
Economics 204 Summer/Fall 2025

Lecture 8–Wednesday August 6, 2025

Chapter 3. Linear Algebra

Section 3.1. Bases

Definition 1 Let X be a vector space over a field F . A linear combination of x1, . . . , xn ∈ X

is a vector of the form

y =
n∑

i=1

αixi where α1, . . . , αn ∈ F

αi is the coefficient of xi in the linear combination.

If V ⊆ X, the span of V , denoted spanV , is the set of all linear combinations of elements of

V . The set V ⊆ X spans X if spanV = X.

Definition 2 A set V ⊆ X is linearly dependent if there exist v1, . . . , vn ∈ V and α1, . . . , αn ∈

F not all zero such that

n∑
i=1

αivi = 0

A set V ⊆ X is linearly independent if it is not linearly dependent.

Thus V ⊆ X is linearly independent if and only if

n∑
i=1

αivi = 0, vi ∈ V ∀i ⇒ αi = 0 ∀i
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Definition 3 A Hamel basis (often just called a basis) of a vector space X is a linearly

independent set of vectors in X that spans X.

Example: {(1, 0), (0, 1)} is a basis for R2 (this is the standard basis).

{(1, 1), (−1, 1)} is another basis for R2: Suppose

(x, y) = α(1, 1) + β(−1, 1) for some α, β ∈ R

x = α− β

y = α + β

x+ y = 2α

⇒ α =
x+ y

2

y − x = 2β

⇒ β =
y − x

2

⇒ (x, y) =
x+ y

2
(1, 1) +

y − x

2
(−1, 1)

Since (x, y) is an arbitrary element of R2, {(1, 1), (−1, 1)} spans R2. If (x, y) = (0, 0),

α =
0 + 0

2
= 0, β =

0− 0

2
= 0

so the coefficients are all zero, so {(1, 1), (−1, 1)} is linearly independent. Since it is linearly

independent and spans R2, it is a basis.

Example: {(1, 0, 0), (0, 1, 0)} is not a basis of R3, because it does not span R3.

Example: {(1, 0), (0, 1), (1, 1)} is not a basis for R2.

1(1, 0) + 1(0, 1) + (−1)(1, 1) = (0, 0)
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so the set is not linearly independent.

Theorem 4 (Thm. 1.2’) 1 Let V be a Hamel basis for X. Then every vector x ∈ X has a

unique representation as a linear combination of a finite number of elements of V (with all

coefficients nonzero).2

Proof: Let x ∈ X. Since V spans X, we can write

x =
∑
s∈S1

αsvs

where S1 is finite, αs ∈ F , αs ̸= 0, and vs ∈ V for each s ∈ S1. Now, suppose

x =
∑
s∈S1

αsvs =
∑
s∈S2

βsvs

where S2 is finite, βs ∈ F , βs ̸= 0, and vs ∈ V for each s ∈ S2.

Let S = S1 ∪ S2, and define

αs = 0 for s ∈ S2 \ S1

βs = 0 for s ∈ S1 \ S2

Then

0 = x− x

=
∑
s∈S1

αsvs −
∑
s∈S2

βsvs

=
∑
s∈S

αsvs −
∑
s∈S

βsvs

=
∑
s∈S

(αs − βs)vs

1See Corrections handout.

2The unique representation of 0 is 0 =
∑

i∈∅ αibi.
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Since V is linearly independent, we must have αs − βs = 0, so αs = βs, for all s ∈ S.

s ∈ S1 ⇔ αs ̸= 0 ⇔ βs ̸= 0 ⇔ s ∈ S2

so S1 = S2 and αs = βs for s ∈ S1 = S2, so the representation is unique.

Theorem 5 Every vector space has a Hamel basis.

Proof: The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom

of Choice.

A closely related result, from which you can derive the previous result, shows that any

linearly independent set V in a vector space X can be extended to a basis of X.

Theorem 6 If X is a vector space and V ⊆ X is linearly independent, then there exists a

linearly independent set W ⊆ X such that

V ⊆ W ⊆ spanW = X

Theorem 7 Any two Hamel bases of a vector space X have the same cardinality (are nu-

merically equivalent).

Proof: The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose

that V = {vλ : λ ∈ Λ} and W = {wγ : γ ∈ Γ} are Hamel bases of X. Remove one vector vλ0

from V , so that it no longer spans (if it did still span, then vλ0 would be a linear combination

of other elements of V , and V would not be linearly independent). If wγ ∈ span (V \ {vλ0})
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for every γ ∈ Γ, then since W spans, V \{vλ0} would also span, contradiction. Thus, we can

choose γ0 ∈ Γ such that

wγ0 ̸∈ span (V \ {vλ0})

Because wγ0 ∈ spanV , we can write

wγ0 =
n∑

i=0

αivλi

where α0, the coefficient of vλ0 , is not zero (if it were, then we would have wγ0 ∈ span (V \ {vλ0})).

Since α0 ̸= 0, we can solve for vλ0 as a linear combination of wγ0 and vλ1 , . . . , vλn , so

span ((V \ {vλ0}) ∪ {wγ0})

⊇ spanV

= X

so

((V \ {vλ0}) ∪ {wγ0})

spans X. From the fact that wγ0 ̸∈ span (V \ {vλ0}) one can show that

((V \ {vλ0}) ∪ {wγ0})

is linearly independent, so it is a basis of X. Repeat this process to exchange every element

of V with an element of W (when V is infinite, this is done by a process called transfinite

induction). At the end, we obtain a bijection from V to W , so that V and W are numerically

equivalent.

Definition 8 The dimension of a vector space X, denoted dimX, is the cardinality of any

basis of X.

5



Definition 9 Let X be a vector space. If dimX = n for some n ∈ N, then X is finite-

dimensional. Otherwise, X is infinite-dimensional.

Recall that for V ⊆ X, |V | denotes the cardinality of the set V .3

Example: The set of all m × n real-valued matrices is a vector space over R. A basis is

given by

{Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

where

(Eij)kℓ =


1 if k = i and ℓ = j

0 otherwise.

The dimension of the vector space of m× n matrices is mn.

Theorem 10 (Thm. 1.4) Suppose dimX = n ∈ N. If V ⊆ X and |V | > n, then V is

linearly dependent.

Proof: If not, so V is linearly independent, then there is a basis W for X that contains V .

But |W | ≥ |V | > n = dimX, a contradiction.

Theorem 11 (Thm. 1.5’) Suppose dimX = n ∈ N and V ⊆ X, |V | = n.

• If V is linearly independent, then V spans X, so V is a Hamel basis.

• If V spans X, then V is linearly independent, so V is a Hamel basis.

3See the Appendix to Lecture 2 for some facts about cardinality.
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Proof: (Sketch)

• If V does not span X, then there is a basis W for X that contains V as a proper subset.

Then |W | > |V | = n = dimX, a contradiction.

• If V is not linearly independent, then there is a proper subset V ′ of V that is linearly

independent and for which spanV ′ = spanV = X. But then |V ′| < |V | = n = dimX,

a contradiction.

Note: Read the material on Affine Spaces on your own.

Section 3.2. Linear Transformations

Definition 12 Let X and Y be two vector spaces over the field F . We say T : X → Y is a

linear transformation if

T (α1x1 + α2x2) = α1T (x1) + α2T (x2) ∀x1, x2 ∈ X,α1, α2 ∈ F

Let L(X, Y ) denote the set of all linear transformations from X to Y .

Theorem 13 L(X, Y ) is a vector space over F .

The hard part of proving this theorem is figuring out what you are being asked to prove.

Once you figure that out, this is completely trivial, although writing out a complete proof that
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checks all the vector space axioms is rather tedious. The key is to define scalar multiplication

and vector addition, and show that a linear combination of linear transformations is a linear

transformation.

Proof: First, define linear combinations in L(X, Y ) as follows. For T1, T2 ∈ L(X, Y ) and

α, β ∈ F , define αT1 + βT2 by

(αT1 + βT2)(x) = αT1(x) + βT2(x)

We need to show that αT1 + βT2 ∈ L(X, Y ).

(αT1 + βT2)(γx1 + δx2)

= αT1(γx1 + δx2) + βT2(γx1 + δx2)

= α (γT1(x1) + δT1(x2)) + β (γT2(x1) + δT2(x2))

= γ (αT1(x1) + βT2(x1)) + δ (αT1(x2) + βT2(x2))

= γ (αT1 + βT2) (x1) + δ (αT1 + βT2) (x2)

so αT1 + βT2 ∈ L(X, Y ).

The rest of the proof involves straightforward checking of the vector space axioms.
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Composition of Linear Transformations

Given R ∈ L(X, Y ) and S ∈ L(Y, Z), S ◦R : X → Z. We will show that S ◦R ∈ L(X,Z),

that is, the composition of two linear transformations is also linear.

(S ◦R)(αx1 + βx2) = S(R(αx1 + βx2))

= S(αR(x1) + βR(x2))

= αS(R(x1)) + βS(R(x2))

= α(S ◦R)(x1) + β(S ◦R)(x2)

so S ◦R ∈ L(X,Z).

Definition 14 Let T ∈ L(X, Y ).

• The image of T is ImT = T (X)

• The kernel of T is kerT = {x ∈ X : T (x) = 0}

• The rank of T is RankT = dim(ImT )

Theorem 15 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem) Let X be a finite-

dimensional vector space and T ∈ L(X, Y ). Then ImT and kerT are vector subspaces of Y

and X respectively, and

dimX = dimkerT +RankT

Proof: (Sketch) First show that ImT is a vector subspace of Y and kerT is a vector subspace

of X (exercise).
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Then let V = {v1, . . . , vk} be a basis for kerT (note that kerT ⊆ X so dimkerT ≤

dimX = n). If kerT = {0}, take k = 0 so V = ∅. Extend V to a basis W for X with

W = {v1, . . . , vk, w1, . . . , wr}. Then {T (w1), . . . , T (wr)} is a basis for ImT (do this as an

exercise).

By definition, dimkerT = k and dim ImT = r. Since W is a basis for X, k+ r = |W | =

dimX, that is,

dimX = dimkerT +RankT

Theorem 16 (Thm. 2.13) T ∈ L(X, Y ) is one-to-one if and only if kerT = {0}.

Proof: Suppose T is one-to-one. Suppose x ∈ kerT . Then T (x) = 0. But since T is linear,

T (0) = T (0 · 0) = 0 · T (0) = 0. Since T is one-to-one, x = 0, so kerT = {0}.

Conversely, suppose that kerT = {0}. Suppose T (x1) = T (x2). Then

T (x1 − x2) = T (x1)− T (x2)

= 0

which says x1 − x2 ∈ kerT , so x1 − x2 = 0, or x1 = x2. Thus, T is one-to-one.

Definition 17 T ∈ L(X, Y ) is invertible if there is a function S : Y → X such that

S(T (x)) = x ∀x ∈ X

T (S(y)) = y ∀y ∈ Y
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In other words S ◦ T = idX and T ◦ S = idY , where id denotes the identity map. In this

case denote S by T−1.

Note that T is invertible if and only if it is one-to-one and onto. This is just the condition

for the existence of an inverse function. The linearity of the inverse follows from the linearity

of T .

Theorem 18 (Thm. 2.11) If T ∈ L(X, Y ) is invertible, then T−1 ∈ L(Y,X), i.e. T−1 is

linear.

Proof: Suppose α, β ∈ F and v, w ∈ Y . Since T is invertible, there exists unique v′, w′ ∈ X

such that

T (v′) = v T−1(v) = v′

T (w′) = w T−1(w) = w′
.

Then

T−1(αv + βw) = T−1 (αT (v′) + βT (w′))

= T−1 (T (αv′ + βw′))

= αv′ + βw′

= αT−1(v) + βT−1(w)

so T−1 ∈ L(Y,X).

Theorem 19 (Thm. 3.2) Let X, Y be two vector spaces over the same field F , and let

V = {vλ : λ ∈ Λ} be a basis for X. Then a linear transformation T ∈ L(X, Y ) is completely

determined by its values on V , that is:
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1. Given any set {yλ : λ ∈ Λ} ⊆ Y , ∃T ∈ L(X, Y ) s.t.

T (vλ) = yλ ∀λ ∈ Λ

2. If S, T ∈ L(X, Y ) and S(vλ) = T (vλ) for all λ ∈ Λ, then S = T .

Proof:

1. If x ∈ X, x has a unique representation of the form

x =
n∑

i=1

αivλi
with αi ̸= 0 ∀i = 1, . . . , n

(Recall that if x = 0, then n = 0.) Define

T (x) =
n∑

i=1

αiyλi

Then T (x) ∈ Y . The verification that T is linear is left as an exercise.

2. Suppose S(vλ) = T (vλ) for all λ ∈ Λ. Given x ∈ X,

S(x) = S

(
n∑

i=1

αivλi

)

=
n∑

i=1

αiS (vλi
)

=
n∑

i=1

αiT (vλi
)

= T

(
n∑

i=1

αivλi

)

= T (x)

so S = T .
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Section 3.3. Isomorphisms

Definition 20 Two vector spaces X, Y over a field F are isomorphic if there is an invertible

T ∈ L(X, Y ).

T ∈ L(X, Y ) is an isomorphism if it is invertible (one-to-one and onto).

Isomorphic vector spaces are essentially indistinguishable as vector spaces.

Theorem 21 (Thm. 3.3) Two vector spaces X, Y over the same field are isomorphic if

and only if dimX = dimY .

Proof: Suppose X, Y are isomorphic, and let T ∈ L(X, Y ) be an isomorphism. Let

U = {uλ : λ ∈ Λ}

be a basis of X, and let

vλ = T (uλ), V = {vλ : λ ∈ Λ}

Since T is one-to-one, U and V have the same cardinality. If y ∈ Y , then there exists x ∈ X

such that

y = T (x)

= T

(
n∑

i=1

αλi
uλi

)

=
n∑

i=1

αλi
T (uλi

)

=
n∑

i=1

αλi
vλi
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which shows that V spans Y . To see that V is linearly independent, suppose

0 =
m∑
i=1

βivλi

=
m∑
i=1

βiT (uλi
)

= T

(
m∑
i=1

βiuλi

)

Since T is one-to-one, kerT = {0}, so

m∑
i=1

βiuλi
= 0

Since U is a basis, we have β1 = · · · = βm = 0, so V is linearly independent. Thus, V is a

basis of Y ; since U and V are numerically equivalent, dimX = dimY .

Now suppose dimX = dimY . Let

U = {uλ : λ ∈ Λ} and V = {vλ : λ ∈ Λ}

be bases of X and Y ; note we can use the same index set Λ for both because dimX = dimY .

By Theorem 3.2, there is a unique T ∈ L(X, Y ) such that T (uλ) = vλ for all λ ∈ Λ. If

T (x) = 0, then

0 = T (x)

= T

(
n∑

i=1

αiuλi

)

=
n∑

ı=1

αiT (uλi
)

=
n∑

ı=1

αivλi

⇒ α1 = · · · = αn = 0 since V is a basis

⇒ x = 0
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⇒ kerT = {0}

⇒ T is one-to-one

If y ∈ Y , write y =
∑m

i=1 βivλi
. Let

x =
m∑
i=1

βiuλi

Then

T (x) = T

(
m∑
i=1

βiuλi

)

=
m∑
i=1

βiT (uλi
)

=
m∑
i=1

βivλi

= y

so T is onto, hence T is an isomorphism and X, Y are isomorphic.
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