¢ A

contradiction. Therefore,

r, CAx,>reX=>ax€A

! This is different from the proof in de la Fuente: he puts the meat of the proof into Theorem 4.12



Conversely, suppose

{r,} CAz,—w2reX=>2€A

We need to show that A is closed, i.e. X \ A is open. Suppose not, so X \ A is not open.

Then there exists © € X \ A such that for every e > 0,
Be(r) Z X\ A

so there exists y € B.(x) such that y ¢ X \ A. Then y € A, hence
B.(x)MA#0D

See Figure 3. Construct a sequence {x,} as follows: for each n, choose x, € Bi(z) N A.

n

Given € > 0, we can find N(e) such that N(¢) > % by the Archimedean Property, so

n>N(E) = 1< ﬁ < é&,s0 x, = . Then {z,} C A, z, — x, so x € A, contradiction.

Therefore, X \ A is open, so A is closed. m
Section 2.5. Limits of Functions
Note: Read this section of de la Fuente on your own.

Note that we may have lim,_,, f(x) = y even though

e f is not defined at a; or

e f is defined at a but f(a) # y.

The existence and value of the limit depends on values of f near a but not at a.

Section 2.6. Continuity in Metric Spaces
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Definition 5 Let (X, d) and (Y, p) be metric spaces. A function f : X — Y is continuous

at a point xg € X if Ve > 0 3(xg,€) > 0 s.t. d(x,x9) < 0(zo,€) = p(f(x), f(z0)) < €.

f is continuous if it is continuous at every element of its domain.

Note that 6 depends on z( and .

This is a straightforward generalization of the definition of continuity in R. Continuity

at xy requires:

e f(xp) is defined; and
e cither

— ¢ is an isolated point of X, i.e. 3¢ > 0 s.t. B.(z) = {«}; or

— lim,_,,, f(x) exists and equals f(zo)

Suppose f: X — Y and A CY. Define f71(A) ={zr € X : f(z) € A}.

Theorem 6 (Thm. 6.14) Let (X,d) and (Y, p) be metric spaces, and f : X — Y. Then f

15 continuous if and only if

fY(A) is open in X YVACY s.t. Ais open inY

Proof:? Suppose f is continuous. Given A C Y, A open, we must show that f~!(A) is open

in X. Suppose 2y € f71(A). Let yo = f(x9) € A. Since A is open, we can find € > 0 such

2We give a direct proof; de la Fuente works via closed sets.



that B.(yo) € A. Since f is continuous, there exists § > 0 such that

d(x,z0) <0 = p(f(x), f(x0)) <e
= f(z) € B:(y)
= f(r)e A

= xc f1(A)

so Bs(zg) C f71(A), so f~1(A) is open. (See Figure 4.)

Conversely, suppose
f7'(A) is open in X VA C Y s.t. Ais openin Y

We need to show that f is continuous. Let xy € X, ¢ > 0. Let A = B.(f(z0)). A is an open
ball, hence an open set, so f~'(A) is open in X. zy € f~!(A), so there exists § > 0 such
that Bs(zo) C f~'(A). (See Figure 5.)
d(z,z9) <§ = =z € Bs(xg)
= xc f1(A)
= f(z)e A
= p(f(x), f(x)) <e

Thus, we have shown that f is continuous at xy; since xq is an arbitrary point in X, f is

continuous.m

Theorem 7 (Slightly weaker version of Thm. 6.10) Let (X,dx), (Y,dy) and (Z,dz)
be metric spaces. If f : X — Y and g :' Y — Z are continuous, then go f : X — Z is

continuous.



Proof: Suppose A C Z is open. Since g is continuous, g~!(A) is open in Y; since f is

continuous, f~!(g7!(A)) is open in X.

We claim that

Observe

v € fHg ' (A) & flz)€g ' (A)
& g(fx) €A
& (gof)lz)e A

& w€(gof)TH(A4)

which establishes the claim. This shows that (go f)~!(A) is open in X, so go f is continuous.

Definition 8 [Uniform Continuity] Suppose f : (X,d) — (Y, p). f is uniformly continuous
if

Ve >0 3d(e) > 0s.t. Voo € X, d(x,x0) < d(e) = p(f(z), f(xo)) <€

Notice the important contrast with continuity: f is continuous means

Vrg € X,e >0 3d(xg,e) > 0s.t. d(z,x0) < d(xg,€) = p(f(x), f(zo)) <€

Example: Consider



f is continuous (why?). We will show that f is not uniformly continuous. Fix ¢ > 0 and

zo € (0,1]. If 2 = %2, then

l4+exg > 1

Zo <
r = T
1‘|‘€$0 0
1 1
S — >0
T Zo
1 1
£@) = Fla)] = |-
11
n T To
. 1+€.§L’0 1
N Zo Zo
. ETo
= 20
= £

Thus, d(xg,€) must be chosen small enough so that

Zo
— >
§(wg,e) < iUo—lf(;x
0
_ e(xg)?
1‘*’5%’0
< 5(1‘0)2

which converges to zero as zo — 0. (See Figure 6.) So there is no é(¢) that will work for all

To € (O, 1]

Example: If f : R — R and f'(x) is defined and uniformly bounded on an interval [a, b],

then f(x) is uniformly continuous on [a,b]. However, even a function with an unbounded
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derivative may be uniformly continuous. Consider

f(2) = vz, x€[0.1]

f is continuous (why?). We will show that f is uniformly continuous. Given & > 0, let
§ = 2. Then given any zy € [0,1], |z — 29| < ¢ implies by the Fundamental Theorem of

Calculus

[f (@) = f(zo)| =

@ ]
——dt
/xo 2/t |
< /'x_m L a
- Jo 2/t

= |z — x|

< Vi
BN

Thus, f is uniformly continuous on [0, 1], even though f’(x) — oo as x — 0.

Definition 9 Let X,Y be normed vector spaces, £ C X. f: X — Y is Lipschitz on E if
AK > 0s.t. ||f(z) — f2)|ly L K||lx — z||x Vx,z€E
f is locally Lipschitz on E if
Vrg € E Je > 0 s.t. f is Lipschitz on B.(xo) N E
Remark: de la Fuente only defines Lipschitz and locally Lipschitz in the context of normed

vector spaces. The notions can also be defined analogously in metric spaces as follows: Let
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(X,d) and (Y, p) be metric spaces, E C X. f: X — Y is Lipschitz on E if
K > 0s.t. p(f(z), f(2)) < Kd(x,z) Vr,z € E
Similarly, f is locally Lipschitz on F if

Vzg € E Je > 0 s.t. f is Lipschitz on B.(xg) N E

Lipschitz continuity is stronger than either continuity or uniform continuity:

locally Lipschitz = continuous

Lipschitz = uniformly continuous

Every C! function is locally Lipschitz. (Recall that a function f : R™ — R" is said to

be C1 if all its first partial derivatives exist and are continuous.)

Definition 10 ? Let (X, d) and (Y, p) be metric spaces. A function f : X — Y is called a

homeomorphism if it is one-to-one, onto, continuous, and its inverse function is continuous.

Now suppose that f is a homeomorphism and U C X. Let g : Y — X be the inverse of

f,sogof:X — X is the identity on X, and fog:Y — Y is the identity on Y.

yeg(U) & gly)=f"(y)eU
& ye fU)
Uopenin X = ¢ '(U)is open in (f(X),p)

= f(U) is open in (f(X),p)

3This is the standard definition; de la Fuente instead omits the requirement that f be onto, and requires

that f~! be continous on f(X). See the Corrections handout for a correction to Theorem 6.21
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This says that (X, d) and ( F(X), pl s X)) are identical in terms of properties that can be

characterized solely in terms of open sets; such properties are called “topological properties.”
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Figure 1: A is open: for every x € A there is some € > 0 such that B.(z) C A. B is not

open: for z depicted in the picture Ae > 0 such that B.(z) C B.
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Figure 2: Sequences and closed sets
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Figure 3: Sequences and closed sets
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Bs(Xo)

B:(Yo)

Figure 4: Proof of Theorem 6.
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B.(Yo)

Figure 5: Proof of Theorem 6.
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f(x)=1/x

Figure 6: f(x) = % is not uniformly continuous.
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