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a b s t r a c t

Time-varying risk premia (TVRP) is one of the four sources of stock return autocorrelation. TVRP arises in
a securities market equilibrium when the equilibrium expected returns of the available investments vary
over time; in particular, the presence of TVRP does not indicate pricing inefficiency. This paper provides
equilibrium upper bounds on TVRP, as a function of the return period, the time horizon over which the
autocorrelations are calculated, and the variability of risk premia. These bounds on TVRP, in combination
with the methods of Anderson et al. (2010), allow one to establish lower bounds on the contribution of
partial price adjustment, and thus pricing inefficiency, to stock return autocorrelation.
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. Introduction

Andreu Mas-Colell has made many fundamental contributions
o mathematical economics, most notably in general equilibrium
heory and game theory. One of his most important contributions
ithin general equilibrium theory is to the existence of equilib-

ium with infinite-dimensional commodity spaces, in Mas-Colell
1986) and other works. Continuous-time financial markets are an
mportant example of infinite-dimensional commodity spaces, and

as-Colell’s work in the more general setting has played an impor-
ant role in the development of equilibrium theory in the specific
etting of continuous-time financial markets.
Please cite this article in press as: Anderson, R.M., Time-varying risk premi

When continuous-time financial markets are studied from an
quilibrium viewpoint, the prices of the securities are determined
ndogenously by equating supply and demand. In particular, the

� An early version of this work was originally included as an Appendix in an
arly version of Anderson et al. (2010). The author is very grateful to Kyong Shik
om, Jacob Sagi and Adam Szeidl for very helpful discussions and comments. The
uthor was supported by the Coleman Fung Chair in Risk Management at UC
erkeley, Grant SES-0214164 from the U.S. National Science Foundation and Korea
esearch Foundation Grant (KRF-2005-042-B00081) funded by the Korean Govern-
ent (MOEHRD); he gratefully acknowledges the hospitality of the Korea Securities

esearch Institute.
∗ Tel.: +1 510 642 5248.
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xpected return and the volatility of the securities are jointly deter-
ined as part of the equilibrium. As the market evolves, the wealths

f the agents change, which affects their attitudes toward risk. As a
esult, the risk premium in the expected return of stocks will vary
ver time.

One of the robust empirical regularities in finance is that
tock returns exhibit substantial autocorrelation, which at first
ight suggests pricing inefficiency. However, there are sources of
tock return autocorrelation other than pricing inefficiency. See
nderson et al. (2010) for a discussion of the many studies docu-
enting autocorrelation, and the large but inconclusive literature

ttempting to determine whether autocorrelation represents pric-
ng inefficiency.

Anderson et al. (2010) provide methods to decompose stock
eturn autocorrelation into four components: bid-ask bounce
BAB), the nonsynchronous trading effect (NT), partial price adjust-

ent (PPA), and time-varying risk premia (TVRP). Of these four
omponents, only PPA indicates securities pricing inefficiency, so
stimating the magnitude of PPA is of considerable interest. Ander-
on, Eom, Hahn and Park’s methods identify a component of return
utocorrelation that can only come from PPA and TVRP, and demon-
trate that it is an important source, and in some cases the main
a. J. Math. Econ. (2011), doi:10.1016/j.jmateco.2010.12.010

ource, of stock return autocorrelation. However, their method
oes not directly distinguish between PPA and TVRP. Thus, TVRP
ay be viewed as inducing a bias in their measurement of the role

f PPA in stock return autocorrelation.

dx.doi.org/10.1016/j.jmateco.2010.12.010
dx.doi.org/10.1016/j.jmateco.2010.12.010
http://www.sciencedirect.com/science/journal/03044068
http://www.elsevier.com/locate/jmateco
mailto:anderson@econ.berkeley.edu
dx.doi.org/10.1016/j.jmateco.2010.12.010
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Since TVRP arises endogenously in equilibrium, equilibrium
onsiderations induce bounds on the magnitude of TVRP. In this
aper, we translate those bounds on TVRP into bounds on the bias

nduced by TVRP in the measurement of PPA, as a function of the
ime horizon, return period, and the variability of risk premia. As
he reader will see, the derivation involves stochastic calculus and
omewhat delicate error estimates.

In the specific empirical context considered in Anderson, Eom,
ahn and Park (daily return autocorrelations calculated over a

wo-year period, so the return period is one day and the time hori-
on is two years), we show that the bias induced by TVRP in the
easurement of PPA is negligible. However, in other contexts, the

ontribution of TVRP to return autocorrelation is potentially large
nough to matter, so estimates of the role of PPA in return autocor-
elation should be adjusted.

It is important to distinguish between time-varying expected
ates of return and TVRP. Under the assumption that stock prices
ollow one of the standard processes in finance (such as a Geo-

etric Itô or Geometric Lévy Process), rejection of the hypothesis
hat stock return autocorrelation is zero is equivalent to rejection
f the hypothesis that the expected rate of return is constant. In
ther words, if we impose the assumption that the return in each
eriod is composed of an expected rate of return plus a volatility
erm, where the volatility term is uncorrelated with the returns
n disjoint periods, then returns are uncorrelated if and only if
he expected rate of return is constant. As noted by Campbell
t al. (1997, p. 66), the “R2 of a regression of returns on a con-
tant and its first lag is the square of the slope coefficient, which
s simply the first-order autocorrelation.” As a consequence, if the
rst-order autocorrelation coefficient of return is ˛, the proportion
f the variation in return that “is predictable using the preceding
ay’s . . . return” is ˛2. Thus, time-varying expected rates of return
nd return autocorrelation are simply different faces of a single
henomenon.

TVRP is a special case of time-varying expected rates of return.
uppose that stock prices follow Itô Processes of the form1

dS(t)
S(t)

= �(t) dt + �(t) dW(t) (1)

here W(t) is a standard Wiener process. The absence of arbitrage
s equivalent to the existence of a vector process �(t) of prices of
isk such that

(t) − r(t) = �(t)�(t)� (2)

ere, �(t) is the vector process of instantaneous expected rates
f return and r(t) is the instantaneous risk-free rate. The instanta-
eous expected rate of return �(t) will vary as a result of changes

n r(t), �(t), and �(t), and the resulting variation in �(t) cannot be
xploited by arbitrage; this is the variation attributable to TVRP.
ny variation in � that does not conform to Eq. (2) can be exploited
y arbitrage. Equilibrium pricing processes are always arbitrage-
ree, and provide tighter bounds on TVRP than can be obtained
rom arbitrage considerations alone.

Assuming the securities prices process is as given in Eq. (1),
he theoretical autocorrelation of �(t) dW(t) is zero: we would
ike to take daily, weekly or monthly samples of �(t)�W(t) and
est for autocorrelation. The problem is that neither �(t) nor W(t)
s observable. What is observable is the realized rate of return
Please cite this article in press as: Anderson, R.M., Time-varying risk premi

(t)�t + �(t)�W(t), and its autocorrelation. If �(t) varies over time,
e get a biased estimate of the autocorrelation of �(t)�W(t): stan-
ard autocorrelation tests will pick up time-varying expected rates

1 A similar analysis holds if prices follow other standard processes.
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f return and identify it as autocorrelation, whether or not it comes
rom TVRP.

This paper makes two main contributions. First, it provides
theoretical formula for the bias in terms of the variability of

xpected returns, whatever the source of the variability. Second,
t uses equilibrium considerations to estimate the magnitude of
he bias coming from TVRP.

Suppose a stock has a high expected rate of return. If no
ne knew the expected rate of return was high, there would
e nothing pushing the stock higher, and it would stay rela-
ively stable until the good news underlying the high expected
ate of return were announced, at which point the stock price
ould rise abruptly. If it were widely known that the expected

ate of return was high, then many traders would buy the stock,
orcing the price to rise abruptly until the future expected rate
f return was reduced to the appropriate risk-adjusted level.
hese abrupt rises in price would be captured econometrically as
olatility, and not as autocorrelation. In equilibrium, if we see a
tring of positive returns establishing statistically significant pos-
tive autocorrelation, after eliminating NT and BAB, it can only
ome from two sources: a period of high equilibrium risk premia
since equilibrium prices are arbitrage-free, this must be TVRP),
r the strategic decision of a small group of informed traders
ith positive information to exercise their informational advan-

age slowly (PPA). Similarly, if we see a string of negative returns
stablishing statistically significant positive autorcorrleation, after
liminating NT and BAB, it can only come from TVRP and
PA.

In some cases, PPA may result in negative autocorrelation. For
xample, uninformed traders may attempt to exploit the informa-
ion of informed traders using momentum strategies, which may
ead to overshooting and statistically significant negative autocor-
elation. As we shall see below, the bias in the Pearson correlation
oefficient induced by TVRP is distributed roughly symmetrically
round a positive mean. At any given level of significance, the
ias induced by TVRP decreases the probability that the Pearson
orrelation will be significant and negative. Thus, if we find sta-
istically significant negative autocorrelation after eliminating NT
nd BAB, we have statistically significant confirmation of negative
PA.

The bias resulting from TVRP in the measured autocorrelation
epends on the return period, the time horizon over which the
utocorrelations are calculated, and the variability of the risk pre-
ium over the time horizon:

The bias becomes larger as the time horizon increases, because
the variation of risk premium is larger over longer time horizons.
The bias becomes larger as the return period increases. Daily
returns are much noisier than yearly returns, so the bias com-
ing from variation in mean returns represents a smaller fraction
of daily volatility than of volatility over long return periods.
The effect of a given size bias on hypothesis tests increases as
the number of return periods per time horizon increases. For
example, suppose we look at daily return autocorrelation over
a two-year time horizon, so we have roughly n = 500 days and
n − 1 = 499 daily returns. The standard error in the autocorre-
lation tests decreases as n increases, so a bias of a given size
represents a larger multiple of the standard error as n gets larger.

We find that under plausible assumptions on the variability of
a. J. Math. Econ. (2011), doi:10.1016/j.jmateco.2010.12.010

isk premia, the bias in daily returns over a two-year time horizon is
ery small; however, the bias could be substantial in other settings,
nd point estimates and hypothesis tests need to be corrected in
hose settings.

dx.doi.org/10.1016/j.jmateco.2010.12.010
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. The bias induced by TVRP

heorem 2.1. Suppose that the price S(t) of a security or portfolio
ollows the stochastic differential equation

dS(t)
S(t)

= �(t) dt + �(t) dW(t)

here W is a standard Brownian Motion and � and � are con-
inuous deterministic functions of time, measured in years. Suppose
urther that we calculate the Pearson autocorrelation coefficient rp

ith a return period of d trading days (thus, d = 1 corresponds to
aily return autocorrelation, d = 5 weekly return autocorrelation, and
o forth) and a time horizon of y years, where each year is assumed
o contain 250 trading days; each time horizon contains n = 250y/d
ays. We let �k = �(kd/250), �k = �(kd/250), Wk = W(kd/250) and
Wk = Wk+1 − Wk denote the mean, volatility, level of the Brownian
otion and change of the Brownian Motion at the kth return period. Let

pc denote the Pearson autocorrelation coefficient corrected to factor
ut the effects of TVRP (i.e. calculated solely from the volatility terms):

rpc � A

B
=

(1/(n − 2))

n−2∑
k=1

�k�k+1�Wk�Wk+1 − v̄2

(1/(n − 2))

(
(�2

1 (�W1)2/2) +
n−2∑
k=2

�2
k

(�Wk)2 + (�2
n−1(�Wn−1)2/2)

)
− v̄

where

v̄ = 1
n − 2

(
�1�W1

2
+

n−2∑
k=2

�k�Wk + �n−1�Wn−1

2

)

hen rpc is not observable, but is related to the observable rp by the
ollowing equations:

rp � A + Z

B + Z
where

Z = Z1 + Z2 = 1
y

∫ y

0

(
(�(t) − �̄)d

250

)2

dt

+ 2
n − 2

∫ y

0

(
(�(t) − �̄)d

250

)
�(t) dW(t)

�̄ = 1
n − 2

(
�1

2
+

n−2∑
k=2

�k + �n−1

2

)
� 1

y

∫ y

0

�(t) dt

emark 2.2. Theorem 2.1 tells us that the observed Pearson
orrelation coefficient rp is a biased version of the unobservable
orrected coefficient rpc. In the absence of TVRP, Z1 and Z2 are iden-
Please cite this article in press as: Anderson, R.M., Time-varying risk premi

ically zero. Notice that neither Z1 nor Z2 depends on the rate at
hich � changes, only on the distribution of � and (in the case

f Z2) the correlation between � and �. Z1 is a nonnegative con-
tant, the variance of the mean return per return period (day, week,
onth etc.). Z2 is normally distributed with mean zero and standard

eviation

Z = 2
n − 2

√∫ 2

0

(
�(t) − �̄

250

)2

�2(t) dt
 PRESS
l Economics xxx (2011) xxx–xxx 3

oreover, the conditional distribution of Z2, conditional on A and
, is asymptotically normal. Anderson et al. (2010) make two types
f tests:

The first type involve one-sided or two-sided tests of portfolio
return autocorrelation. In those cases where the hypothesis is
rejected, the rejections are usually overwhelming and it is easy
to see that the small bias induced by TVRP, i.e. by Z, cannot make
any difference in those results.
The second type compute a large number of individual stock
return autocorrelations, and count the number of stocks in which
the hypothesis is rejected at the one-sided 2.5% level. The effect
of the bias on these tests is more delicate, and we need to care-
fully estimate the effect of the bias on the expected number of
rejections.
– |Z2 | is typically larger than Z1. However, we shall see that Z2

induces a smaller bias in the expected number of rejections
because Z2 can be either positive or negative. The presence
of Z2 leads the actual test using rp to reject in some cases in
which the correct test using rpc does not reject, and vice versa.
The symmetry of Z2 will imply that the two effects very nearly
cancel.

– If the null hypothesis is that the autocorrelation (corrected for
TVRP) is less than or equal to zero, then since Z1 ≥ 0, and | A |≤B,
the test involving rp rejects more often than the correct but
unobservable test involving rpc, but we can quantify and correct
for the bias.

– If the null hypothesis is that the autocorrelation (corrected for
TVRP) is greater than or equal to zero, the test involving rp

rejects less often than the correct but unobservable test involv-
ing rpc, so we can ignore the bias.

roof. The unobservable corrected Pearson sample autocorrela-
ion coefficient is given by

rpc =

n−2∑
k=1

(�k �Wk − v̄) (�k+1 �Wk+1 − v̄)

√√√√ n−2∑
k=1

(�k �Wk − v̄)2

√√√√ n−1∑
k=2

(�k �Wk − v̄)2

�

n−2∑
k=1

(�k �k+1 �Wk �Wk+1) − 2(n − 2)v̄2 + (n − 2)v̄2

((�1�W1 − v̄)2/2) +
n−2∑
k=2

(�2k�Wk − v̄)2 + ((�n−1�Wn−1 − v̄)2/2)

=

n−2∑
k=1

(�k �k+1 �Wk �Wk+1) − (n − 2)v̄2

((�1�W1)2/2) +
n−2∑
k=2

(�2k�Wk)2 + ((�n−1�Wn−1)2/2) − (n − 2)v̄2

=

(1/(n − 2))

n−2∑
k=1

(�k �k+1 �Wk �Wk+1) − v̄2

(
n−2∑ )
a. J. Math. Econ. (2011), doi:10.1016/j.jmateco.2010.12.010

(1/(n − 2)) (�1�W1)2/2 +
k=2

(�2k�Wk)2 + (�n−1�Wn−1)2/2 − v̄2

= (n − 2)A
(n − 2)B

= A

B

dx.doi.org/10.1016/j.jmateco.2010.12.010
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(�k − �̄)d/250) + (�k�Wk − v̄))2

T

�Wk+1 − v̄) + 1
n − 2

n−2∑
k=1

(�k+1 − �̄) d

250
(�k�Wk − v̄)

(t)

T
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he observable Pearson sample autocorrelation coefficient is given
y

rp =

n−2∑
k=1

(((�kd/250) + �k�Wk) − ((�̄d/250) + v̄))(((�k+1d/25

√√√√ n−2∑
k=1

(((�kd/250) + �k�Wk) − ((�̄d/250) + v̄))2

√√√√ n−1∑
k=2

(((�

=
(1/(n − 2))

n−2∑
k=1

((((�k − �̄)d/250)) + (�k�Wk − v̄))((((�k+1 −

(1/(n − 2))

√√√√ n−2∑
k=1

(((�k − �̄)d/250) + (�k�Wk − v̄))2

√√√√ n−1∑
k=2

((

he numerator is given by

A + 1
n − 2

n−2∑
k=1

(�k − �̄) d

250
(�k+1 − �̄) d

250
+ 1

n − 2

n−2∑
k=1

(�k − �̄) d

250
(�k+1

� A + 1
y

∫ y

0

(
(�(t) − �̄) d

250

)2

dt + 2
n − 2

∫ y

0

(
(�(t) − �̄) d

250

)
�(t) dW

= A + Z

he denominator is given by

1
n − 2

√√√√ n−2∑
k=1

(
(�k − �̄) d

250
+ (�k�Wk − v̄)

)2

√√√√ n−1∑
k=2

(
(�k − �̄) d

250
+ (�

� B + 1
n − 2

n−2∑
k=1

(�k − �̄) d

250
(�k+1 − �̄) d

250

+ 1
n − 2

n−2∑
k=1

(�k − �̄) d

250
(�k+1�Wk+1 − v̄) + 1

n − 2

n−2∑
k=1

(�k+1 − �̄) d

250

� B + Z �

. Bounding the bias

In this section, we develop specific bounds on the bias. We
ssume that the number of return subperiods is n = 250y/d ≥ 104;
his is satisfied for monthly returns over periods of nine years or
ong, weekly returns over periods of two years or longer, and daily
eturns over periods of five months or longer. When this assump-
ion is not satisfied, the standard errors in the autocorrelation tests
re large and it is hard to find significance, whether or not the bias is
aken into account; thus, it is not a significant restriction in practice
hen computing the bound on the bias.

The Pearson test compares
√

n − 2rp/
√

1 − r2
p to the standard

ormal. We have

√
n − 2

rp√
1 − r2

p

= √
n − 2

((A + Z)/(B + Z))√
1 − (((A + Z)2)/((B + Z)2))

= √
n − 2

A + Z√
(B + Z)2 − (A + Z)2
Please cite this article in press as: Anderson, R.M., Time-varying risk premi

et

AB(Z) =
√

n − 2
A + Z√

(B + Z)2 − (A + Z)2
I
g

nd let

AB(Z) =
√

n − 2
B2 − A2

(
A + B

B + A
Z
)

e the first-order Taylor approximation to gAB at Z = 0.
Noting that A and B are random variables, let Y =

n − 2A/
√

B2 − A2 be the random variable gAB(0) = hAB(0).
et N denote the cumulative distribution function of the standard
ormal. As noted in Remark 2.2, we can ignore the bias in the

ower-tail one-sided tests, so we focus on one-sided upper tail tests
t the 2.5% level. The probability that Z changes an insignificant
alue to a significant value, using the critical value ˛ = 0.025,
s the probability that Y = gAB(0) < ˛ and gAB(Z) ≥ ˛. Since gAB is
ncreasing in Z, this probability only depends on the value Z˛ for

hich gAB(Z˛) = ˛ � 1.96. Recall that we assumed that n ≥ 104, so
n − 2 > 10.

gAB(Z˛) 1.96
a. J. Math. Econ. (2011), doi:10.1016/j.jmateco.2010.12.010

√
n − 2

� √
n − 2

< 0.2

t is easy to check numerically that for 0 ≤ A ≤ 0.2B and 0 ≤ Z ≤ 10B,
AB is concave in Z. If the presence of Z changes an insignificant

dx.doi.org/10.1016/j.jmateco.2010.12.010
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alue to significant, then Z ≥ 0 and Y ≤ ˛ � 1.96; since n ≥ 104, this
mplies that A ≤ 0.2B. We assume the following:

Z2| ≤ 4�Z, gAB(0) < ˛, gAB(Z) ≥ ˛ ⇒ A ≥ 0, Z ≤ 10B (3)

nd the presence of Z changes an insignificant value to significant,
hen A ≥ 0. Eq. (3) thus implies that gAB(Z˛) ≤ hAB(Z˛). We believe
hat Eq. (3) is satisfied in every reasonable empirical situation. We
hall show in Section 4 how to check it in a given situation, and find
hat is overwhelmingly satisfied in the specific empirical situation
f Anderson et al. (2010).

The probability that Z changes an insignificant value to a signif-
cant value is bounded above by

1√
2��Z

∫ ∞

0

e
−z2/2�2

Z

(
N(˛) − N

(
˛ −

√
n − 2B√

B2 − A2(B + A)
(Z1 + z)

))
dz ≤

1 − N(4) + 1√
2��Z

∫ 4�Z

0

e
−z2/2�2

Z (N(˛) − N (˛ − �1 (Z1 + z))) dz

here �1 is the value of
√

n − 2B/(
√

B2 − A2(B + A)) corresponding
o Y = ˛ − �1 (Z1 + 4�Z ). Although it is hard to solve for �1 exactly,
e can estimate it using 0 ≤ A ≤ 0.2B as follows:

∂

∂A

( √
n − 2B√

B2 − A2(B + A)

)

= √
n − 2B

(
∂

∂A
((B2 − A2)

−1/2
(B + A)−1)

)

= √
n − 2B(A(B2 − A2)

−3/2
(B + A)−1 − (B2 − A2)

−1/2
(B + A)−2)

≥ −√
n − 2B(B2 − A2)

−1/2
(B + A)−2

≥ −1.0207
√

n − 2
B2

t follows that

1 ≤ �0 + 1.0207
√

n − 2
B2 (Z1 + 4�Z )

here �0 is the value of
√

n − 2B/
√

B2 − A2(B + A) corresponding
o Y = ˛; for ˛ = 1.96, we have

A = 1.96B√
n − 2 + 1.962

�0 =
√

n − 2B√
B2 − A2(B + A)

=
√

n − 2
B

1√
1 − (1.962/(n − 2 + 1.962))

(
1 + (1.96/

√
n − 2 + 1.962)

)
≤

√
n − 2
B

1√
1 − (1.962/(n − 2 + 1.962))

≤ 1.019
√

n − 2
B

or the specific empirical setting considered in Anderson et al.
2010), n = 500: for n ≥ 500, we can do slightly better:

√
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�1 ≤ �0 + 0.9950 n − 2
B2 (Z1 + 4�Z )

�0 ≤ .9231
√

n − 2
B

n
p
c
b
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Similarly, the probability that Z changes an insignificant value
o a significant value is bounded below by

1√
2��Z

∫ 4�Z

0

e−z2/2�2
Z (N (˛ + �2 (z − Z1)) − N(˛)) dz

here

2 ≥ �0 − 1.04318
√

n − 2
B2

(4�Z − Z1)

hus,

≤ �1 − �2 ≤ 8.26
√

n − 2�Z

B2

or n ≥ 500, 1.04318 improves to 1.009 and 8.26 improves to 8.02.
Using the second order Taylor Expansion for the normal cumu-

ative distribution function, the increase in the probability of
ejection resulting from Z is bounded above by

1√
2��Z

∫ 4�Z

0

e−z2/2�2
Z (2N(˛) − N (˛ − �1 (Z1 + z))

−N (˛ + �2 (z − Z1))) dz + 1 − N(4)

≤ 1√
2��Z

∫ ∞

0

e−z2/2�2
Z
(

N′(˛) (�1 + �2) Z1 + (�1 − �2) z
)

dz

− 1√
2��Z

∫ ∞

0

e−z2/2�2
Z

N′′(˛)
2

(
(�1 (Z1 + z))2 + (�2 (z − Z1))2

)
dz

+ 1√
2��Z

∫ 4�Z

0

e−z2/2�2
Z

N
′′′

(	(z))
6

(�1 (Z1 + z))3 dz + 10−4

for some measurable function 	 : [0, ∞) → R

≤ N′(˛)
(

�1 + �2

2
Z1 + (�1 − �2)�Z√

2�

)

−N′′(˛)
2

(
�2

1 + �2
2

2
Z2

1 + 2�Z√
2�

(
�2

1 − �2
2

)
Z1 + �2

1 + �2
2

2
�2

Z

)

+N
′′′

(	(z))�3
1

6

(
Z3

1
2

+ 3Z2
1 �Z√
2�

+ 3Z1�2
Z

2
+ 2�3

Z√
2�

)
+ 10−4

≤ e−˛2/2
√

2�

(
�1 + �2

2
Z1 + (�1 − �2)�Z√

2�

)

+˛e−˛2/2

2
√

2�

(
�2

1 + �2
2

2

(
Z2

1 + �2
Z

)
+ 2�Z√

2�

(
�2

1 − �2
2

)
Z1

)

+ e−3/2�3
1

3
√

2�

(
Z3

1
2

+ 3Z2
1 �Z√
2�

+ 3Z1�2
Z

2
+ 2�3

Z√
2�

)
+ 10−4

. An example

In this section, we present an example showing how to apply the
stimates just developed in a particular empirical setting. Anderson
t al. (2010) considered the specific situation of daily return auto-
orrelations of NYSE stocks over two-year time horizons from 1993
hrough 2008, so we have d = 1, n = 500. For now, we focus on
he seven two-year subperiods 1993–1994 through 2005–2006;
he subperiod 2007–2008, coinciding with the financial crisis of
007–2009, is discussed separately in Section 4.1.

We must first determine an upper bound on the plausible mag-
a. J. Math. Econ. (2011), doi:10.1016/j.jmateco.2010.12.010

itude of the variation of the risk premium of NYSE stocks and
ortfolios over a two-year time horizon. Stocks and portfolios could
onceivably have expected rates of return below the risk-free rate,
ut only if they were negatively correlated with undiversifiable

dx.doi.org/10.1016/j.jmateco.2010.12.010
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ning and height of the financial crisis. As noted above, the daily
standard deviation on the SPDRs in 2007–2008 was 1.904%, nearly
ARTICLEATECO-1636; No. of Pages 7

R.M. Anderson / Journal of Mathe

isks and thus provided insurance against those risks. The port-
olios considered in Anderson et al. (2010) are stratified by firm
ize, but they are otherwise diversified. The portfolios are pos-
tively correlated with two important undiversifiable risks (the

arket as a whole and aggregate income), so it is implausible that
nvestors would hold the portfolios if they had an expected rate
f return below the risk-free rate. To maintain equilibrium, stock
rices would have to fall to raise the future expected rate of return
ufficiently to induce stockholders to retain their holdings.

Equilibrium implies the absence of arbitrage, which in term
mplies (as noted above in Eq. (2)) that �(t) − r(t) = �(t)�(t)�; the
quilibrium risk premium depends on the volatility of the secu-
ities. The conventional wisdom is that the daily volatility of the
road U.S. stock market is around 1%. Anderson et al. (2010) report

n Table 10 the standard deviations of daily returns for SPDRs, the
rincipal Exchange-Traded Fund tracking the Standard & Poor’s 500

ndex: 0.629% (93–94), 0.679% (95–96), 1.277% (97–98), 1.297%
99–00), 1.526% (01–02), 0.906% (03–04), 0.639% (05–06), and
.904% (07–08). Setting aside the subperiod 2007–2008 of the
nancial crisis, the average of the standard deviations is 0.993%,
ery close to the conventional wisdom.

Daily volatility of 1% corresponds to yearly volatility of
√

249% �
5.8%. If the expected rate of return of the S&P 500 exceeded the
isk-free rate by 15% per annum, investors would surely choose to
ubstantially increase their stockholdings: taking the volatility into
ccount, there is roughly an 82% chance that the S&P 500 will out-
erform the risk-free rate over a one-year horizon, and only about
2.5% chance that the S&P 500 will underperform the risk-free rate
y 15% or more. Thus, equilibrium considerations dictate that the
xpected rate of return on the broad stock market should range
etween the risk-free rate r and r + 15% for two-year subperiods.

For U.S. stocks, it is natural to take the three-month Treasury Bill
ate as the risk-free rate. Anderson et al. (2010) divided a sixteen-
ear data period (1993–2008) into eight two-year subperiods, and
omputed autocorrelations over these two-year time horizons. The
ariations (max-min) in the three-month Treasury Bill rates for
heir five two-year subperiods are as follows: 3.34% (6.39–3.05%)
93–94), 1.28% (6.40–5.12%) (95–96), 0.86% (5.83–4.97%) (97–98),
.99% (6.84–4.85%) (99–00), 4.96% (6.27–1.31%) (01–02), 1.48%
2.51–1.03%) (03–04), 2.85% (5.35–2.50%) (05–06), and 4.45%
5.77–1.32%) (07–08). The average of the subperiod variations is
.65%. Thus, TVRP should induce variation in the expected return
f the portfolios of no more than 18% per annum over a two-year
eriod.

In the case of an individual stock, the expected rate of return
hould reflect the risk premia of the factors underlying its pric-
ng. Some stocks may have low—even negative—risk premia, while
thers may have large risk premia. However, the correlation of any
iven stock with the main risk factors should be relatively stable
ver time periods of a year or two. Thus, TVRP should induce vari-
tion in the expected returns of the individual stocks of no more
han 18% per annum over a two-year period.

Assuming that � is distributed uniformly over an interval of
ength 18% = .18 per annum, Z1 = 4.320 × 10−8. Assuming that � is
niformly distributed over an interval of length.18 per annum and
is constant, �Z = 1.180 × 10−6�.
The returns of individual stocks are more volatile than returns

n the overall market, and returns on smaller stocks are more
olatile than returns on larger stocks. However, notice that A and
are quadratic in � (i.e. if we double the function �(t) at all times,

hen A and B are quadrupled), while Z1 is independent of � and Z2
s linear in �. Thus, the bias induced in rp by Z is maximized when
Please cite this article in press as: Anderson, R.M., Time-varying risk premi

is minimized. The returns on individual stocks in a portfolio are
ore volatile than the returns of the portfolio, and the returns of

maller stocks are more volatile than the returns of larger stocks.
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e take the volatility of the S&P 500 index as a lower bound on the
olatility of the individual stocks in our analysis.

As noted above, the average value of �r for the SPDRs, over the
even two-year subperiods of 1993–2006, is .00993. Assuming � is
onstant, we obtain the estimate � =

√
249 ln(1.00993) � .15592.

ith probability 2 × (1 − N(4)) > 1 − 2 × 10−4,
∣∣B − (�r)2

∣∣ =
Z| ≤ 4.320 × 10−8 + 4 × 1.18 × 10−6� = 7.791 × 10−7, so
= (0.986 ± .008) × 10−4; since the bias is maximized when

is minimized, we assume B = 0.978 × 10−4, � = .155, and
Z = 1.829 × 10−7. �2 ≤ �0 = .9231

√
498/B = 2.106 × 105,

1 ≤ �0 + (.9950
√

498/B2) (Z1 + 4�z) = 2.124 × 105, 0 ≤ �1 − �2 ≤
.26

√
498�Z/B2 = 3.42 × 103, 0 ≤ �2

1 − �2
2 = (�1 − �2)(�1 + �2) ≤

.448 × 109.
We need to check that Eq. (3) is satisfied. Assuming that Z2 ≤ 4�Z,

Z

B
≤ Z1 + 4�Z

B
= 7.748 × 10−7

9.78 × 10−5
< 10−2 � 10

gAB(Z) > 0, A < 0 ⇒ gAB(0) < 0, gAB(Z) ≥ ˛ ⇒ g′
0B(0) ≥ ˛

Z1 + 4�Z

= 2.530 × 106

g′
0B(0) =

√
n − 2
B

=
√

498
9.78 × 10−5

= 2.282 × 105 � 2.530 × 106

hus, Eq. (3) is satisfied.
Then the increase in the probability of rejection resulting from

is at most

e−˛2/2
√

2�

(
�1 + �2

2
Z1 + (�1 − �2)�Z√

2�

)

+˛e−˛2/2

2
√

2�

(
�2

1 + �2
2

2

(
Z2

1 + �2
Z

)
+ 2�Z√

2�

(
�2

1 − �2
2

)
Z1

)

+ e−3/2�3
1

3
√

2�

(
Z3

1
2

+ 3Z2
1 �Z√
2�

+ 3Z1�2
Z

2
+ 2�3

Z√
2�

)
+ 3 × 10−4

= .0584
(

9.138 × 10−3 + 2.497 × 10−4
)

+.0573
(

1.580 × 10−3 + 9.128 × 10−6
)

+2.133 × 1014
(

4.031 × 10−23 + 4.217 × 10−22

+2.310 × 10−21 + 5.370 × 10−21
)

+ 3 × 10−4

= 5.483 × 10−4 + 0.918 × 10−4 + 0.017 × 10−4 + 3 × 10−4

= 9.410 × 10−4

hus, the bias induced by TVRP increases the probability of rejec-
ion from .025 by less than .001–.026, so the expected number of
ejections in 100 autocorrelations increases by at most .1 from 2.5
o 2.6. The tests of individual stock autocorrelations and the tests
sing SPDRs in Anderson et al. (2010) are all based on comparing
he number of rejections to 2.5. Changing 2.5 to 2.6 to adjust for
he bias increases the p-values slightly but makes no qualitative
hange in those findings.

.1. The financial crisis of 2007–2009

The two-year subperiod 2007–2008 coincided with the begin-
a. J. Math. Econ. (2011), doi:10.1016/j.jmateco.2010.12.010

ouble the conventional wisdom of 1%. Moreover, the volatility
ose over the period, peaking in late 2008 and early 2009. The
igh volatility of that period should have induced a substantial

dx.doi.org/10.1016/j.jmateco.2010.12.010


 ING Model

M

matica

i
r

i
i
b

i
p
s
d
t
b
o

t
s
a
h
t
s
1

a
c
t
2
s
t

R

A

ARTICLEATECO-1636; No. of Pages 7

R.M. Anderson / Journal of Mathe

ncrease in risk premia,2 and therefore increased the variability of
isk premia over the period.

However, as noted above, A and B are quadratic in �, while Z1
s independent of � and Z2 is linear in �. Thus, the direct effect of
ncreased volatility mitigates some of the additional bias induced
y greater variation in risk premia.

More to the point, as noted above, the bias in autocorrelation
nduced by TVRP is distributed roughly symmetrically around a
ositive mean, and it always reduces the probability of finding
tatistically negative autocorrelation. While the autocorrelation
Please cite this article in press as: Anderson, R.M., Time-varying risk premi

ocumented by Anderson et al. (2010) is generally positive in
he first half (1993–2002) of the 1993–2008 data period, it
ecomes negative toward the end of the period, and virtually all
f the statistical significance in 2007–2008 comes from negative

2 A rise in risk premia should result in a decline in stock prices, as prices must fall
o induce people to continue to hold the suddenly riskier stocks. The sharp decline in
tock prices over the second half of 2008 and first quarter of 2009 is consistent with
rise in risk premia, while the subsequent recovery in stock prices is consistent with
igher but stable risk premia and/or falling risk premia. The conventional wisdom is
hat risk premia declined after the second quarter of 2009, as the financial services
ector stabilized, diminishing the prospect of a contraction as severe as that of the
930s.
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utocorrelations. TVRP cannot be the source of these negative auto-
orrelations in 2007–2008, and eliminating it would strengthen
he findings of negative autocorrelation resulting from PPA in
007–2008. Thus, it is not necessary to do a more careful analy-
is of the potential impact of the high volatility of 2007–2008 on
he variability of risk premia.
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