Economics 204 Summer/Fall 2025

Lecture 6-Monday August 4, 2025

Section 2.8. Compactness

Definition 1 A collection of sets

U={Uy: €A}

in a metric space (X, d) is an open cover of A if U, is open for all A € A and

UxeaUxy 2 A

Notice that A may be finite, countably infinite, or uncountable.

Definition 2 A set A in a metric space is compact if every open cover of A contains a finite
subcover of A. In other words, if {U, : A € A} is an open cover of A, there exist n € N and
A1,y A € A such that

ACU, U---UU,,

It is important to understand what this definition does not say. In particular, it does not
say “A has a finite open cover;” note that every set is contained in X, and X is open, so
every set has a cover consisting of exactly one open set. Like the e- definition of continuity,
in which you are given an arbitrary € > 0 and are challenged to specify an appropriate ¢,
here you are given an arbitrary open cover and challenged to specify a finite subcover of the

given open cover.



Example: (0, 1] is not compact in E'. To see this, let

U:{Um: (1,2> :mGN}
m
Then

UmGNUm = (07 2) 2 (07 1]

Given any finite subset {U,,,,...,Un, } of U, let
m = max{mys, ..., my,}

Then

1
U Uy = Uy = (2) 3 (0,1]
m

so (0, 1] is not compact. See Figure 1.

Note that this argument does not work for [0,1]. Given an open cover {U, : A\ € A},
there must be some A € A such that 0 € Uy, and therefore U, D [0,¢) for some € > 0, and
a finite number of the U,,’s we used to cover (0, 1] would cover the interval (e,1]. This is
not a proof that [0, 1] is compact, since we need to show that every open cover has a finite

subcover, but it is suggestive, and we will soon see that [0, 1] is indeed compact.

Example: [0, 00) is closed but not compact. To see that [0,00) is not compact, let
U={U,=(-1,m): me N}
Given any finite subset

{Unyy-- s Un, }

of U, let
m = max{myq,...,my,}
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Then

Un,U---UUpy,, =(=1,m) 2 [0,00)

See Figure 2.

Theorem 3 (Thm. 8.14) Every closed subset A of a compact metric space (X, d) is com-

pact.

Proof: Let {U, : A € A} be an open cover of A. In order to use the compactness of X, we

need to produce an open cover of X. There are two ways to do this:

U, = U U(X\A

N o= AU Uy =X\ A

We choose the first path, and let

U, = Uy U (X \ A)

See Figures 3 and 4.

Since A is closed, X \ A is open; since U, is open, so is U{. Then x € X = =z € A or
reX\A Ifze A INeAst. xe Uy, CU;. Ifinstead z € X \ A, then VA € A, z € Uj.

Therefore, X C UyeaUj, so {Uj : A € A} is an open cover of X.

Since X is compact,

N, A EASE X CUy U---UU;,



Then

acA = acX
= a € Uy, for some i
= GEU)\iU(X\A)

= (ZGU)\Z.

SO

ACU, U---UU,,

Thus A is compact. m

As the second example above illustrates, a closed subset of a metric space need not be

compact. The converse is always true, however.

Theorem 4 (Thm. 8.15) If A is a compact subset of the metric space (X,d), then A is

closed.

Proof: Suppose by way of contradiction that A is not closed. Then X \ A is not open,
so we can find a point z € X \ A such that, for every ¢ > 0, AN B.(z) # (), and hence
AN B.[z] #0. For n € N, let

U, = X\ Bi|7]

See Figure 5. Each U, is open, and

UpenU, = X\ {2} D A



since ¢ A. Therefore, {U, : n € N} is an open cover for A. Since A is compact, there is a

finite subcover {U,,,...,Uy,,}. Let n = max{ny,...,ng}. Then

U = X\Bl/n[x]

D X\ Bilz] (j=1,....k)

U
s

But AN By,lz] # 0,50 A Z X\ Byplz] = U,. This is a contradiction, which proves that A

is closed. m

Next we look at a sequential notion of compactness.

Definition 5 A set A in a metric space (X, d) is sequentially compact if every sequence of

elements of A contains a convergent subsequence whose limit lies in A.

This gives rise to a sequential characterization of compactness for metric spaces.

Theorem 6 (Thms. 8.5, 8.11) A set A in a metric space (X, d) is compact if and only if

it 1s sequentially compact.

Proof: Suppose A is compact. We will show that A is sequentially compact. If not, we can
find a sequence {x,} of elements of A such that no subsequence converges to any element of

A. Recall that a is a cluster point of the sequence {x,} means that

Ve >0 {n:z, € Ba)} is infinite
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and this is equivalent to the statement that there is a subsequence {z,,} converging to a.

Thus, no element a € A can be a cluster point for {z,}, and hence
Vae A e, >0st. {n:x, € B, (a)} is finite (1)
Then

{B.,(a) :a € A}

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is

compact, there is a finite subcover
{BEa1 (al)a ) BEam (CLm)}
Then

N = {n:z, €A}
C {n DXy, € (Bgul ()U---UB., (am))}

= {TL tTp € Bam(al)}u"'u{n P € Baam(am)}

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N

must be finite, a contradiction which proves that A is sequentially compact.
For the converse, see de la Fuente. m

Next we explore connections between compactness and notions of boundedness.

Definition 7 A set A in a metric space (X, d) is totally bounded if, for every ¢ > 0,

Jxy,...,x, € Ast. AC UL, Bo(x;)
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This is the standard definition; de la Fuente’s definition is equivalent to this. See the

comments in the Corrections handout for further discussions.

Example: Take A = [0, 1] with the Euclidean metric. Given ¢ > 0, let n > 1. Then we

may take

Then [0,1] € UpZ1 B.(£).
Example: Consider X = [0, 1] with the discrete metric

1 ife#y
d(z,y) =
0 ifr=y
X is not totally bounded. To see this, take ¢ = % Then for any =, B.(x) = {x}, so given

any finite set xq,...,x,,
UL Be(xy) = {x1,..., 2.} 2 10,1]

However, X is bounded because X = B5(0).

Note that any totally bounded set in a metric space (X, d) is also bounded. To see this,
let A C X be totally bounded. Then Jz1,...,z, € A such that A C By(z1) U--- U By(x,).
Let

M =1+d(z1,29) + -+ d(xp_1,2,)

Then M < oco. Now fix a € A. We claim d(a,z1) < M. To see this, notice that there is
some n, € {1,...,n} for which a € By(x,,). Then

d(a’7 xl) < d(a’7 xna) + Z d('rkaxk+1>
k=1



< 14+ Z d(l’k, ZL‘k_H)
k=1

= M

See also Figure 6.

Remark 8 Fix ¢ and consider the open cover
U. = {B.(a) :a € A}

If A is compact, then every open cover of A has a finite subcover; in particular, U, must

have a finite subcover, but this just says that A is totally bounded.

Theorem 9 (Thm. 8.16) Let A be a subset of a metric space (X,d). Then A is compact

if and only if A is complete and totally bounded.

Proof: Here is a sketch of the proof; see de la Fuente for details. Compact implies totally
bounded (Remark 8). Suppose {z,} is a Cauchy sequence in A. Since A is compact, A is
sequentially compact, hence {z, } has a convergent subsequence z,, — a € A. Since {z,} is

Cauchy, z, — a (why?), so A is complete.

Conversely, suppose A is complete and totally bounded. Let {z,} be a sequence in A.
Because A is totally bounded, we can extract a Cauchy subsequence {x,, } (why?). Because
A is complete, z,,, — a for some a € A, which shows that A is sequentially compact and

hence compact. m

From lecture 5, we know that a subset of a complete metric space is complete if and only if



it is closed. So for a complete metric space, we have the following alternative characterization

of compactness.

Corollary 10 Let A be a subset of a complete metric space (X,d). Then A is compact if

and only if it s closed and totally bounded.

Notice that by putting these results together we conclude that a compact subset of a

metric space must be closed and bounded.

Example: [0,1] is compact in E'. To see this, note that E! is complete, and [0,1] C E! is

closed and totally bounded.

In R™ we can simplify this characterization even further by the following extremely

important results.

Theorem 11 (Thm. 8.19, Heine-Borel) If A C E!, then A is compact if and only if A

18 closed and bounded.

Proof: Let A be a closed, bounded subset of R. Then A C [a, b] for some interval [a, b]. Let
{z,} be a sequence of elements of [a, b]. By the Bolzano-Weierstrass Theorem, {x,,} contains
a convergent subsequence with limit z € R. Since [a, b] is closed, « € [a,b]. Thus, we have
shown that [a, b] is sequentially compact, hence compact. A is a closed subset of [a, b], hence

A is compact.

Conversely, if A is compact, then A is closed and totally bounded, hence closed and

bounded. m



Theorem 12 (8.20, Heine-Borel) If A C E", then A is compact if and only if A is closed

and bounded.

Proof: See de la Fuente.m

Example: The closed interval
[a,b) ={z € R":a;, <x; <b; foreachi=1,... ,n}
is compact in E" for any a,b € R".

Next we study the implications of compactness for continuous functions, and derive a

general version of the Extreme Value Theorem.

Theorem 13 (Thm. 8.21) Let (X,d) and (Y, p) be metric spaces. If f : X — Y s con-

tinuous and C' is a compact subset of (X, d), then f(C) is compact in (Y, p).

Proof: There is a proof in de la Fuente using sequential compactness. Here we give an

alternative proof using directly the open cover definition of compactness:

Let {U, : A € A} be an open cover of f(C). For each ¢ € C, f(c) € f(C) so f(c) € Uy,
for some \. € A, that is, ¢ € f~1 (U,,). Thus the collection {f~! (Uy) : A € A} is a cover of
C; in addition, since f is continuous, each set f~1 (Uy) is open in C, so {f~* (Uy) : A € A}

is an open cover of C'. Since C' is compact, there is a finite subcover

{F W), O]

of C. Given x € f(C), there exists ¢ € C such that f(c) =z, and ¢ € f~! (U,,) for some 1,
so x € Uy,. Thus, {U,,,...,U,,} is a finite subcover of f(C), so f(C) is compact. m
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Corollary 14 (Thm. 8.22, Extreme Value Theorem) Let C be a compact set in a met-
ric space (X, d), and suppose f: C — R is continuous. Then f is bounded on C' and attains

its minimum and mazimum on C.

Proof: Since C' is compact and f is continuous, f(C) C R is compact, hence closed and

bounded. Let M = sup f(C); M < co. Then Vm > 0 there exists y,, € f(C) such that

1
M—-—<y, <M
m

SO Ym — M and {y,,} C f(C). Since f(C) is closed, M € f(C), i.e. there exists ¢ € C such
that f(c) = M = sup f(C), so f attains its maximum at ¢. The proof for the minimum is

similar.m

Theorem 15 (Thm. 8.24) Let (X,d) and (Y, p) be metric spaces, C' a compact subset of

X, and f: C =Y a continuous function. Then f is uniformly continuous on C.

Proof: Fix ¢ > 0. We ignore X and consider f as defined on the metric space (C,d). Given

c € C, find 6(c) > 0 such that

x € C, d(x,c) <2i(c) = p(f(x), flc)) < %
Let
Ue = Bs(o)(c)
Then
{Uc:ceC}
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is an open cover of C'. Since C' is compact, there is a finite subcover

{Uy,..., U, }

Let

0 =min{d(¢y),...,0(cn)}
Given z,y € C with d(z,y) < 0, note that z € U,, for some i € {1,...,n}, sod(z,¢;) < (¢;).
d(y)ci) < d(y,l’) + d(l’70i)
< 0+6(cy)
< 6(e) + ()

SO

=
—
=
S
~
=
s
IN
=

(f(x), f(ci) + p(f(c), f(y)

DO ™
DO ™

which proves that f is uniformly continuous.m
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U, =(1.2)

.
NN 14
+

NI

...... N A
k N U, = (173, 2) J
Ym = (1/4, 2)

Figure 1: (0, 1] is not compact: {U, : n € N} covers (0, 1] but has no finite subcover.
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Figure 2: [0,00) is closed but not compact: {U, : n € N} covers [0,00) but has no finite

subcover.
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Figure 3: {Uy : A € A} is an open cover of A.
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Figure 5: {U,, : n € N} with U,, = X \ Bi[z] is an open cover of A.
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Figure 6: Every totally bounded subset of a metric space is bounded.
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