Proof of Lemma 2

Lemma 2 in the online Appendix of the paper "Offshoring in a Ricardian World," establishes that $x_M(\alpha)$ is increasing. To prove this lemma, I first introduce some notation. Let

$$H(x,\alpha) = x^2 + Bx/A - C/A^2$$

$$J(x,\alpha) = \left[\left(1 + \frac{\alpha b L_1/L_2}{f(\alpha)} \right) - Ax(1-b) \right] \frac{const}{(1+\alpha)A^2}$$

where

$$A = \left(\frac{f(\alpha)}{1+\alpha}\right)^{b}, \ const = \delta^{\theta} \left(f(\alpha)\right)^{b} \Phi_{-m}/L_{1}$$

$$B = (1-b)C - \left(1 + \frac{\alpha b L_{1}/L_{2}}{f(\alpha)}\right) - b - \frac{\alpha}{(1+\alpha)}b$$

$$C = (L_{2}/L_{1})\frac{f(\alpha)}{(1+\alpha)}$$

Simple algebra shows that $G(x,\alpha) = F(x,\alpha) \Leftrightarrow H(x,\alpha) = J(x,\alpha)$, so $x_M(\alpha)$ solves

$$H(x,\alpha) = J(x,\alpha)$$

The proof that $x_M(\alpha)$ is increasing includes three steps:

- 1) First, I prove that the solution $x_M^0(\alpha)$ of $H(x,\alpha) = 0$ is increasing in alpha. Since $J(x,\alpha)$ is flat in x if $\Phi_{-m} = 0$ (since const = 0) then this implies that if $\Phi_{-m} = 0$ then $x_M(\alpha) = x_M^0(\alpha)$ is increasing in α . The rest of the proof extends this to $\Phi^* > 0$.
- 2) Next, I prove that if $\alpha_2 > \alpha_1$ then $H(x,\alpha_2) < H(x,\alpha_1)$ for any $x \ge x_M^0(\alpha_1)$.
- 3) Finally, I prove that the solution of $J(x, \alpha_2) = J(x, \alpha_1)$, where α_2 is greater and close to α_1 , is less than $x_M^0(\alpha_1)$.

Thus, given that the slope of J w.r.t. x increases (declines in absolute value) as α increases, then the three steps above are sufficient to prove that $x_M(\alpha)$ is increasing in alpha, since the shift of $J(x,\alpha)$ with an increase in alpha amplifies the effect of increasing α on $x_M^0(\alpha)$.

First step: We want to prove that $x_M^0(\alpha)$ is increasing in alpha. This is done by solving explicitly for the highest solution to $H(x,\alpha)=0$ and then differentiating w.r.t. α and showing that the result is positive. Given the expression for $H(x,\alpha)=0$ then $x_M^0(\alpha)$ is determined by the positive solution of

$$A^2x^2 + ABx - C = 0.$$

or

$$x_M(\alpha) = \frac{-B + \sqrt{B^2 + 4C}}{2A}$$

Differentiation yields:

$$\frac{dx_M(\alpha)}{d\alpha} = \frac{A\left(\frac{2BB'+4C'}{2\sqrt{B^2+4C}} - B'\right) - A'\left(\sqrt{B^2+4C} - B\right)}{2A^2}.$$

It is easy to show that this is positive if and only if

$$(A'B - AB') \left(\sqrt{B^2 + 4C} - B\right) > A'4C - 2C'A$$

Differentiating to get A' and C' and then plugging in and simplifying reveals that

$$A'4C - 2C'A = 2A\frac{1 + L_2/L_1}{(1 + \alpha)^2}(1 - 2b).$$

Hence, we want to show that

$$\left(\frac{A'}{A}B - B'\right)\left(\sqrt{B^2 + 4C} - B\right) > 2\frac{1 + L_2/L_1}{(1 + \alpha)^2}(1 - 2b)$$

Now,

$$\frac{A'}{A} = \frac{-b\left(\frac{f(\alpha)}{(1+\alpha)}\right)^{b-1} \frac{1+L_1/L_2}{(1+\alpha)^2}}{\left(\frac{f(\alpha)}{(1+\alpha)}\right)^b} = -b\frac{1+L_1/L_2}{f(\alpha)(1+\alpha)}$$

and

$$-B' = (1-b)(L_2/L_1)\frac{1+L_1/L_2}{(1+\alpha)^2} + bL_1/L_2\frac{1}{(f(\alpha))^2} + \frac{b}{(1+\alpha)^2}.$$

Consider $\sqrt{B^2+4C}-B$ as a function of $b\in(0,1/2).$ We have

$$\begin{split} \left(\sqrt{B^2 + 4C} - B\right)_b' &= \frac{2BB'}{2\sqrt{B^2 + 4C}} - B' \\ &= B' \left(\frac{B - \sqrt{B^2 + 4C}}{\sqrt{B^2 + 4C}}\right) > 0, \end{split}$$

as $B - \sqrt{B^2 + 4C} < 0$ and B' < 0. Thus, it is sufficient to show that

$$\left(\frac{A'}{A}B - B'\right)\left(\sqrt{B^2 + 4C} - B\right)_{b=0} > 2\frac{1 + L_2/L_1}{\left(1 + \alpha\right)^2}(1 - 2b),$$

But

$$\left(\sqrt{B^2 + 4C} - B\right)_{b=0} = \sqrt{\left((L_2/L_1)\frac{f(\alpha)}{(1+\alpha)} - 1\right)^2 + 4(L_2/L_1)\frac{f(\alpha)}{(1+\alpha)}} - \left((L_2/L_1)\frac{f(\alpha)}{(1+\alpha)} - 1\right) \\
= (L_2/L_1)\frac{f(\alpha)}{(1+\alpha)} + 1 - \left((L_2/L_1)\frac{f(\alpha)}{(1+\alpha)} - 1\right) = 2.$$

So, we want to prove that

$$\left(\frac{A'}{A}B - B'\right) > \frac{1 + L_2/L_1}{(1 + \alpha)^2}(1 - 2b)$$

Some manipulation reveals that

$$\frac{A'}{A}B - B' = (1-b)^2 \frac{1 + L_2/L_1}{(1+\alpha)^2} + bL_1/L_2 \frac{1}{(f(\alpha))^2} + \frac{b}{(1+\alpha)^2} + b\frac{1 + L_1/L_2}{f(\alpha)(1+\alpha)} \left(1 + \frac{\alpha bL_1/L_2}{f(\alpha)} + b + \frac{\alpha}{(1+\alpha)}b\right)$$

But it is trivial to establish that this is positive.

Second step: Consider equation $H(x, \alpha_1) = H(x, \alpha_2)$ for any $\alpha_i : \alpha_2 > \alpha_1$. It is a linear equation so it has a unique solution. Moreover, so

$$\left(\frac{(L_2/L_1)f(\alpha)}{(1+\alpha)A^2}\right)'_{\alpha} = L_2/L_1 \left(\left(\frac{f(\alpha)}{(1+\alpha)}\right)^{1-2b}\right)'_{\alpha}.$$

Since $\theta > 1$ (an assumption in EK 2002) b < 1/2. That is, 1 - 2b > 0. This means that $\left(\frac{(L_2/L_1)f(\alpha)}{(1+\alpha)A^2}\right)'_{\alpha} < 0$ or $-\left(\frac{(L_2/L_1)f(\alpha)}{(1+\alpha)A^2}\right)'_{\alpha} > 0$. That is, the intercept of $H(x,\alpha)$ with vertical axis is always negative and increasing in α . Thus, $0 > H(0,\alpha_2) > H(0,\alpha_1)$. Since H is U-shaped and $x_M^0(\alpha_2) > x_M^0(\alpha_1) > 0$ (see 1) then $H(x_M^0(\alpha_1),\alpha_2) < H(x_M^0(\alpha_1),\alpha_1) = 0$. By continuity, there must exist $x^* \in (0,x_M^0(\alpha_1))$ such that $H(x^*,\alpha_1) = H(x^*,\alpha_2)$. Since there is a unique solution to this equation, it follows that $H(x,\alpha_2) < H(x,\alpha_1)$ for all $x \ge x_M^0(\alpha_1)$.

Third step: It is obvious if $J(x,\alpha)$ is fixed and does not change with an increase in alpha, then from the previous two steps we can say that $x_M(\alpha)$ is increasing in alpha. However, with an increase in alpha the curve $J(x,\alpha)$ pivots around some point, with the slope becoming higher or less negative. If we prove that the solution to $J(x,\alpha_2) = J(x,\alpha_1)$ with α_2 just higher than α_1 is less than $x_M^0(\alpha_1)$, then we are done with the proof because the change in $J(x,\alpha)$ amplifies the overall effect on $x_M(\alpha)$. We have

$$J(x,\alpha) = D(\alpha) - F(\alpha)x$$

where

$$D(\alpha) = \left(1 + \frac{\alpha b L_1 / L_2}{f(\alpha)}\right) \frac{const}{(1+\alpha)A^2}$$

$$F(\alpha) = A(1-b) \frac{const}{(1+\alpha)A^2}$$

¹The last inequality comes from $x_M(\alpha) = \frac{-B + \sqrt{B^2 + 4C}}{2A}$ and noting that $-B + \sqrt{B^2 + 4C} > -B + \sqrt{B^2} = -B + |B| > -B + B = 0$.

²To see this, recall that $x_M^0(\alpha)$ is the highest solution to $H(x,\alpha) = 0$ so that

² To see this, recall that $x_M^0(\alpha)$ is the highest solution to $H(x,\alpha)=0$ so that $H_x(x_M^0(\alpha),\alpha)>0$. Thus, it must be the case that $H(x_M^0(\alpha_1),\alpha_2)<0$, for otherwise the curve $H(x,\alpha_2)$ would have its lower solution to $H(x,\alpha_2)=0$ for a level of x higher than $x_M^0(\alpha_1)$ and hence given the U-shape form of H it would follow that $H(0,\alpha_2)>0$, which is a contradiction.

Then,

$$J(x, \alpha_2) = J(x, \alpha_1) \iff$$

$$x = \frac{D(\alpha_1) - D(\alpha_2)}{F(\alpha_1) - F(\alpha_2)}$$

If we take the limit $\alpha_2 \to \alpha_1$, then

$$x = \frac{D'(\alpha)}{F'(\alpha)}$$

Tedious algebra shows that

$$\frac{D'(\alpha)}{F'(\alpha)} = \frac{1}{1-b} \left(\frac{(1+\alpha)}{f(\alpha)} \right)^b \left\{ \left(1 + \frac{\alpha b L_1/L_2}{f(\alpha)} \right) - \frac{(1+\alpha) \left\{ \frac{b L_1/L_2}{(f(\alpha))^2} + \left(1 + \frac{\alpha b L_1/L_2}{f(\alpha)} \right) \frac{b(1+L_1/L_2)}{(1+\alpha)f(\alpha)} \right\}}{(1-b)} \right\}$$

Next, we compare $\frac{D'(\alpha)}{F'(\alpha)}$ with $x_F(\alpha) = \left(\frac{(1+\alpha)}{f(\alpha)}\right)^b < x_M^0(\alpha)$ (this last inequality follows because $x_F(\alpha) < x_M(\alpha)$ for all Φ_{-m} including $\Phi_{-m} = 0$, but $x_M(\alpha; \Phi_{-m} = 0) = x_M^0(\alpha)$). Algebra shows that this is equivalent to

$$\frac{(1+\alpha)\left\{\frac{L_1/L_2}{(f(\alpha))^2} + \left(1 + \frac{\alpha b L_1/L_2}{f(\alpha)}\right) \frac{(1+L_1/L_2)}{(1+\alpha)f(\alpha)}\right\}}{(1-b)} > \frac{\alpha L_1/L_2}{f(\alpha)} + 1$$

The left side of the inequality positively depends on b. Thus, to prove the inequality we can take b=0, and then simple algebra reveals that the inequality holds. Thus, we proved that the solution of $J(x,\alpha_2)=J(x,\alpha_1)$ for α_2 higher but close to α_1 is strictly less than $x_F(\alpha_1) < x_M^0(\alpha_1)$. Q.E.D.