Increasing Returns and Economic Prosperity: How Can Size Not Matter?

Natalia Ramondo (ASU) Andrés Rodríguez-Clare (PSU and NBER) Milagro Saborío-Rodríguez (PSU)

October 1st, 2010 (VERY PRELIMINARY)
A constant growth rate requires a constant rate of technological change. With \(Y = F(K, AL) \) and no population growth, then \(g = g_A \).
A constant growth rate requires a constant rate of technological change. With \(Y = F(K, AL) \) and no population growth, then \(g = g_A \)

Romer assumes \(\dot{A} = AH_I = As_I L \), so \(g = s_I L \)
A constant growth rate requires a constant rate of technological change. With $Y = F(K, AL)$ and no population growth, then $g = g_A$

- Romer assumes $\dot{A} = AH_l = As_l L$, so $g = s_l L$
- \dot{A} increases with A because of knowledge externalities
A constant growth rate requires a constant rate of technological change. With $Y = F(K, AL)$ and no population growth, then $g = g_A$

Romer assumes $\dot{A} = AH_I = As_I L$, so $g = s_I L$

\dot{A} increases with A because of knowledge externalities

Counterfactual implication: strong scale effects
Jones assumes $\dot{A} = A^{\gamma s_l L}$, $\gamma < 1$, which implies $g = A^{\gamma -1 s_l L}$.
Jones assumes $\dot{A} = A^{\gamma} s_L L$, $\gamma < 1$, which implies $g = A^{\gamma - 1} s_L L$

When $A \to \infty$ then $A^{\gamma - 1} \to 0$ and $g \to 0$. But a growing L can overcome this effect.
Jones assumes $\dot{A} = A^\gamma s_l L$, $\gamma < 1$, which implies $g = A^{\gamma - 1} s_l L$.

When $A \to \infty$ then $A^{\gamma - 1} \to 0$ and $g \to 0$. But a growing L can overcome this effect.

In steady state,

$$g = \frac{1}{1 - \gamma} \cdot g_L$$
More generally, Semi-Endogenous Growth Model (SEGM) implies

\[g = \varepsilon \cdot g_L \]
More generally, Semi-Endogenous Growth Model (SEGM) implies

\[g = \varepsilon \cdot g_L \]

In levels, this implies that \(y \sim L^\varepsilon \)
More generally, Semi-Endogenous Growth Model (SEGM) implies

\[g = \varepsilon \cdot g_L \]

In levels, this implies that \(y \sim L^\varepsilon \)

Jones '02: \(g = 0.01 \) and \(g_L = 0.048 \), hence \(\varepsilon = 0.21 \)
The Belgium Puzzle

- Now we have

\[y_n \sim L_n^{0.21} \]
The Belgium Puzzle

Now we have

\[y_n \sim L_n^{0.21} \]

Data entails

\[\frac{L_{US}}{L_{BEL}} = 45 \]

so

\[\frac{y_{BEL}}{y_{US}} = \left(\frac{1}{45} \right)^{0.21} = 0.45 \]
The Belgium Puzzle

- Now we have
 \[y_n \sim L_n^{0.21} \]

- Data entails
 \[\frac{L_{US}}{L_{BEL}} = 45 \]

 so

 \[\frac{y_{BEL}}{y_{US}} = \left(\frac{1}{45} \right)^{0.21} = 0.45 \]

- But data entails
 \[\frac{y_{BEL}}{y_{US}} = 0.89 \]
The Belgium Puzzle (I)

<table>
<thead>
<tr>
<th></th>
<th>$y_{belgium} / y_{US}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>0.45</td>
</tr>
<tr>
<td>Data</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Solving the Puzzle

Two main solutions have been proposed:

1. Countries are not fully isolated from the rest of the world.
2. Countries are not fully integrated domestically.
Solving the Puzzle

Two main solutions have been proposed:

1. Countries are not fully isolated from rest of the world
Solving the Puzzle

- Two main solutions have been proposed:
 1. Countries are not fully isolated from rest of the world
 2. Countries are not fully integrated domestically
Solving the Puzzle

Two main solutions have been proposed:

1. Countries are not fully isolated from rest of the world
2. Countries are not fully integrated domestically

Do these solutions solve the Belgium Puzzle?
From Jones to Kortum

- The economy’s technology frontier is determined by the best idea available for the production of each good
From Jones to Kortum

- The economy’s technology frontier is determined by the best idea available for the production of each good
 - more ideas (higher \tilde{T}) \rightarrow better technology frontier (higher z)
From Jones to Kortum

- The economy's technology frontier is determined by the best idea available for the production of each good
 - more ideas (higher \widetilde{T}) → better technology frontier (higher z)
 - formally, z is drawn from a Fréchet distribution with parameters λ and θ,

\[
\Pr(Z \leq z) = e^{-\lambda z^{-\theta}}
\]
The economy’s technology frontier is determined by the best idea available for the production of each good.

- More ideas (higher \(T \)) → better technology frontier (higher \(z \))
- Formally, \(z \) is drawn from a Fréchet distribution with parameters \(\lambda \) and \(\theta \),

\[
Pr(Z \leq z) = e^{-\lambda z^{-\theta}}
\]

- Letting \(P^{1-\sigma} = \int p(u)^{1-\sigma} du \) and assuming \(\sigma < 1 + \theta \) then

\[
w/P \sim \lambda^{1/\theta}
\]
The economy’s technology frontier is determined by the best idea available for the production of each good

- more ideas (higher \tilde{T}) → better technology frontier (higher z)
- formally, z is drawn from a Fréchet distribution with parameters λ and θ,

$$\Pr(Z \leq z) = e^{-\lambda z^{-\theta}}$$

- Letting $P^{1-\sigma} = \int p(u)^{1-\sigma} du$ and assuming $\sigma < 1 + \theta$ then

$$w/P \sim \lambda^{1/\theta}$$

- The growth rate is then

$$g = \frac{1}{\theta} \cdot g_L$$
Quantitative Version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
Quantitative Version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)

Labor is used to produce final goods with share α (AL 2007)

Technological change occurs in intermediate and final goods
Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)

Labor is used to produce final goods with share α (AL 2007)

Technological change occurs in intermediate and final goods

Now, the growth rate in real output per worker is

$$g = \left(1 + \frac{1 - \alpha}{\beta}\right) \cdot \frac{1}{\theta} \cdot g_L$$
Quantitative Version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
- Now, the growth rate in real output per worker is

$$
g = \left(1 + \frac{1 - \alpha}{\beta} \right) \cdot \frac{1}{\theta} \cdot g_L
$$

- AL parameters, $\eta \equiv (1 - \alpha) / \beta = 0.5$
Quantitative Version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
- Now, the growth rate in real output per worker is

$$g = \left(1 + \frac{1 - \alpha}{\beta}\right) \cdot \frac{1}{\theta} \cdot g_L$$

- AL parameters, $\eta \equiv (1 - \alpha)/\beta = 0.5$
- $g_L = 4.8\%$ and $g = 1\%$ then imply $\theta = 7.2$
Quantitative Version

- Intermediate goods are used to produce intermediate goods - labor share β (EK 2002)
- Labor is used to produce final goods with share α (AL 2007)
- Technological change occurs in intermediate and final goods
- Now, the growth rate in real output per worker is

$$g = \left(1 + \frac{1 - \alpha}{\beta}\right) \cdot \frac{1}{\theta} \cdot g_L$$

- AL parameters, $\eta \equiv (1 - \alpha)/\beta = 0.5$
- $g_L = 4.8\%$ and $g = 1\%$ then imply $\theta = 7.2$

- Growth comes from technological change in intermediate goods, $\eta g_L/\theta$, and in final goods, g_L/θ, with

$$g/g_L = 1/\theta + \eta/\theta$$

$$0.21 = 0.07 + 0.14$$
Now we consider I countries, with labor endowment L_n.
Now we consider I countries, with labor endowment L_n.

Iceberg trade costs $d_{ni} \geq 1$
Now we consider I countries, with labor endowment L_n.

Iceberg trade costs $d_{ni} \geq 1$

Productivities in intermediates and final goods are independently drawn from a Fréchet distribution, with parameters λ_n and θ
Gains from Trade in Eaton and Kortum

- Real wage is:

\[
\frac{w_n}{P_{fn}} = \lambda_n^{(1+\eta)/\theta} \cdot GT
\]

where gains from trade are:

\[
GT = \left(\frac{X_{nn}}{\sum_l X_{nl}} \right)^{-\eta/\theta}
\]
Gains from Trade in Eaton and Kortum

- Real wage is:
 \[w_n / P_{fn} = \lambda_n^{(1+\eta)/\theta} \cdot GT \]

where gains from trade are:

\[GT = \left(\frac{X_{nn}}{\sum_l X_{nl}} \right)^{-\eta/\theta} \]

- We assume \(\lambda_n = T_n L_n \), where \(T_n \) is the stock of ideas per person.
Then real wage is:

\[
\frac{w_n}{P_{fn}} = \left(\frac{T_n L_n}{\eta w_n L_n} \right)^{(1+\eta)/\theta} \left(\frac{X_{nn}}{\eta w_n L_n} \right)^{-\eta/\theta}
\]
Then real wage is:

\[
\frac{w_n}{P_{fn}} = \left(\frac{T_n L_n}{\theta}\right)^{1+\eta/\theta} \left(\frac{X_{nn}}{\eta \bar{w}_n L_n}\right)^{-\eta/\theta}
\]

Data used:

- We make \(T_n\) proportional to the percentage of the population in the R&D sector.
- \(L_n\) is equipped labor.
- Bilateral trade in intermediates in the model = manufacturing trade from \(i\) to \(n\) (STAN, avg. 90s).
Gains from openness in Eaton Kortum (2002)

Then real wage is:

\[\frac{w_n}{P_{fn}} = \left(T_n L_n \right)^{(1+\eta)/\theta} \left(\frac{X_{nn}}{\eta w_n L_n} \right)^{-\eta/\theta} \]

Data used:

- We make \(T_n \) proportional to the percentage of the population in the R&D sector.
Gains from openness in Eaton Kortum (2002)

- Then real wage is:

\[\frac{w_n}{P_{fn}} = \left(T_n L_n \right)^{(1+\eta)/\theta} \left(\frac{X_{nn}}{\eta w_n L_n} \right)^{-\eta/\theta} \]

- Data used:
 - We make \(T_n \) proportional to the percentage of the population in the R&D sector.
 - \(L_n \) is equipped labor.
Then real wage is:

\[\frac{w_n}{P_{fn}} = \left(\frac{T_n L_n}{\eta w_n L_n} \right)^{(1+\eta)/\theta} \left(\frac{X_{nn}}{\eta w_n L_n} \right)^{-\eta/\theta} \]

Data used:

- We make \(T_n \) proportional to the percentage of the population in the R&D sector.
- \(L_n \) is equipped labor.
- Bilateral trade in intermediates in the model = manufacturing trade from \(i \) to \(n \) (STAN, avg. 90s)
The Belgium Puzzle (II)

<table>
<thead>
<tr>
<th></th>
<th>$y_{belgium} / y_{US}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>0.45</td>
</tr>
<tr>
<td>with GT</td>
<td>0.50</td>
</tr>
<tr>
<td>Data</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Other possible source of gains from openness is Multinational Production (MP, Ramondo and Rodríguez-Clare, 2009)
Adding Multinational Production

- Other possible source of gains from openness is Multinational Production (MP, Ramondo and Rodríguez-Clare, 2009)

- Ideas can be used for production in a different country: firms from country \(i\) can produce a final or intermediate good in a country \(l\) with productivities \(z_{fi}^{i}\) and \(z_{gi}^{l}\).
Other possible source of gains from openness is Multinational Production (MP, Ramondo and Rodríguez-Clare, 2009)

Ideas can be used for production in a different country: firms from country i can produce a final or intermediate good in a country l with productivities z_{fi} and z_{gli}.

Iceberg MP cost is $h_{ni} \geq 1$
Adding Multinational Production

- Other possible source of gains from openness is Multinational Production (MP, Ramondo and Rodríguez-Clare, 2009)

- Ideas can be used for production in a different country: firms from country i can produce a final or intermediate good in a country l with productivities z_{fl} and z_{gl}.

- Iceberg MP cost is $h_{ni} \geq 1$

- Productivities in intermediates and final goods are independently drawn from a Fréchet distribution, with parameters λ_n and θ
Real wage with Trade and MP

- Real wage is now:

\[\frac{w_n}{P_{fn}} = \left(T_n L_n \right)^{(1+\eta)/\theta} \cdot GT \cdot GMP \]

where gains from MP are:

\[GMP = \left(\frac{Y_{gnn}}{\sum_i Y_{gni}} \right)^{-\eta/\theta} \left(\frac{Y_{fnn}}{\sum_i Y_{fni}} \right)^{-1/\theta} \]
Real wage with Trade and MP

- Additional data used:
Real wage with Trade and MP

- Additional data used:
 - Bilateral MP in the model = gross value of production of affiliates from i in I (UNCTAD, avg. 90s)
The Belgium puzzle (III)

<table>
<thead>
<tr>
<th></th>
<th>$y_{belgium} / y_{US}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>0.45</td>
</tr>
<tr>
<td>With GT</td>
<td>0.50</td>
</tr>
<tr>
<td>With GT and GMP</td>
<td>0.55</td>
</tr>
<tr>
<td>Data</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Adding domestic frictions

- Country \(n \) has \(N_n \) identical towns. Every town has labor equal to \(\bar{L} \). Then \(L_n = T_n \bar{L} \)
Adding domestic frictions

- Country \(n \) has \(N_n \) identical towns. Every town has labor equal to \(\bar{L} \). Then \(L_n = T_n \bar{L} \)
- As before, intermediate goods are tradable and final goods are not tradable.
Adding domestic frictions

- Country n has N_n identical towns. Every town has labor equal to \bar{L}. Then $L_n = T_n \bar{L}$
- As before, intermediate goods are tradable and final goods are not tradable.
- Trade costs among different towns in a country has cost $d_{nn} > 1$. International trade costs as above.
Adding domestic frictions

- Firms from a town can locate their production in other towns, in the same country or in another country.
Adding domestic frictions

- Firms from a town can locate their production in other towns, in the same country or in another country.

- For any final or intermediate good, any town in country \(i\) can produce in a particular (random) town of country \(l\) with productivity \(z_{li}\).
Adding domestic frictions

- Firms from a town can locate their production in other towns, in the same country or in another country.

- For any final or intermediate good, any town in country i can produce in a particular (random) town of country l with productivity z_{li}.

- Productivities are independently drawn from a Fréchet distribution, with parameters: \bar{T}_n and θ.
Adding domestic frictions

- Firms from a town can locate their production in other towns, in the same country or in another country.

- For any final or intermediate good, any town in country i can produce in a particular (random) town of country l with productivity z_{li}.

- Productivities are independently drawn from a Fréchet distribution, with parameters: $T_{n\bar{L}}$ and θ.

- MP costs among different towns in a country has cost $h_{nn} > 1$. International MP costs as before.
Adding domestic frictions

- Firms from a town can locate their production in other towns, in the same country or in another country.

- For any final or intermediate good, any town in country i can produce in a particular (random) town of country l with productivity z_{li}.

- Productivities are independently drawn from a Fréchet distribution, with parameters: $T_n\bar{L}$ and θ.

- MP costs among different towns in a country has cost $h_{nn} > 1$. International MP costs as before.

- For now we assume $d_{nn} = h_{nn}$.
The model implies that the ratio of expenditure of a town on goods from any other town within the country to expenditure of a town on goods from the same town is equal to $d_{\theta \theta}$. We use data of shipments for the United States in the Commodity Flow Survey (2002) to compute this ratio for towns as states. Given $\theta = 7.2$ then $d_{\theta \theta} = 1.572$.

Estimation of local trade costs in United States
The model implies that the ratio of

- (1) expenditure of a town on goods from any other town within country to
- (2) expenditure of a town on goods from the same town

is equal to \(\frac{d}{\theta} \).

We use data of shipments for the United States in the Commodity Flow Survey (2002) to compute this ratio for towns as states. Given \(\theta = 7.2 \) then \(d = 1.572 \).
The model implies that the ratio of

1. expenditure of a town on goods from any other town within country to
2. expenditure of a town on goods from the same town
The model implies that the ratio of

- (1) expenditure of a town on goods from any other town within country to
- (2) expenditure of a town on goods from the same town
- is equal to $d_{nn}^{-\theta}$.

We use data of shipments for United States in the Commodity Flow Survey (2002) to compute this ratio for towns as states. Given $\theta = 7.2$ then $d_{nn} = 1.572$.

The model implies that the ratio of

- (1) expenditure of a town on goods from any other town within country to
- (2) expenditure of a town on goods from the same town
- is equal to $d_{nn}^{-\theta}$.

We use data of shipments for United States in the Commodity Flow Survey (2002) to compute this ratio for towns as states.
The model implies that the ratio of

- (1) expenditure of a town on goods from any other town within country to
- (2) expenditure of a town on goods from the same town

is equal to $d_{nn}^{-\theta}$.

We use data of shipments for United States in the Commodity Flow Survey (2002) to compute this ratio for towns as states.

Given $\theta = 7.2$ then $d_{nn} = 1.572$
Real wage with domestic frictions

- Real wage is:

$$\frac{w_n}{P_{fn}} = (T_n L_n)^{(1+\eta)/\theta} \cdot (D_n)^{\eta/\theta} \cdot (H_n)^{1/\theta} \cdot GT \cdot GMP$$

where

$$D_n \equiv \left(\frac{1}{N_n} + \frac{(N_n - 1)}{N_n} d_{nn}^{-\theta} \right) < 1$$

and

$$H_n \equiv \left(\frac{1}{N_n} + \frac{(N_n - 1)}{N_n} h_{nn}^{-\theta} \right) < 1$$
The Belgium Puzzle (IV)

<table>
<thead>
<tr>
<th></th>
<th>$\frac{y_{\text{belgium}}}{y_{\text{US}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$d_{nn} = 1$</td>
</tr>
<tr>
<td>Isolation</td>
<td>0.45</td>
</tr>
<tr>
<td>With GT</td>
<td>0.50</td>
</tr>
<tr>
<td>With GT and GMP</td>
<td>0.55</td>
</tr>
<tr>
<td>Data</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Calibration results

- 5 countries with smaller size ($T_n L_n$)

<table>
<thead>
<tr>
<th>Country</th>
<th>Isolation</th>
<th>GT, GMP</th>
<th>$d_{nn} = h_{nn} > 1$</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>0.35</td>
<td>0.36</td>
<td>0.61</td>
<td>0.64</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.35</td>
<td>0.39</td>
<td>0.68</td>
<td>0.53</td>
</tr>
<tr>
<td>Greece</td>
<td>0.36</td>
<td>0.37</td>
<td>0.55</td>
<td>0.56</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.41</td>
<td>0.42</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td>Austria</td>
<td>0.41</td>
<td>0.43</td>
<td>0.66</td>
<td>0.80</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.45</td>
<td>0.55</td>
<td>0.83</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Data vs Full Model

- Full model with GT, GMP, and $d_{nn} = h_{nn} = 1.5$