Growth, Size, and Openness:
a Quantitative Approach

Natalia Ramondo
UT-Austin and Princeton

Andrés Rodríguez-Clare
PSU and NBER

PSU, 2009
Growth and the Size of Countries

- Quasi Endogenous Growth Models (QEGM): growth is driven by aggregate economies of scale (Jones, 95; Kortum, 97; Eaton and Kortum, 01)

\[g_y = \varepsilon \cdot g_L \]
Growth and the Size of Countries

- Quasi Endogenous Growth Models (QEGM): growth is driven by aggregate economies of scale (Jones, 95; Kortum, 97; Eaton and Kortum, 01)

\[g_y = \varepsilon \cdot g_L \]

- Basic calibration reveals: \(\varepsilon = 0.21 \)
Growth and the Size of Countries

- Quasi Endogenous Growth Models (QEGM): growth is driven by aggregate economies of scale (Jones, 95; Kortum, 97; Eaton and Kortum, 01)

\[g_y = \varepsilon \cdot g_L \]

- Basic calibration reveals: \(\varepsilon = 0.21 \)
 - \(g_y = 0.01 \) is growth rate of real output per worker in the OECD over the last four decades (K-RC, 05)
Growth and the Size of Countries

- Quasi Endogenous Growth Models (QEGM): growth is driven by aggregate economies of scale (Jones, 95; Kortum, 97; Eaton and Kortum, 01)

\[g_y = \varepsilon \cdot g_L \]

- Basic calibration reveals: \(\varepsilon = 0.21 \)
 - \(g_y = 0.01 \) is growth rate of real output per worker in the OECD over the last four decades (K-RC, 05)
 - \(g_L = 0.048 \) is growth rate of R&D employment over the last decades in the top five R&D countries (Jones, 02)
The dynamic relationship \(g_y = \varepsilon \cdot g_L \) implies aggregate economies of scale,

\[y_n \sim L_n^\varepsilon \]
The Income-Size Elasticity: Data

- The dynamic relationship $g_y = \varepsilon \cdot g_L$ implies aggregate economies of scale,

$$y_n \sim L_n^\varepsilon$$

- But the income-size elasticity implied by the data on a cross-section of nineteen OECD countries is 0.094
The Income-Size Elasticity: Data

- The dynamic relationship $g_y = \varepsilon \cdot g_L$ implies aggregate economies of scale,

$$y_n \sim L_n^\varepsilon$$

- But the income-size elasticity implied by the data on a cross-section of nineteen OECD countries is 0.094

 - L_n is “equipped labor” for country n from K-RC (05), average over 90’s
The Income-Size Elasticity: Data

- The dynamic relationship \(g_y = \varepsilon \cdot g_L \) implies aggregate economies of scale,
 \[y_n \sim L_n^\varepsilon \]

- But the income-size elasticity implied by the data on a cross-section of nineteen OECD countries is 0.094

 - \(L_n \) is “equipped labor” for country \(n \) from K-RC (05), average over 90’s

 - \(y_n \) is real GDP per worker for country \(n \) from PWT, average over 90’s
The Income-Size Elasticity: QEGM and Data

![Graph showing real income per worker as a share of US income for OECD(19) as a share of total OECD(19) income, with data points marked by QEGM and actual data.](image-url)
The Income-Size Elasticity: The “Belgium Puzzle”

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>$y_{belgium}/y_{US}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi Endogenous Growth</td>
<td>0.21</td>
<td>0.47</td>
</tr>
<tr>
<td>Data OECD(19)</td>
<td>0.094</td>
<td>0.89</td>
</tr>
</tbody>
</table>
The Gains from Openness and the “Belgium Puzzle”

- Of course, countries are not in isolation; they gain from interacting with the rest of the world through various channels.
The Gains from Openness and the “Belgium Puzzle”

- Of course, countries are not in isolation; they gain from interacting with the rest of the world through various channels.

- We focus on gains arising from Trade, Multinational Production (MP), and Diffusion.
The Gains from Openness and the “Belgium Puzzle”

- Of course, countries are not in isolation; they gain from interacting with the rest of the world through various channels.

- We focus on gains arising from Trade, Multinational Production (MP), and Diffusion.

- But, trade and MP are directly observable, diffusion is not.
The Gains from Openness and the “Belgium Puzzle”

- Of course, countries are not in isolation; they gain from interacting with the rest of the world through various channels.

- We focus on gains arising from Trade, Multinational Production (MP), and Diffusion.

- But, trade and MP are directly observable, diffusion is not.

- We present an indirect approach to identify diffusion in the data.
The Gains from Openness and the “Belgium Puzzle”

- Of course, countries are not in isolation; they gain from interacting with the rest of the world through various channels.

- We focus on gains arising from Trade, Multinational Production (MP), and Diffusion.

- But, trade and MP are directly observable, diffusion is not.

- We present an indirect approach to identify diffusion in the data.
 - we reconcile the income-size elasticity observed in the data and the one implied by a quasi-endogenous growth model.
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
- The final good is produced from these intermediate goods with a CES σ

- Ideas have two elements: the good to which they apply and their “quality”

- The good to which an idea applies is drawn from a uniform distribution in $u \in [0, 1]$

- The quality q is drawn from a Pareto distribution with parameter θ
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
- The final good is produced from these intermediate goods with a CES σ
- Intermediate goods are produced with labor productivity $z(u)$
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
- The final good is produced from these intermediate goods with a CES σ
- Intermediate goods are produced with labor productivity $z(u)$
- There is an instantaneous rate of arrival ϕ of ideas per person
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
- The final good is produced from these intermediate goods with a CES σ
- Intermediate goods are produced with labor productivity $z(u)$
- There is an instantaneous rate of arrival ϕ of ideas per person
 - exogenous research

Ideas have two elements: the good to which they apply and their "quality"
- the good to which an idea applies is drawn from a uniform distribution in $u \in [0, 1]$
- the quality q is drawn from a Pareto distribution with parameter θ
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods \(u \in [0, 1] \)
- The final good is produced from these intermediate goods with a CES \(\sigma \)
- Intermediate goods are produced with labor productivity \(z(u) \)
- There is an instantaneous rate of arrival \(\phi \) of ideas per person
 - exogenous research
- The stock of ideas is \(T \), with \(\dot{T} = \phi L \)
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods \(u \in [0, 1] \)
- The final good is produced from these intermediate goods with a CES \(\sigma \)
- Intermediate goods are produced with labor productivity \(z(u) \)
- There is an instantaneous rate of arrival \(\phi \) of ideas per person
 - exogenous research
- The stock of ideas is \(T \), with \(\dot{T} = \phi L \)
 - in steady state: \(\dot{T} / T = g_L \) and \(T = \phi L / g_L \)
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
- The final good is produced from these intermediate goods with a CES σ
- Intermediate goods are produced with labor productivity $z(u)$
- There is an instantaneous rate of arrival ϕ of ideas per person
 - exogenous research
- The stock of ideas is T, with $\dot{T} = \phi L$
 - in steady state: $\dot{T} / T = g_L$ and $T = \phi L / g_L$
- Ideas have two elements: the good to which they apply and their “quality”
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
- The final good is produced from these intermediate goods with a CES σ
- Intermediate goods are produced with labor productivity $z(u)$
- There is an instantaneous rate of arrival ϕ of ideas per person
 - exogenous research
- The stock of ideas is T, with $\dot{T} = \phi L$
 - in steady state: $\frac{\dot{T}}{T} = g_L$ and $T = \phi L / g_L$
- Ideas have two elements: the good to which they apply and their “quality”
 - the good to which an idea applies is drawn from a uniform distribution in $u \in [0, 1]$
A Simple Growth Model (based on Kortum 1997, EK 2001)

- Continuum of intermediate goods $u \in [0, 1]$
- The final good is produced from these intermediate goods with a CES σ
- Intermediate goods are produced with labor productivity $z(u)$
- There is an instantaneous rate of arrival ϕ of ideas per person
 - exogenous research
- The stock of ideas is T, with $\dot{T} = \phi L$
 - in steady state: $\dot{T} / T = g_L$ and $T = \phi L / g_L$
- Ideas have two elements: the good to which they apply and their “quality”
 - the good to which an idea applies is drawn from a uniform distribution in $u \in [0, 1]$
 - the quality q is drawn from a Pareto distribution with parameter θ
Technology Frontier and Growth Rate

- The economy’s technology frontier is determined by the best idea available for the production of each good.

\[\text{The growth rate is then } \; g = \frac{g_L}{\theta} \]
Technology Frontier and Growth Rate

- The economy’s technology frontier is determined by the best idea available for the production of each good
 - more ideas (higher T) \rightarrow better technology frontier (higher z)
Technology Frontier and Growth Rate

- The economy’s technology frontier is determined by the best idea available for the production of each good
 - more ideas (higher T) → better technology frontier (higher z)
 - formally, z is drawn from a Fréchet distribution with parameters T and θ,
 \[
 \Pr(Z \leq z) = e^{-Tz^{-\theta}}
 \]
Technology Frontier and Growth Rate

- The economy's technology frontier is determined by the best idea available for the production of each good
 - more ideas (higher T) → better technology frontier (higher z)
 - formally, z is drawn from a Fréchet distribution with parameters T and θ,
 \[
 \Pr(Z \leq z) = e^{-Tz^{-\theta}}
 \]
- Letting $p^{1-\sigma} = \int p(u)^{1-\sigma} du$ and assuming $\sigma < 1 + \theta$ then (for some constant C)
 \[
 w/p = C \cdot T^{1/\theta}
 \]
Technology Frontier and Growth Rate

- The economy’s technology frontier is determined by the best idea available for the production of each good
 - more ideas (higher T) \rightarrow better technology frontier (higher z)
 - formally, z is drawn from a Fréchet distribution with parameters T and θ,
 \[
 \Pr(Z \leq z) = e^{-Tz^{-\theta}}
 \]
- Letting $p^{1-\sigma} = \int p(u)^{1-\sigma} \, du$ and assuming $\sigma < 1 + \theta$ then (for some constant C)
 \[
 \frac{w}{p} = C \cdot T^{1/\theta}
 \]
- The growth rate is then
 \[
 g = g_L / \theta
 \]
Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)

Using AL parameters, we get

$$\eta = \frac{1-\alpha}{\beta} = \frac{1-0.75}{0.5} = 0.5$$

Further using $g_L = 4.8\%$ and $g = 1\%$, then we need

$$\theta = 7.2$$

Growth comes from technological change in intermediate goods, $\eta g_L / \theta$, and in final goods, g_L / θ, with

$$g / g_L = \frac{1}{\theta} + \frac{\eta}{\theta} = 0.21$$

$$0.07 + 0.14$$
Quantitative version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
Quantitative version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
Quantitative version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
- Now, the growth rate in real output per worker is

$$g = \left(1 + \frac{1 - \alpha}{\beta}\right) \frac{g_L}{\theta}$$

Further using $g_L = 4.8\%$ and $g = 1\%$, then we need $\theta = 7.2$

Growth comes from technological change in intermediate goods, $\eta g_L / \theta$, and in final goods, g_L / θ, with

$$\frac{g}{g_L} = \frac{1}{\theta} + \frac{\eta}{\theta} = 0.21 + 0.14$$
Quantitative version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
- Now, the growth rate in real output per worker is

$$g = \left(1 + \frac{1 - \alpha}{\beta} \right) g_L / \theta$$

- using AL parameters, we get

$$\eta \equiv (1 - \alpha) / \beta = (1 - 0.75) / 0.5 = 0.5$$
Quantitative version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
- Now, the growth rate in real output per worker is

$$g = \left(1 + \frac{1 - \alpha}{\beta}\right) \frac{g_L}{\theta}$$

- using AL parameters, we get
 $$\eta \equiv \frac{1 - \alpha}{\beta} = \frac{1 - 0.75}{0.5} = 0.5$$
- further using $g_L = 4.8\%$ and $g = 1\%$, then we need $\theta = 7.2$
Quantitative version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
- Now, the growth rate in real output per worker is

$$g = \left(1 + \frac{1 - \alpha}{\beta}\right) g_L / \theta$$

- using AL parameters, we get
 $$\eta \equiv (1 - \alpha) / \beta = (1 - 0.75) / 0.5 = 0.5$$
 - further using $g_L = 4.8\%$ and $g = 1\%$, then we need $\theta = 7.2$
- Growth comes from technological change in intermediate goods, $\eta g_L / \theta$, and in final goods, g_L / θ, with

$$\frac{g}{g_L} = \frac{1}{\theta} + \frac{\eta}{\theta}$$

$$0.21 = 0.07 + 0.14$$
Each idea in country i is characterized by

$$q_i = (q_{1i}, q_{2i}, \ldots, q_{ni})$$
Each idea in country i is characterized by

$q_i = (q_{1i}, q_{2i}, \ldots, q_{ni})$

q_i drawn from a multivariate Pareto distribution (here no correlation)
Each idea in country i is characterized by

$q_i = (q_{1i}, q_{2i}, ..., q_{ni})$

q_i drawn from a multivariate Pareto distribution (here no correlation)

$T_i / L_i = \phi$ is the same across countries
Each idea in country i is characterized by
$q_i = (q_{1i}, q_{2i}, \ldots, q_{ni})$
q_i drawn from a multivariate Pareto distribution (here no correlation)
$T_i/L_i = \phi$ is the same across countries
The technology frontier is then characterized by
$z_i = (z_{1i}, z_{2i}, \ldots, z_{ni})$ drawn from a multivariate Fréchet distribution (here no correlation) with $T_{li} = T_l T_i$
Each idea in country i is characterized by $q_i = (q_{1i}, q_{2i}, \ldots, q_{ni})$

q_i drawn from a multivariate Pareto distribution (here no correlation)

$T_i/L_i = \phi$ is the same across countries

The technology frontier is then characterized by $z_i = (z_{1i}, z_{2i}, \ldots, z_{ni})$ drawn from a multivariate Fréchet distribution (here no correlation) with $T_{li} = T_l T_i$

Intermediate goods are tradable but subject to iceberg trade costs; final goods are non-tradable
Ideas

- There are national and global ideas

\[\dot{G}_{ni} = \epsilon \dot{N}_{ni} \]

where \(\epsilon \) is the speed of diffusion. In steady state \(\dot{G}_{ni}/G_{ni} = g_L \), hence \(G_{ni} = (\epsilon/g_L)N_{ni} \).

- We have trade and MP for intermediate goods
- Only MP for final goods
Ideas

- There are national and global ideas
 - both can be used for production abroad, i.e. using technology z_i in country / with productivity z_{ij}
Ideas

- There are national and global ideas
 - both can be used for production abroad, i.e. using technology z_i in country / with productivity z_{li}
 - for national ideas this is recorded as MP
Ideas

- There are national and global ideas
 - both can be used for production abroad, i.e. using technology z_i in country i with productivity z_{ij}
 - for national ideas this is recorded as MP
 - for global ideas this is not recorded as MP
Ideas

- There are national and global ideas
 - both can be used for production abroad, i.e. using technology z_i in country l with productivity z_{li}
 - for national ideas this is recorded as MP
 - for global ideas this is not recorded as MP
 - moreover, ideas are first national and then global (as in EK 2006),
 \[
 \dot{T}_{ni}^G = \epsilon T_{ni}^N
 \]
 where ϵ is the speed of diffusion. In steady state
 \[
 \frac{\dot{T}_{ni}^G}{T_{ni}^G} = g_L,
 \]
 hence
 \[
 T_{ni}^G = \left(\frac{\epsilon}{g_L}\right) T_{ni}^N
 \]
Ideas

▶ There are national and global ideas
 ▶ both can be used for production abroad, i.e. using technology z_i in country l with productivity z_{li}
 ▶ for national ideas this is recorded as MP
 ▶ for global ideas this is not recorded as MP
 ▶ moreover, ideas are first national and then global (as in EK 2006),

$$\dot{T}_{ni}^G = \epsilon T_{ni}^N$$

where ι is the speed of diffusion. In steady state

$$\frac{\dot{T}_{ni}^G}{T_{ni}^G} = g_L,$$

hence

$$T_{ni}^G = (\epsilon / g_L) T_{ni}^N$$

▶ We have
Ideas

- There are national and global ideas
 - both can be used for production abroad, i.e. using technology z_i in country i with productivity z_{ji}
 - for national ideas this is recorded as MP
 - for global ideas this is not recorded as MP
 - moreover, ideas are first national and then global (as in EK 2006),
 $$\dot{T}_{ni}^G = \epsilon T_{ni}^N$$
 where ι is the speed of diffusion. In steady state
 $$\frac{\dot{T}_{ni}^G}{T_{ni}^G} = g_L$$
 hence
 $$T_{ni}^G = \frac{\epsilon}{g_L} T_{ni}^N$$

- We have
 - trade and MP for intermediate goods
Ideas

- There are national and global ideas
 - both can be used for production abroad, i.e. using technology z_i in country l with productivity z_{li}
 - for national ideas this is recorded as MP
 - for global ideas this is not recorded as MP
 - moreover, ideas are first national and then global (as in EK 2006),
 \[
 \dot{T}_{ni}^G = \epsilon T_{ni}^N
 \]
 where ϵ is the speed of diffusion. In steady state \(\dot{T}_{ni}^G / T_{ni}^G = g_L \), hence \(T_{ni}^G = (\epsilon / g_L) T_{ni}^N \)

- We have
 - trade and MP for intermediate goods
 - only MP for final goods
Gains

Some results

$$GT_n = \left(\frac{X_{nn}}{\eta Y_n} \right)^{-\eta/\theta}$$

$$GMP_n = GMP_{gn} \cdot GMP_{fn}$$

where

$$GMP_{gn} = \left(\frac{Z_{gnn}}{\eta Y_n} \right)^{-\eta/\theta}$$

$$GMP_{fn} = \left(\frac{Z_{fnn}}{Y_n} \right)^{-1/\theta}$$
Gains

- Some results

\[
GT_n = \left(\frac{X_{nn}}{\eta Y_n} \right)^{-\eta/\theta}
\]

\[
GMP_n = GMP_{gn} \cdot GMP_{fn}
\]

where

\[
GMP_{gn} = \left(\frac{Z_{gnn}}{\eta Y_n} \right)^{-\eta/\theta}
\]

\[
GMP_{fn} = \left(\frac{Z_{fnn}}{Y_n} \right)^{-1/\theta}
\]

- The share of global ideas is \(\kappa \equiv \iota/g_L \). Then

\[
GD_n = \left(1 + \kappa \frac{\sum_{i \neq n} L_i}{L_n} \right)^{-\frac{1+\eta}{\theta}}
\]

(note: no efficiency loss in use of foreign global ideas)
Some results

\[\begin{align*}
GT_n &= \left(\frac{X_{nn}}{\eta Y_n}\right)^{-\eta/\theta} \\
GMP_n &= GMP_{gn} \cdot GMP_{fn}
\end{align*}\]

where

\[\begin{align*}
GMP_{gn} &= \left(\frac{Z_{gnn}}{\eta Y_n}\right)^{-\eta/\theta} \\
GMP_{fn} &= \left(\frac{Z_{fnn}}{Y_n}\right)^{-1/\theta}
\end{align*}\]

The share of global ideas is \(\kappa \equiv \iota / g_L\). Then

\[GD_n = \left(1 + \kappa \frac{\sum_{i \neq n} L_i}{L_n}\right)^{-\frac{1+\eta}{\theta}}\]

(note: no efficiency loss in use of foreign global ideas)

Finally,

\[GO_n = GT_n \cdot GMP_n \cdot GD_n\]
Start by assuming that countries interact only through Trade.
Start by assuming that countries interact only through Trade.

We use data and $\eta / \theta = 0.07$ to compute

$$GT_n = \left(\frac{X_{nn}}{\eta Y_n} \right)^{-\eta / \theta}$$
Start by assuming that countries interact only through Trade.

We use data and $\eta/\theta = 0.07$ to compute

\[GT_n = \left(\frac{X_{nn}}{\eta Y_n} \right)^{-\eta/\theta} \]

We calculate the implied income under isolation y_n / GT_n.
The Income-Size Elasticity: Adding Trade

![Graph showing the relationship between L as share of total OECD(19) and real income per worker (as share of US) implied by QEGM adjusted by GT.](image_url)

- **Y-axis:** Real income per worker (as share of US)
- **X-axis:** L as share of total OECD(19)
- **Legend:**
 - Blue dots: implied by QEGM
 - Green dots: adjusted by GT

The diagram illustrates the elasticity between economic size and income per worker, adjusted for trade, across different countries in the OECD.
The Income-Size Elasticity: still the “Belgium Puzzle”

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>$Y_{belgium}/Y_{US}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi Endogenous Growth</td>
<td>0.21</td>
<td>0.47</td>
</tr>
<tr>
<td>Data OECD(19)</td>
<td>0.094</td>
<td>0.89</td>
</tr>
<tr>
<td>Trade</td>
<td>0.10</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Multinational Production (MP)

- Now, assume that countries interact through trade and MP, and MP is possible for tradable (T) and non-tradable goods (NT)
Multinational Production (MP)

- Now, assume that countries interact through trade and MP, and MP is possible for tradable (T) and non-tradable goods (NT)

- We use MP data to compute

\[
GMP_n = \left(\frac{Z_{gnn}}{\eta Y_n} \right)^{-\eta/\theta} \times \left(\frac{Z_{fnn}}{Y_n} \right)^{-1/\theta}
\]
Now, assume that countries interact through trade and MP, and MP is possible for tradable (T) and non-tradable goods (NT)

We use MP data to compute

\[
GMP_n = \left(\frac{Z_{g_{nn}}}{\eta Y_n} \right)^{-\eta/\theta} \times \left(\frac{Z_{f_{nn}}}{Y_n} \right)^{-1/\theta}
\]

We calculate the implied income under isolation

\[
y_n / (GMP_n \times GT_n)
\]
The Income-Size Elasticity: Adding MP

![Graph showing the relationship between L as share of total OECD(19) and real income per worker (as share of US) implied by QEGM adjusted by GT and GMP.](image)
The Income-Size Elasticity: Closing the Gap

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>$y_{belgium}/y_{US}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi Endogenous Growth</td>
<td>0.21</td>
<td>0.47</td>
</tr>
<tr>
<td>Data OECD(19)</td>
<td>0.094</td>
<td>0.89</td>
</tr>
<tr>
<td>Trade</td>
<td>0.10</td>
<td>0.79</td>
</tr>
<tr>
<td>Trade + MP</td>
<td>0.13</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Diffusion: Reconciling the Puzzle

- Countries interact through trade, MP, and diffusion of ideas (for both T and NT goods)

\[GD_n = \left(1 + \kappa \sum_{i \neq n} L_i L_n \right) - 1 + \eta \theta \]

We use equipped labor to measure \(L_i \)

- We calculate the implied income under isolation \(y_n / GO_n \) where \(GO_n = GD_n \times GMP_n \times GT_n \), for \(\kappa = 0.042 \)

- \(\kappa = \frac{\epsilon}{g L} \) which implies a diffusion lag of \(\frac{1}{\epsilon} = 500 \) periods (would be lower if there were efficiency losses associated with the use of global ideas)
Diffusion: Reconciling the Puzzle

- Countries interact through trade, MP, and diffusion of ideas (for both T and NT goods)
 - Diffusion: countries have access to foreign ideas at no cost

\[
GD_n = \left(1 + \kappa \sum_{i \neq n} L_i L_n\right) - 1 + \eta \theta
\]

We use equipped labor to measure \(L_i\).

We calculate the implied income under isolation \(y_n/GO_n\) where \(GO_n = GD_n \times \text{GMP}_n \times \text{GT}_n\), for \(\kappa = 0.042\).

\(\kappa = \epsilon / g\) which implies a diffusion lag of \(1/\epsilon = 500\) periods (would be lower if there were efficiency losses associated with the use of global ideas).
Diffusion: Reconciling the Puzzle

- Countries interact through trade, MP, and diffusion of ideas (for both T and NT goods)
 - Diffusion: countries have access to foreign ideas at no cost

- The Gains from Diffusion are given by

\[GD_n = \left(1 + \kappa \frac{\sum_{i \neq n} L_i}{L_n} \right)^{-\frac{1+\eta}{\theta}} \]

We use equipped labor to measure \(L_i \).
Diffusion: Reconciling the Puzzle

- Countries interact through trade, MP, and diffusion of ideas (for both T and NT goods)
 - Diffusion: countries have access to foreign ideas at no cost

- The Gains from Diffusion are given by

\[
GD_n = \left(1 + \kappa \frac{\sum_{i \neq n} L_i}{L_n}\right)^{-\frac{1+\eta}{\theta}}
\]

We use equipped labor to measure \(L_i \);

- We calculate the implied income under isolation \(y_n / GO_n \) where \(GO_n = GD_n \times GMP_n \times GT_n \), for \(\kappa = 0.042 \)
Diffusion: Reconciling the Puzzle

- Countries interact through trade, MP, and diffusion of ideas (for both T and NT goods)
 - Diffusion: countries have access to foreign ideas at no cost

- The Gains from Diffusion are given by

\[
GD_n = \left(1 + \kappa \frac{\sum_{i\neq n} L_i}{L_n}\right)^{-\frac{1+\eta}{\theta}}
\]

We use equipped labor to measure \(L_i\)

- We calculate the implied income under isolation \(y_n / GO_n\)
 where \(GO_n = GD_n \times GMP_n \times GT_n\), for \(\kappa = 0.042\)

 - \(\kappa = \epsilon / g_L\) which implies a diffusion lag of \(1/\epsilon = 500\) periods
 (would be lower if there were efficiency losses associated with the use of global ideas)
The Income-Size Elasticity: Adding Diffusion
The Income-Size Elasticity: the “Belgium Puzzle” Reconciled

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>$y_{belgium} / y_{US}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi Endogenous Growth</td>
<td>0.21</td>
<td>0.47</td>
</tr>
<tr>
<td>Data OECD(19)</td>
<td>0.094</td>
<td>0.89</td>
</tr>
<tr>
<td>Trade</td>
<td>0.10</td>
<td>0.79</td>
</tr>
<tr>
<td>Trade + MP</td>
<td>0.13</td>
<td>0.66</td>
</tr>
<tr>
<td>Trade + MP + Diffusion ($\kappa = 0.042$)</td>
<td>0.21</td>
<td>0.47</td>
</tr>
</tbody>
</table>
The Gains from Openness, Trade, MP, and Diffusion

Figure: Gains and Size. OECD(19).
Final remarks

- Gains from Openness for a country arise from many possible channels.
Final remarks

- Gains from Openness for a country arise from many possible channels
 - We focus on Trade, Multinational Production (MP), and Diffusion of Ideas
Final remarks

- Gains from Openness for a country arise from many possible channels
 - We focus on Trade, Multinational Production (MP), and Diffusion of Ideas

- We show that to reconcile key facts about Trade, MP, Growth, and Size, we need to include diffusion of ideas across countries
Final remarks

- Gains from Openness for a country arise from many possible channels
 - We focus on Trade, Multinational Production (MP), and Diffusion of Ideas

- We show that to reconcile key facts about Trade, MP, Growth, and Size, we need to include diffusion of ideas across countries
 - even if a small country is closed to trade and MP, the data suggest that this country is much richer than implied by its small size