Firms and Global Production

Costas Arkolakis, Natalia Ramondo, Andres Rodriguez-Clare, Stephen Yeaple

December 2010
The world is a cube, not a square

Trade economists need to think more “inside the box”:

- The volume of trade by firms that originate in country i, are produced in country l, for destination n is X_{iln}

- Trade models generally ignore i and focus instead on

 $$X_{ln} = \sum_i X_{iln}$$

This approach misses much.
Inconvenient Facts from the US

Consider the case for $i = \text{United States (2004)}$

- Most US firm sales abroad are produced by their plants outside the US:
 \[
 \frac{\sum_{l \neq i, n \neq i} X_{iln}}{\sum_{l, n \neq i} X_{iln}} = 0.65
 \]

- Of this, one-third is exported to foreign countries other than the host:
 \[
 \frac{\sum_{l \neq i, n \neq i, l} X_{iln}}{\sum_{l \neq i, n \neq i} X_{iln}} = 0.37
 \]

Further, for $l = \text{US}$

- Foreign affiliates in US account for substantial fraction of US exports:
 \[
 \frac{\sum_{i \neq l, n \neq l} X_{iln}}{\sum_{i, n \neq l} X_{iln}} = 0.19
 \]
Our way of thinking inside the box

A tractable multicountry, monopolistic competition model of trade & MP

- Starting point: ingredients by Melitz/Chaney; Eaton, Kortum, Kramarz
 - Monopolistically competitive firms
 - Fixed marketing & variable trade costs— not all firms serve all markets.
 - Pareto parameterization of heterogeneous firm productivity

- To look inside the box, we add
 - Extend probabilistic productivity draws by firm to all countries
 - Add variable MP costs (friction to moving ideas)
 - Firms compare costs of exporting, MP and BMP

- New theory of trade and MP: Proximity vs Comparative Advantage
 - No fixed costs of production: avoid very difficult discrete choice problem
Quantitative Models in trade and MP

Existing literature

- Trade Only models: Melitz; Chaney; EKK
- MP Only models: Burstein, Monge-Naranjo; Ramondo; McGrattan, Prescott
- Models with both trade and MP
 - NO BMP: Variants of Helpman et al, e.g. Moxnes et al
 - With BMP, Ramondo and Rodríguez-Clare
Quantitative Models in trade and MP

This paper

- Use more data in calibration
 - Deepen insight into gravity relationships
 - Jointly estimate trade and MP frictions
- Role of profits in welfare results
 - 20% of Irish GDP shipped abroad as payments to foreign ideas
- Allow for free entry → specialization in innovation vs production
- Effect of trade & MP liberalization on firm decisions & key aggregates?
 - U.S.-Canadian FTA – substitution away from local MP for exports
 - Example: increase in Greek openness to MP: trade & MP flows, welfare
 - Increase Greek openness to match Irish episode
 - By some estimates, foreign firms in Ireland account for 75% ind. output
Model
Notation

- N countries. i: origin, l: location, n: destination

- X_{iln}: sales of firms from i, producing in l, selling to n

- Y_l: GDP, total production by all firms in location l
 - $\sum_{i,n} X_{iln} = Y_l$

- X_n: GNI, total income (and spending) of country n
 - $\sum_{i,l} X_{iln} = X_n$
Setup

- Measure of L_i consumers/workers, and measure M_i of firms (exogenous if no free entry)

Consumers

- Dixit-Stiglitz preferences over varieties, elasticity of substitution σ
- Income from labor & profits from national firms (profits zero if free entry)
Setup

- **Firms**
 - Monopolists over their variety. Enter in i with fixed cost $w_i f_i^e$
 - Can serve n from any location l at "marketing" cost $w_n F_n$
 - Linear production technology. Productivity in location l is z_l, use $z = (z_1, ..., z_N)$
 - τ_{ln} iceberg trade costs, γ_{il} iceberg MP costs
 - Marginal production and shipping cost from l to n

$$C_{iln} = \frac{w_l \tau_{ln} \gamma_{il}}{z_l} \equiv \frac{\zeta_{iln}}{z_l}$$
Firm Productivities

- Productivity vector \mathbf{z} is drawn from a multivariate Pareto distribution

$$\Pr(Z_1 \leq z_1, \ldots, Z_N \leq z_N) = H(z_1, \ldots, z_N) = 1 - \left(\frac{1}{N} \sum_{v=1}^{N} z_v^{-\theta/\rho} \right)^{\rho}$$

for $z_v \geq 1$, $\theta > \sigma - 1$, $\rho \in]0, 1]$.

- Properties of the distributions
 - Marginals are not Pareto, but do have Pareto tails – for $z_l \geq a > 1$,
 $$\Pr(Z_l \geq z_l \mid Z_l \geq a) = (z_l/a)^{-\theta}$$
 - As $\rho \to 0$ then perfect correlation among z_v.
 - With no free entry and $\gamma_{il} \to \infty \ \forall i \neq l$ then this is the Chaney-EKK version of Melitz
Firm Problem: Entry

- Firm i chooses to sell to n from l if

$$\arg \min_v C_{ivn} = l \cap C_{ivn} \leq c_n^*$$

where

$$c_n^* = \left(\frac{\sigma w_n F_n}{\tilde{\sigma} X_n} \right)^{1/(1-\sigma)} P_n$$

and where P_n is the Dixit-Stiglitz price index.
Firms

Lemma
The probability that a firm from i will serve market n from l is

$$ \int_0^{c^*_n} \theta \Psi_{in}^{\rho-1} \zeta_{iln}^{\theta/\rho} c^{\theta-1} dc = N^{-\rho} \Psi_{in}^{\rho-1} \zeta_{iln}^{\theta/\rho} (c^*_n)^\theta. $$

(1)

where $\Psi_{in} \equiv \sum_v \zeta_{ivn}^{-\theta/\rho}$ and the measure of firms from i that serve market n from l at cost $c < \zeta_{ivn}$ is $\theta M_i N^{-\rho} \Psi_{in}^{\rho-1} \zeta_{iln}^{-\theta/\rho} c^{\theta-1}$.

- Conditional on selling to n from l, distribution of $c \leq c^*_n$ is $(c/c^*_n)^\theta$
Trade Flows

Since the sales of a firm with cost c in a market n are $\bar{\sigma} X_n P_n^{\sigma-1} c^{1-\sigma}$, the previous results imply that

$$X_{iln} = \psi_{iln} \pi_{in} X_n,$$

where

$$\pi_{in} = \frac{\sum_l X_{iln}}{\sum_{j,l} X_{jln}} = \frac{M_i \Psi_i^\rho}{\sum_j M_j \Psi_j^\rho},$$

and

$$\psi_{iln} \equiv \frac{\bar{\xi}_{iln}^{-\theta/\rho}}{\sum_v \bar{\xi}_{ivn}^{-\theta/\rho}}.$$
Trade and MP shares

- Expenditure shares of consumers in n on goods produced in l (trade shares)
 \[
 \lambda_{ln} = \frac{\sum_i X_{iln}}{\sum_{j,l} X_{jln}} = \sum_i \psi_{iln} \pi_{in}
 \]

- Production shares of firms from i in l (MP shares)
 \[
 \mu_{il} = \frac{\sum_n X_{iln}}{\sum_{j,n} X_{jln}} = \frac{\sum_n \psi_{iln} \pi_{in} X_n}{Y_l}
 \]
Equilibrium

- **Lemma:** Profits are a constant fraction \(\eta \equiv \frac{(\sigma - 1)}{(\sigma \theta)} \) of aggregate sales.

- Equilibrium can be determined by \(3 \times N \) equations on \(X_i, w_i, M_i \)
 - Current Account balance
 \[
 X_i = w_i L_i^p + \eta \sum_n \pi_{in} X_n
 \]
 - Labor market equilibrium
 \[
 w_i L_i = w_i L_i^p + w_i L_i^e
 \]
 \[
 w_i L_i^p = (1 - \eta) \sum_n \lambda_{in} X_n
 \]
 \[
 w_i L_i^e = w_i M_i f_i^e
 \]
 - Free entry condition
 \[
 M_i w_i f_i^e = \eta \sum_l \mu_{il} Y_l
 \]
MP and Entry: An Illustration

Let L^e_i be labor devoted to entry and $L^p_i = L_i - L^e_i$ be labor devoted to production. From equilibrium conditions, we have

$$\frac{L^e_i}{L^p_i} = \frac{\eta X_i}{1 - \eta Y_i}.$$

- With no MP ($\gamma_{il} = \infty$ for $i \neq l$) then $X_i = Y_i$, so $L^e_i / L^p_i = \eta / (1 - \eta)$
 - Standard feature of Melitz/Chaney
- With MP a country facing lower entry costs now has
 $$\frac{L^e_i}{L^p_i} > \frac{\eta}{1 - \eta}$$
 - Countries with lower entry cost specialize in entry
 - Countries with high entry cost specialize in production.
Welfare Measurement

- The gains from openness can be written

\[GO_n = \lambda_{nn}^{-\rho/\theta} \pi_{nn}^{-(1-\rho)/\theta} \varepsilon_{nnn}^{-\rho/\theta} \left(\frac{X_n}{Y_n} \right)^{1+\frac{\theta-(\sigma-1)}{\theta(\sigma-1)}} \]

where \(\varepsilon_{nnn} \equiv X_{nnn} / \sum_i X_{inn} \)

- In the special case with \(\rho = 1 \) and we have that \(\varepsilon_{nnn} = \mu_{nn} \), so

\[GO_n = \lambda_{nn}^{-1/\theta} \times \varepsilon_{nnn}^{-1/\theta} \left(\frac{X_n}{Y_n} \right)^{1+\frac{\theta-(\sigma-1)}{\theta(\sigma-1)}} \]

- Inward versus Outward MP gains
Taking the Model to Data (Preliminary)
Calibrating the Model

- Parameters to obtain M_i, σ, θ/ρ, τ_{ln}, γ_{il}, and ρ

- Main Idea
 - Step 1: calibrate M_i and σ
 - Step 2: use structural relationship to estimate θ/ρ; pick a value for ρ
 - Step 3: given ρ & θ, get τ_{ln} & γ_{il} by fitting model to trade and MP data
 - Step 4: loop until calibrated model is consistent with the trade elasticity in the data
Calibration: Step 1

- Calibrate M_i and σ
 - M_i proportional to equipped labor
 - $\sigma = 6$ to match a 20% markup (Martines et. al.)
 - σ does not affect rest of estimation (minor effects on gains)
Calibration: Step 2

- We get θ/ρ as the trade elasticity in a *restricted* gravity equation.
- Recall that

\[
X_{iln} = \psi_{iln} \pi_{in} X_n
\]

\[
= (\tau_{ln})^{-\theta/\rho} \left(\frac{M_i \Psi_{in}^\rho - 1 X_n}{\sum_j M_j \Psi_{jn}^\rho} \right) (w_i \gamma_{il})^{-\theta/\rho}
\]

- Within network of i firms gravity holds and coefficient on log(τ_{ln}) is $-\theta/\rho$ (trade elasticity).
Calibration: Step 3

- Backing out trade and MP costs
- From the model, we have

\[\lambda_{ln} = \sum_{i} \psi_{iln} \pi_{in} \]

\[\mu_{il} = \frac{\sum_{n} \psi_{iln} \pi_{in} X_n}{Y_l} \]

where

\[\pi_{in} = \frac{M_i \Psi_{in}^{\rho}}{\sum_{j} M_j \Psi_{jn}^{\rho}} \]

while \(\Psi_{in} = \sum_{v} \zeta_{ivn}^{-\theta/\rho} \), \(\zeta_{iln} \equiv w_l \gamma_{il} \tau_{ln} \), and \(\psi_{iln} \equiv \zeta_{iln}^{-\theta/\rho} / \Psi_{in} \).
Calibration: Step 3

- Given
 - w_l (GDP per equipped labor),
 - M_i (proportional to equipped labor),
 - aggregate bilateral trade and MP shares, λ_{ln} and μ_{il},
 - an estimate of θ/ρ and a guess of ρ

Then all τ_{ln} and γ_{il} are exactly identified.
Calibration: Step 4

- Simulate the model and run a standard (unrestricted) gravity regression to get the trade elasticity implied by the calibrated model.
- Compare this trade elasticity with the one in the data.
- Loop on ρ until these elasticities match.

Note: we do not directly use info on X_{iln} to estimate τ_{ln}, γ_{il} only X_{ln}, Y_{il}!
Calibration: Step 4

- The unrestricted gravity equation is associated with following equation

\[X_{ln} = \sum_{i} X_{iln} \]

\[= (\tau_{ln})^{-\theta/\rho} \left(\frac{X_{n}}{\sum_{j} M_{j} \Psi_{jn}^{\rho}} \right) (w_{l})^{-\theta/\rho} \left[\sum_{i} M_{i} \Psi_{in}^{\rho-1} (\gamma_{il})^{-\theta/\rho} \right] \]

Note that last term in brackets cannot be decomposed.

- **Key Implication**: restr. gravity trade elasticity > unrestr. gravity trade elasticity
 - Only when \(\rho = 1 \) or when \(\gamma_{il} = \infty \) for all \(i \neq l \) restricted and unrestricted trade elasticities are the same (and equal to \(-\theta\)
Gravity Equations: Specification

For restricted and unrestricted sample, we estimate the following equation:

$$\log X_{iln} = \alpha_l + \eta_n + \beta \log(1 + T_{ln}) + \sum \delta_j[1|d_{ln} \in d_j] + \Theta Z_{ln},$$

where

- T_{ln}: simple average tariff applied by n on goods from l (WTO tariffs)
 - Estimate of $\beta = -\theta / \rho$
- δ_j: indicator variables for a given distance between n and l (CEPIII)
- Z_{ln}: standard gravity controls such as language (also dummy for “self”)
Gravity Equations: Data

For restricted and unrestricted sample, we estimate the following equation:

$$\log X_{iln} = \alpha_l + \eta_n + \beta \log(1 + T_{ln}) + \sum_j \delta_j [1|d_{ln} \in d_j] + \Theta Z_{ln},$$

- **Data sources** X_{iln}: BEA. X_{ln}: Feenstra et al, UNIDO, and STAN, '99
 - BMP data for Canada, EU (minus UK), Japan, UK, and US as destinations for everywhere
 - 55 countries local sales versus imports from the United States
Gravity Regression Results

<table>
<thead>
<tr>
<th></th>
<th>Restricted</th>
<th>Unrestricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{ln}</td>
<td>-7.0</td>
<td>-4.8</td>
</tr>
<tr>
<td>δ_1</td>
<td>-0.9</td>
<td>-0.4</td>
</tr>
<tr>
<td>δ_2</td>
<td>-2.3</td>
<td>-1.6</td>
</tr>
<tr>
<td>δ_3</td>
<td>-2.7</td>
<td>-2.4</td>
</tr>
<tr>
<td>δ_4</td>
<td>-1.9</td>
<td>-1.5</td>
</tr>
<tr>
<td>δ_5</td>
<td>-2.0</td>
<td>-1.6</td>
</tr>
<tr>
<td>Self</td>
<td>1.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

n=255

Bold indicates standard statistical significance.

Other controls: Language, Shared Colonial History, Border
Benchmark Calibration

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Target</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td>Equipped labor</td>
<td>Klenow & Rodríguez-Clare</td>
</tr>
<tr>
<td>σ</td>
<td>6</td>
<td>20% markup</td>
</tr>
<tr>
<td>θ / ρ</td>
<td>7</td>
<td>Restricted Trade Elast.</td>
</tr>
<tr>
<td>ρ</td>
<td>.6</td>
<td>Unrestricted Trade Elast.</td>
</tr>
<tr>
<td>γ_{il}</td>
<td>Fit bilateral trade ...</td>
<td>Feenstra et. al., and ...</td>
</tr>
<tr>
<td>τ_{ln}</td>
<td>... and MP data</td>
<td>... STAN, UNCTAD</td>
</tr>
</tbody>
</table>
Fit Inside the Cube: U.S. BMP

The unrestricted gravity elasticity is reproduced for $\rho = 0.6$. For BMP data for $i = \text{U.S.}$, we obtain

$$
\begin{array}{|c|c|c|}
\hline
\text{Average} & \text{Correlation} \\
\text{Data} & \text{Model} & \text{Data & Model} \\
\hline
\bar{X}_{iln} & 0.91 & 0.76 & 0.63 \\
\bar{X}_{inn} & 0.14 & 0.02 & 0.76 \\
\bar{X}_{ili} & 0.38 & 0.16 & \\
\bar{X}_{ill} & & & \\
\text{BMP share} & & & \\
\hline
\end{array}
$$

Model does generate BMP of the right order of magnitude, except for United States as a destination.
BMP Fit: All Countries

Just to US
Implied Taus and Gammas
Fact from Inside the Box

For $i = \text{US}$, high Correlation between actual X_{iin} and X_{inn}

Consistent with high correlation between γ_{in} and τ_{in}.
A Counterfactual Experiment
Counterfactual Experiment

- We use the model as a device to evaluate the gains from a reform

- Irish episode in the 90s: dramatically decreased the barriers to US MP
 - Result: an unprecedented increase in investment of US firms
 - Can the same experiment work for other countries?

- Simulate a decrease in the Greek γ’s that simulates the Irish experience
 - Can Greece become Ireland (rather than the other way!)?
Benefits of Openess for a Small Country

- According to some estimates $\mu_{I,I} = .25$ (cite: Taylor)

- Counterfactual: Greece opens to US Multinationals
 - $\mu_{G,G} = .575 \rightarrow \mu_{G,G} = .242$
 - Requires an across the board reduction of Greek (inward) γ’s by 30%

- Policies reducing MP costs (e.g. Irish Industrial Development Agency)
 - New “Fast-Track” Greek law for FDI (lets not be so optimistic!)
Counterfactual Results

- Gains from openness can be decomposed

\[GO_n = \lambda_{nn}^{-\rho/\theta} \times \pi_{nn}^{-\rho/(1-\rho)/\theta} \epsilon_{nnn}^{\rho/\theta} \times \left(\frac{X_n}{Y_n} \right)^{1+\frac{\theta-(\sigma-1)}{\theta(\sigma-1)}} \]

- Greece a small-low tech country
Counterfactual Results

- Gains from openness can be decomposed

\[17.8\% \approx (-1.4\%) + 28.3\% + (-6.9\%) \]

- Greece a small-low tech country
 - Large drop in imports (Greek demand served by foreign firms)
 - Foreign firms take over, crowd out inefficient Greek firms
 - Large decrease in Greek firm’s profits
Extensions/Future Work

- (Very Soon) Allow for free entry in calibration/counterfactual exercises

- (Soon-ish) Model multi-product firms in order to make direct contact with firm-level data

- (A different paper, but we know how) Fixed Production costs