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1 Introduction

Individuals exercise substantial control over who they associate with. Sometimes directly,

as is the case with spousal choice, and sometimes indirectly, as when a family, by choosing

to reside in a certain neighborhood, gains access to specific schools (and hence peers) for

their children. Associations or reference groups, such as families, co-workers, neighbors

and classmates, define (partially) isolated environments in which social interaction takes

places (Durlauf, 1996c). These interactions may, in turn, affect the acquisition of human

capital, the availability of employment opportunities, or even influence one’s aspirations and

values. If this is the case, then inequality in social context may contribute to socioeconomic

inequality.2 Conversely, policies which alter the composition of social groups — ‘associational

redistributions’ — either directly or indirectly (by changing the incentives governing their

formation) can lessen inequality (Durlauf, 1996c).

Many of the most controversial social policies in the United States involve associational

redistribution. Examples include affirmative action in admissions and hiring, school deseg-

regation policies, school assignment policies, single-sex schooling within the public system,

active labor market policies, and whether public housing should be concentrated in a small

number of locations or dispersed throughout a metropolitan area. That these policies are

controversial is understandable: many individuals view their choice of associates as beyond

the (direct) purview of public policy (cf., Piketty, 2000). Their controversial nature, however,

is not wholly political. It also stems from uncertainty surrounding their effects on average

outcomes and inequality.

This chapter reviews econometric methods for evaluating the effects of reallocations on

the distribution of outcomes. In the social economics context ‘reallocations’ coincide with

associational redistributions. The methods outlined in this chapter, however, are also of

relevance to researchers in the fields of empirical industrial organization, labor economics,

public finance, educational studies, sociology and public health.

Reallocations are distinguished from other policies by the fact that they involve no aug-

mentation, only redistribution, of resources. The study of reallocations necessitates some

foundational thinking. Consequently this review devotes a substantial amount of time to

issues of measurement. Particularly to defining and motivating estimands which measure

the effects of reallocations.

Effective policy-making requires knowledge of the causal mapping from group composition

into outcomes. Consider the design of a school voucher program. Calibrated theoretical

2Loury (1977, 2002), for example, argues that segregated social networks generate inequality across racial

groups.
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models suggest that any meaningful school voucher program would generate large changes

in the distribution of students, and hence peer groups, across schools (e.g., Manski, 1992;

Nechyba, 2006; Ferreyra, 2007). The magnitude and structure of any peer group effect in

learning would be an important determinant of these changes. It would also determine their

effects on the level and distribution of student achievement. For these reasons knowledge of

the exact form of any peer spillover is required for optimal voucher design. Unfortunately

this information is not provided by extant empirical research (cf., Piketty, 2000; Fernández,

2003).

Knowledge of the average effect of a unit increase in measured peer quality, the target

estimand of many papers, is only indirectly helpful (e.g., Angrist and Lang, 2004; Card

and Rothstein, 2007). This estimand measures the effect of an infeasible policy. Not all

individuals’ peer groups may be improved simultaneously; raising peer quality in some schools

or classrooms requires lowering it in others. If the target policy is a reassigning one, then

this will necessarily influence the precise form econometric analysis should take.

As a second example consider the relationship between teacher quality and student

achievement. Few educators, parents, or students doubt the centrality of teachers in the

learning process (Jacob and Lefgren, 2007). Furthermore measured teacher quality varies

substantially across schools (e.g., Buddin and Zamarro, 2009). Yet, given the structure of a

typical teacher labor market, is seems unlikely that the observed assignment of teachers to

schools corresponds to one which, say, maximizes student achievement.

One response to these observations is to implement policies which attempt to change the

distribution of teacher quality (e.g., policies which encourage highly able young people to en-

ter the teaching profession). Another, not mutually exclusive approach, involves reassigning

teachers across schools. Depending on the nature of the educational production function it

may be possible to raises student achievement — holding the population of available teachers

fixed — by such reassignments.

Assignment problems have been widely studied by economists as well as those in opera-

tions research (e.g., Koopmans and Beckmann, 1957; Gale, 1960; Roth and Sotomayor, 1990;

Burkard, Dell’Amico and Martello, 2009). Adding statistical content to these problems in

a manageable way is nontrivial. Doing so raises a number of interesting and challenging

econometric issues which are explored below.

Sections 2 begins with a brief overview of empirical work on one-to-one matching prob-

lems. Econometric research on this class of models may be divided into two categories. In

the first, which is the subject of Section 3, the econometrician observes the match outcome

of interest in addition to match characteristics. The goal is to recover the match production

function from these data and evaluate the effects of alternative assignments or ‘matchings’
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on the distribution of outcomes. In the second, which is the subject of Section 4, only match

characteristics are observed. Here the question is what does one’s choice of match part-

ner alone reveal about preferences? There are connections between this question and the

revealed preference approach to single agent models of discrete choice (McFadden, 1974).3

Section 5 studies a setting where social groups consist of a large number of agents,

for example neighborhoods or classrooms. Agents are binary-typed and heterogenous in

unobserved ability. Outcomes may vary with the type composition of one’s social group.

de Bartolome (1990), Benabou (1993, 1996) and Durlauf (1996a,b) study non-stochastic

versions of this set-up. While, these papers have been influential in shaping economists’

intuitions about the equity and efficiency implications of residential segregation, their effect

on empirical work has been more indirect.4 Section 5 outlines one way to bring these models

to the data.

Section 6 studies treatment response in the presence of spillovers. Here influencing the

structure of reference groups is not the policy-maker’s goal. Instead the policy-maker seeks

to account for the effects of these groups when formulating an individualistic policy. A

pro-typical example involves optimal vaccine policy (e.g., Manski, 2009a,b).

This chapter does not review the growing literature on identifying peer effects per se (e.g.,

Manski, 1993; Moffitt, 2001; Brock and Durlauf, 2001a; 2007; Glaeser and Scheinkman, 2001,

2003; Graham, 2008). This literature is, of course, very much related to the material surveyed

here. Several good surveys of this material are now available; including those of Brock and

Durlauf (2001b), Durlauf (2004), Epple and Romano (this Handbook), and Blume, Brock,

Durlauf and Ioannides (this Handbook). I also ignore models where the study of strategic

interaction within groups is central. Interactions of this type, which feature in the work of

Manski (1993, 2010) and Brock and Durlauf (2001a), are likely to be relevant in practice

and important for some policy questions, but a meaningful treatment of them would require

a separate survey (cf., Blume, Brock, Durlauf and Ioannides in this Handbook).5 Finally,

while I often refer to empirical work in what follows, no comprehensive review is attempted.

2 An overview of empirical matching models

Consider a ‘market’ composed of two heterogeneous populations, say, ‘firms’ and ‘workers’

(i.e., men and women, teachers and students, etc.). Units in each population may either

self-produce or costlessly seek out a partner from the other population to engage in joint

3As in most situations they are unobserved by the researcher, this chapter does not explore the identifying

content of transfers between agents.
4See Piketty (2000, pp. 462 - 467) and Fernández (2003, p.14) for related discussions.
5The econometric study of games is an important project of empirical industrial organization (e.g.,

Aradillas-López and Tamer, 2008).
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production. Such settings generate one-to-one assignment or matching problems. Matching

models play important roles in many areas of economics. They were famously used by Becker

(1973, 1974) to characterize ‘marriage markets’ (cf., Mortesen, 1988; Chiappori and Oreffice,

2008). Other important applications include the study of job matching (e.g., Crawford

and Knoer, 1981; Kelso and Crawford, 1982), housing markets (Shapley and Scarf, 1974),

auctions (Hatfield and Milgrom, 2005; Edelman, Ostrovsky and Schwarz, 2007), supply

chains (Ostrovsky, 2008), and the determinants of wage inequality (Sattinger, 1980, Kremer

and Maskin, 1996).

Koopmans and Beckmann (1957) and Shapley and Shubik (1971) initiated the study of

matching problems in economics. They considered the transferable utility case where, in

addition to the assignment or matching, the division of match output between partners is

determined in equilibrium.6 Gale and Shapley (1962) studied the case where agents have

preferences over different candidate partners, but are unable to make transfers to them.7

Each firm and worker has a utility function, allowing them to rank the desirability of

different matches. When utility is transferable across match partners, an equivalent repre-

sentation of agent utilities is in terms of a match-specific surplus and transfer. Theorists

treat these objects as primitives. An econometrician, in contrast, might ask under what

conditions they are identified by the joint distribution of match outcomes and/or partner

characteristics. Given identifiablility questions of estimation and inference remain.

Identifying the form of agent preferences or, when utility is transferrable, the match

surplus function allows the econometrician to undertake predictive exercises. Two types

of predictions are of particular interest. First, one might want to characterize how coun-

terfactual assignments (or policies which induce re-assignment as a by product), alter the

distribution of outcomes. Second, one might want to understand how changes in the primi-

tives of the market, for example the availability of certain types of workers or firms, affects

the equilibrium assignment.

The first question involves reallocations. Reallocations, unlike many policies more widely-

studied in economics, do not involve changes in resource availability. Reallocations leave the

distribution of agent characteristics unchanged, only agent pairings are changed. The second

question does involve changes in the distribution of agent characteristics, but recognizes that

the effects of such changes are filtered through an equilibrium assignment process.

6In what follows I will call a pairing of two specific agents a ‘match’ or a ‘pairing’. I will call an assignment

of all agents an ‘allocation’, ‘assignment’ or a ‘matching’.
7The theoretical analysis of assignment problems remains an active research area in economics and op-

erations research (e.g., Roth and Sotomayor, 1990; Burkard, Dell’Amico and Martello, 2009). Much of this

literature focuses on variants of two questions. First, what form does a surplus-maximizing assignment take?

Second, are there decentralized mechanisms which lead to such an assignment? (cf., Roth and Vande Vate,

1990; Roth, 2008).
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2.1 Some illustrative examples

Some empirical examples, and associated policy questions, help to motivate the material

which follows. As a first, canonical, example consider a firm that must assign distinct tasks

to heterogenous workers. A set of characteristics for each task and worker are observed. Also

available is a (historical) dataset with information on past worker characteristics, assigned

tasks, and estimates of productivity. How should a social planner use this dataset to guide

assignments? One organization with considerable interest in such questions is the United

States Military. A modest literature, surveyed by Warner and Asch (1995), documents the

relationship between various enlistee characteristics, such as Armed Forces Qualification Test

(AFQT) score, and military performance (e.g., Fernandez, 1992). Such studies can inform

the debate regarding the returns to increasing measured enlistee quality.

A different question is how can the Armed Forces best use those enlistees available right

now? Optimally assigning enlistees to tasks could generate sizeable increases in military

productivity (cf., Carrell, Fullerton and West, 2009). Implementing such a policy would

require no augmentation of resources, the pool of available workers and set of tasks are left

unchanged. The question is of more than intellectual interest: the military has substantial

latitude over how it may employ its personnel (as do many other large organizations).

Personnel-assignment problems are widely studied in the field of operations research

(e.g., Gale, 1960; Luenberger, 2005). The novelty here is statistical content: the mapping

from match attributes, in this case worker and task characteristics, into outcomes is both

stochastic and unknown.

A second example involves educational policy. Lankford, Loeb and Wyckoff (2002) doc-

ument widespread differences in measured teacher quality across schools in New York City.

These differences, in conjunction with residential segregation, generate substantial differ-

ences in average teacher quality across demographic groups. Understanding the mechanics

of teacher-to-school matching could aid in the design of policies which raise student achieve-

ment and/or reduce disparities in teacher quality across schools.

In a companion paper, Loeb, Boyd, Lankford and Wyckoff (2003) argue that the teacher

labor market resembles a two-sided matching model without transfers.8 They assume that

assignment follows the deferred acceptance procedure of Gale and Shapley (1962): schools

make offers to their most preferred candidate, candidates reject those offers which are ei-

ther dominated by other available offers or unemployment. This process continues until all

positions are filled or a school is unable to find an acceptable candidate among those still

8They argue that collective bargaining agreements prevent school-specific wages from adjusting to equi-

librate supply and demand.
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available.9 They estimate the parameters of employer (school) and teacher utility functions

by the method of simulated moments.

With employer and employee preference estimates in hand it becomes possible, at least

in principle, to forecast the effects of alternative policies. For example, if teachers prefer

small class sizes, changes in the distribution of class size across schools would change the

equilibrium assignment of teachers to schools. The induced re-assignment of teachers to

schools thus becomes a consideration in the formulation of class size policy.10

A third example is provided by Baccara, Imrohoroglu, Wilson and Yariv (2009) who

study the office choices of a group of academics who are connected through friendship and

coauthorship networks. Since individuals may value physical proximity to those in their

network, their choice of office affects the utility of others. An equilibrium assignment, even

when transfers between agents are possible, need not be optimal. Under certain assumptions

an individual’s choice of office may provide information about her valuation of proximity to

network partners. The efficiency of alternative assignments can then be compared to the

status quo. The presence of externalities suggests that large welfare gains may be available

via reallocation.

As a final example consider the empirical analysis of marriage markets (e.g., Kremer,

1997; Choo and Siow, 2006a,b; Chiappori and Oreffice, 2008). Men are rivals with one

another when attempting to match with women and vice versa (Becker 1973, 1974). The

distribution of men and women available for marriage, as well as the nature of any surplus

generated by marriage, drives marriage patterns. These patterns influence, among other

outcomes, the intra-household division of resources, the acquisition of human capital, fertility

decisions and the evolution of inequality across generations. Empirical models of marriage

markets consequently play important roles in many areas of family and household economics

(cf., Weiss, 1997).

2.2 Econometric research on matching problems

Despite their prominent role in many areas of economics, comparatively little work explores

the econometric implications of matching models. Formal research on the econometrics of

matching is of relatively recent origin; with many of the key papers as yet unpublished.11

9This algorithm leads to an employer-optimal stable matching (cf., Roth and Sotomayor, 1990).
10For example, a reduction in average class size in predominately minority schools might, indirectly, lead

to an increase in average measured teacher quality in them.
11A sophisticated literature in empirical labor economics studies structural models of search and matching

(e.g., Eckstein and Wolpin, 1990; Flinn, 2006). Here my focus is on frictionless assignment models. Non-

stochastic versions of these models are widely-studied in the literature on linear and nonlinear programming

(e.g., Luenberger, 2005). The ‘game theoretic’ approach to such problems is summarized by Roth and

Sotomayor (1990).
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Graham, Imbens and Ridder (2007, 2009a) introduced reallocation problems to the econo-

metrics literature. They study nonparametric estimation of, and inference on, average re-

allocation effects (AREs) — differences in expected outcomes across feasible assignments.

Restrictions on the status quo assignment identify the match production function, which

is then averaged over alternative allocations. Graham, Imbens and Ridder (2007) assume

that match characteristics are discretely-value. This assumption makes inference on average

outcome-maximizing allocations feasible. Bhattacharya (2009), also working in the discrete

case, extends this work in a number of ways (e.g., by considering other notions of optimal-

ity). Graham, Imbens and Ridder (2009a) consider the case where match characteristics

are continuously-valued. Since inference on optimal allocations is difficult in this case, they

introduce a semiparametric family of reallocations, and present identification and estimation

results for it.

In some settings match surplus may be difficult to observe and/or measure. In such

situations it is of interest to study what can be learned from data on the characteristics

of paired agents alone. The analogy with the revealed preference approach to consumer

behavior is quite sharp: under what conditions can an agent’s choice of partner reveal the

nature of her preferences? The two-sided nature of matching problems distinguish them from

traditional discrete-choice models of consumer demand (e.g., McFadden, 1974; Domencich

and McFadden, 1975). Both parties of a partnership are complicit in its formation, hence

individuals are not unconstrained in their choice of partners.12 This suggests that in the

matching context choice data reveal less about preferences than in the textbook discrete

choice model of consumer behavior.

Dagsvik (2000) appears to be the first in the econometrics literature to consider what

the distribution of match characteristics alone reveals.13 Choo and Siow (2006a,b) develop

a closely related framework (henceforth the ‘CS model’ or ‘CS framework’), which has been

extended by Chiappori, Salanié and Weiss (2010), Galichon and Salanié (2009), and Siow

(2009).14 Associated with each unit is a discretely-valued observed characteristic as well as

an unobserved, continuously-valued, characteristic.15 The unobserved characteristic indexes

heterogeneity in preferences for different types in the opposing population. By combining

12Echenique, Lee and Shum (2010) make this point quite elegantly. In a matching market equilibrium an

individual may choose A over B even if she prefers B. This is because B may be unavailable. Unlike in a

single agent discrete choice model, revealed preference is ambiguous.
13In sociology there is a small literature on two-sided logit models (Logan 1998, Logan, Hoff and Newton,

2008) which is also explicitly grounded in economic models of matching.
14Dagsvik (2000) considers the non-transferable utility case, while Choo and Siow (2006a,b) assume trans-

ferable utility.
15The discretely-value characteristic may be a a composite of multiple primitive characteristics (e.g., age,

gender, years of schooling). The continuously-valued characteristic is vector-valued (see below).
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restrictions on how unobservables affect match production with the assumption that the ob-

served assignment satisfies pairwise stability, they show that the net match surplus function

is identified up to scale.16 This result relies on parametric distributional assumptions.

Fox (2009a,b), in the first explicitly nonparametric treatment, also explores what can be

learned from data on partner characteristics alone. His approach is based on a ‘rank order

property’. Consider two assignments, the rank order property states that the assignment

which generates more surplus in a deterministic version of the model (i.e., one with no unob-

served agent heterogeneity and/or match-specific output ‘shocks’), will be more frequently

observed in the data. Although the rank order property is intuitive, it can be difficult to

justify primitively. Nevertheless his approach has already been used in several applied papers

(e.g., Fox and Bajari, 2009; Yang, Shi and Goldfarb, 2009; Baccara, Imrohoroglu, Wilson

and Yariv, 2009).

A goal of the sections which follow, is to bring out common features of each of the

approaches mentioned above. To do this I break down a prototypical empirical matching

problem into three parts. First, associated with each matching market is a set of feasible as-

signments. Two marginal distributions describe the distribution of observed and unobserved

agent attributes on each side of the market. A feasible assignment is a joint distribution

of partner attributes, both observed and unobserved, consistent with these two marginals

(Graham, Imbens, and Ridder, 2007). Second, each match generates output or surplus.

Properties of the match surplus function are important for counterfactual policy analysis.

Third, there is a matching process which generates the observed assignment; this assignment

may correspond to a decentralized equilibrium or be exogenously determined. Identifying

the outcome effects of reallocations require restrictions on one or more of these parts of the

problem. The necessary assumptions vary with the question begin asked, which is embod-

ied in the target estimand. I assume that the econometrician knows the joint distribution

of observed partner characteristics. In some situations she may also know the conditional

distribution of match outcomes given observed partner characteristics.

3 Identification and estimation of one-to-one matching models when match

output is observed

This section outlines econometric methods for the analysis of one-to-one matching prob-

lems appropriate for situations where match output, in addition to match characteristics, is

16A natural notion of equilibrium in matching problems with transfers is pairwise stability : an assignment

(and associated set of transfers between units) corresponds to an equilibrium if no two pairs of agents can

raise their total surplus by exchanging partners. In one-to-one matching games with transfers pairwise stable

assignments are generically unique, although a continuum of transfers may sustain them (e.g., Shapley and

Shubik, 1971; Roth and Sotomayor, 1990).
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observed. For example we may observe student achievement (the output) as well as mea-

sures of teacher and student quality (the match characteristics). Section 4 reviews methods

appropriate for the case where only match characteristics are observed.

Section 3.1 begins with a discussion of assignments. An assignment is a feasible allocation

of ‘workers’ to ‘firms’. All empirical matching models, explicitly or implicitly, impose restric-

tions on the status quo assignment. Since the sampling process only reveals the distribution

of observed match characteristics, restrictions on the conditional distribution of unobserved

match characteristics are needed to identify the match surplus function. This point is ex-

plicit in Graham, Imbens and Ridder (2007, 2009a). There the fully nonparametric nature

of the match surplus function necessitates rather strong restrictions on the status quo allo-

cation. Less obviously, the structural model of Choo and Siow (2006a,b) also implies strong

restrictions on the status quo allocation. There a priori restrictions on the match surplus

function induce equilibrium (i.e., status quo) assignments where the conditional distribution

of unobserved match characteristics takes a particular form.

Section 3.1 discusses two classes of assignments in detail: those which satisfy an ‘as if’

double randomization condition and those which satisfy a weaker no matching on unobserv-

ables condition. The idea of doubly randomized assignment, introduced in Graham (2008),

is straightforward. The no matching on unobservables condition, introduced here, is more

subtle. A theme of Section 3.1 is that data distributions in matching problems are conceptu-

ally more challenging than those induced by random sampling from a single population. In

matching problems the data distribution reflects constraints imposed by two separate, but

interacting, populations. This material is tedious, but foundational for what follows.

Section 3.2 considers average reallocation effects (AREs). AREs measure the change in

average outcomes induced by reassigning agents to different partners. The identification of

AREs requires a combination of restrictions on the status quo assignment and the match

surplus function. If the analyst wishes to leave the match surplus function nonparametric,

then strong restrictions on the status quo assignment are required. Alternatively, imposing

semiparametric restrictions on the match surplus function allows for identification under

weaker assumptions on the status quo. However, when considering AREs a priori restrictions

on the match output function should be imposed with considerable caution. Assuming that

match output is separable in a specific firm and worker characteristic, for example, will imply

that the distribution of match output is invariant across a potentially large set of distinct

allocations. Since the evaluation of reallocations is a major motivation for undertaking

empirical analysis this is undesirable.

For technical and/or pedagogical reasons Sections 3.1 to 3.2 emphasize settings where

agent characteristics are discretely-valued. Section 3.3 discusses the case of continuously-
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valued agent characteristics as in Graham, Imbens and Ridder (2009a). Issues of estimation

and inference are discussed in Section 3.4.

3.1 The structure of feasible assignments in one-to-one matching problems

Consider a market composed of two large populations. The first population consists of

‘firms’. Associated with the  firm is the observed, discretely-valued, characteristic  ∈
{1     } = W and an unobserved characteristic,  (which may be vector-valued).

In many cases  will contain purely qualitative information, in which case we may set

 =  for  = 1    . The general notation, however, allows for the case where 

has quantitative significance. Note that  may itself be a function of multiple underlying

characteristics (e.g., it may enumerate age-by-location-by-industry cells). The population

frequency of the  type of firm is Pr ( = ) =  with
P

=1  = 1 To simplify what

follows assume that   0 for all .

The second population is composed of ‘workers’. Associated with the  worker is the

observed, discretely-valued, characteristic  ∈ {1     } = X and unobserved hetero-

geneity,  (which may be vector-valued).17 The population frequency of the  type of

worker is Pr ( = ) =  with
P

=1  = 1 and   0 for all .

The education example introduced above helps to fix ideas. Here the population of

‘firms’ correspond to schools in a given metropolitan area. Schools vary according to their

size, demographic composition, location, and type (e.g., magnet, charter, neighborhood,

etc.). This vector of school attributes is observed by the econometrician and coded as

 ∈ {1     }. Schools are also heterogenous in ways unobserved by the econometrician
(e.g., in terms of principal quality), these characteristics are contained in . The population

of ‘workers’ corresponds to teachers who vary in terms of their observed degree type, years

of experience, gender, etc. These attributes are coded as  ∈ {1     }. Teachers also
vary in unobservable ways, captured by . For example some teachers may prefer to work

in certain neighborhoods or in charter schools.

It is convenient to maintain an inclusive definition of firm and worker type. That is to

assume that  is independent of  and  is independent of . When  and  are

exogenous unit characteristics, which in the present context means they are unaffected by the

assignment process, we can impose this restriction by normalization (cf., Graham, Imbens

and Ridder, 2009b).

17To emphasize the presence of two distinct populations I use subscripts to index firms and superscripts

to index workers.
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Assumption 3.1 (Inclusive Definition of Types)

 ⊥  ⊥ 

To see how Assumption 3.1 may be imposed by normalization let ∗ denote the unnor-

malized firm attribute. Defining  =  (∗ |) then yields  independent of as required.

We interpret  as a firm’s ranking in the unobserved attribute amongst firms of its same

type.18 If there are two types of workers, those with college degrees and those without, As-

sumption 3.1 means that we absorb any differences in the distribution of unobserved ability

across these two groups into our ‘definitions’ of types. From the standpoint of a firm, part

of the benefit of hiring a random draw from the distribution of college-educated workers is

her higher expected ‘innate’ ability. The econometrician adopts a similar perspective, the

justification of which hinges on the class of policies under consideration. In contrast to other

policies typically studied in empirical microeconomics, reallocations do not involve changes

in the characteristics of agents and, consequently, we are not interested in their causal effects.

The assignment process matches workers with firms. Restrictions on this process drive

the identification results reported below. Such restrictions may be directly imposed by the

researcher, as in experiments. Alternatively, a particular decentralized assignment mecha-

nism may be posited which induces status quo assignments with properties that facilitate

identification. Regardless of whether the observed assignment was imposed by a centralized

authority, or represents the equilibrium of a decentralized process, its properties will feature

in any identification analysis. Therefore, before turning to the actual mechanics of assign-

ment in Section 4, I discuss the mathematical structure of feasible matchings abstractly.

For simplicity consider the case where the two populations are equally-sized and all units

match. Define the assignment function  () =  if the  worker matches with the  firm.

Let () =  and () =  denote the observed and unobserved characteristics of the

 firm’s worker; hence  equals the type of worker assigned to firm  (i.e.,  indexes both

firms and matches). For clarity assume that the unobserved firm and worker characteristics

are discretely-valued such that

 ∈ E = {1     }   ∈ V = {1     } 

with  () and  () respectively denoting the marginal frequency of the events  = 

and  = . Let  = ( (1)       ( ))
0
and  = ( (1)       ())

0
be the  ×1 and

× 1 vectors describing the marginal distributions of  and .

18Graham, Imbens and Ridder (2009b) show how to extend this argument to the case where ∗ is vector-
valued.
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The discrete support assumption for the unobservables is not required for the results

that follow; it makes their development more transparent. In particular in highlights the

important idea that, in large populations, allocations can be conceptualized as constrained

joint distributions.

Under the maintained large matching market assumption a feasible assignment is equiv-

alent to any joint probability mass function

Pr ( =  =   =   = ) =  (   )  (1)

which satisfies the  +  feasibility constraints

X
=1

X
=1

 (    ) =  ()   = 1      = 1      (2)

X
=1

X
=1

 (    ) =  ()   = 1       = 1     

and the adding-up condition

X
=1

X
=1

X
=1

X
=1

 (    ) = 1 (3)

Note that the product structure on the right-hand side of the equalities in (2) follows from

Assumption 3.1. After eliminating the two redundant constraints using the marginal adding-

up restrictions —
P

=1

P

=1  () =
P

=1

P

=1  () = 1 — feasibility places a total

of  + − 1 constraints on the allocation probability mass function (1). Consequently
any feasible allocation may be defined in terms of a total of ( − 1)×(− 1) probability
masses. Let be the×matrix of probabilities such that  (    ) is contained

in the ( ( − 1) +  ( − 1) + )

entry. An assignment is completely characterized by

the form of .19

Imposing additional structure on the assignment generates more parsimonious parame-

terizations for  Such parsimony can facilitate identification. Here I want to emphasize

two classes of feasible assignments. The first is the class of assignments satisfying an ‘as if’

double randomization condition (cf., Graham, 2008). I also consider a natural extension of

double randomization which involves additional conditioning. A second class of assignments,

19In the large population context, where many agents may be identical in both observed and unobserved

attributes, it is possible for distinct allocations to have identical values for a For example two identical

pairs can switch partners without changing a This lack of uniqueness has no substantive implications for

empirical research.

12



W\X 1 · · · −1   ()

1 11 · · · 1−1 1 −
−1P
=1

1 1

...
...
. . .

...
...

−1 −11 −1−1 −1 −
−1P
=1

−1 −1

 1 −
−1P
=1

1 · · · −1 −
−1P
=1

−1 1−
−1P
=1

 −
−1P
=1

 +
−1P
=1

−1P
=1

 

 () 1 · · · −1 

Table 1: A re-parameterized feasible joint density for observed match characteristics

which imposes fewer restrictions on , satisfies a no matching on unobservables condition.

3.1.1 Double randomization

Under double randomization we have, letting Pr ( =  = ) =  ( ),

 (   ) =  ( )  ()  ()  (4)

Allocations of the form (4) may be implemented as follows. First, choose  ( )  a feasi-

ble joint allocation density for ( ). Second, form type--firm-to-type--worker matches

(henceforth -to- matches) by drawing a worker at random from the subpopulation of work-

ers with  =  and assigning her to a firm drawn at random from the subpopulation of

firms with  = . Under double randomization the joint distribution of unobserved agent

attributes is the same across all types of matches, as defined in terms of observed attributes.

After eliminating redundant terms using the marginal constraints

X
=1

 ( ) =   = 1    

X
=1

 ( ) =   = 1     

and the adding-up condition, the allocation density for the observed match characteristics

can be represented in terms of ( − 1) (− 1) parameters. Let  be the  matrix

with  ( ) =  as its ( )

entry. Assume that the marginal constraints are used

to reparameterize the  row and  column in terms of the other ( − 1) (− 1) joint
probability masses and the  +  marginal probability masses. This is illustrated in Table

1.
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Using the above notation we can express an allocation which satisfies double randomiza-

tion as a  ×  matrix of the form

 =  ⊗ 
0
 (5)

subject to the restrictions that

 =  0 =  0 = 1 (6)

and a non-negativity constraint on each element of  ( denotes a  column vector of

ones).

Note that double randomization does not restrict the degree of assortativeness in observed

attributes embodied in : it may differ arbitrarily from the random allocation 
0 (subject

to the requirement that it is feasible). For example perfect positive assortative matching of

 on
 is not inconsistent with double randomization. Double randomization only restricts

the matching process within -by- cells.

To get a feel for the structure of doubly randomized assignments consider the special case

where  =  =  =  = 2. The marginal constraints on  impose the  + − 1 = 3
restrictions

12 = 1 − 11 21 = 1 − 11 22 = 1− 1 − 1 + 11

Under a double randomized assignment we therefore have,

 (11) =

Ã
11 1 − 11

1 − 11 1− 1 − 1 + 11

!
⊗
Ã

 (1)  (1)  (1)  (2)

 (2)  (1)  (2)  (2)

!
 (7)

Note that 11−11 indexes the ‘assortativeness’ of the allocation or the frequency with which
type  = 1 firms are matched with type  = 1 workers relative to the random matching

benchmark.20 Inspection of (7) illustrates that doubly randomized allocations allow for

arbitrary amounts of sorting on observables, but no sorting or matching on unobservables.

Double randomization allows us to express the×mass points in in terms of just

the ( − 1) (− 1) parameters which uniquely define  . This reduces the specification

of  by  (− 1) −  ( − 1) −  (− 1) parameters relative to the imposition of
feasibility alone. Doubly randomized allocations represent a small subset of the class of

feasible allocations.

Doubly randomized allocations are of interest from a policy perspective. Consider a social

20Feasibility also requires that 11 satisfy the inequality 1−min {1 1} ≤ 11 ≤ min {1 1} (cf., Graham,
Imbens and Ridder, 2007).
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planner who is able to centrally assign workers to firms. If the planner is unable to observe

 and , or legally constrained from using such knowledge when making assignments, the

class of reallocations available to her is of the form given by (5).

3.1.2 Conditional double randomization

A useful generalization of double randomization is conditional double randomization. The

motivation for this extension is two-fold. First, such assignments may characterize some

types of non-experimental matching market data. Second, it illustrates how the two-agent

aspect of matching models complicates their analysis and generates new and interesting

econometric issues.

Let  and  be observable proxies or signals for, respectively,  and . I modify

Assumption 3.1 so that firm type is independent of  within subpopulations homogenous in

the signal . Likewise worker type is conditionally independent of  given .

Assumption 3.2 (Conditional Inclusive Definition of Types)

 ⊥|  ⊥ 
¯̄



A conditionally doubly randomized allocation is a joint density for, , , ,  and

 of the form

 (     ) =  (   ) | ( | ) | ( | )  (8)

A member of this class of allocations may be formed as follows. First, the planner chooses a

feasible joint distribution for , ,  and . Second, within each  =  and  = 

by  =  and  =  cell, the required matches are formed by drawing workers at random

from the subpopulation of workers with  =  and  =  and assigning them to firms

drawn at random from the subpopulation of firms with  =  and  = 

This class of assignments allows for dependence between  and 
. This is because depen-

dence between  and  induces dependence between  and  since, for  ( ) =P

=1

P

=1  (   ),

 ( ) =

X
=1

X
=1

| ( | ) | ( | )  ( ) 

which does not equal  ()  () unless  ( ) coincides with the product of its two

marginals. In contrast with pure double randomization higher quality firms may match with

higher quality workers.
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The educational example introduced above suggests why conditional double randomiza-

tion may be useful in practice. Recall that and 
 denote observed characteristics of the

school and teacher. Let  and 
 denote unobserved characteristics of the school and teacher,

say average student ability and teacher quality, that are important determinants of student

achievement (the outcome of interest to the econometrician). Let  and 
 be proxies for

these characteristics, such as the average student’s intake test score and a teacher’s licensure

test score. Under a conditionally doubly randomized assignment of teachers to schools the

joint distribution of    and  is restricted only by feasibility. However, within the

subpopulation of matches homogenous in these observables, student ability is independent of

teacher quality. Such an assumption can be plausible when  and 
 closely approximate

agents information sets for  and ; but is more difficult, though not impossible, to justify

otherwise.21

3.1.3 No matching on unobservables

An alternative approach to relaxing the requirement of double randomization is to consider

allocations which satisfy a ‘no matching on unobservables’ restriction. Unlike conditional

double randomization, this extension does not require the introduction of proxy variables.

Let

| (|) = Pr ( = | = )  | (|) = Pr ( = | = ) 

denote the conditional densities of the unobserved firm and worker characteristics, say pro-

ductivity and ability, given, respectively, observed worker and firm type. Allocations with

the no matching on unobservables property have joint densities of the form

 (   ) =  ( ) | (|) | (|)  (9)

subject to the  ++ +  marginal constraintsX

=1
| ( |)  =  () 

X

=1
| (|)  =  () (10)X

=1
 ( ) = 

X

=1
 ( ) = 

21Rigorously justifying this claim is not attempted here. Heckman and Vytlacil (2007a,b) provide an

extensive discussion of the role of informational assumptions in the econometric analysis of single agent

models. Many of their insights should apply here as well.
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and the  + + 1 adding up conditions

X
=1

| ( |) = 1  = 1      (11)

X
=1

| (|) = 1  = 1    

X
=1

X
=1

X
=1

X
=1

 ( ) | ( |) | (|) = 1

Restrictions (10) and (11) can be compared with their double randomization counterparts

(2) and (3).

Inspection of (9) indicates that assignments which satisfy the no matching on unobserv-

ables condition are special. Like doubly randomized assignments they impose conditional

independence of  and  given (). However, unlike doubly randomized assignments,

they do allow for a limited type of ‘input endogeneity’. Consider the conditional distribution

of  given  (the analysis of the conditional distribution of  is entirely parallel). The

distribution of  is allowed to arbitrarily vary with . If we equate  with firm productiv-

ity, then this allows productive firms to be more frequently matched with certain types of

workers (defined in terms of their values of ). This is entirely analogous to a conventional

production function problem where a firm’s observed input choice may co-vary with its un-

observed productivity (e.g., Griliches and Mairesse, 1998). This type of endogenous input

choice is ruled out under doubly randomized assignments.

Note, however, that (9) requires that ’s conditional distribution be constant in con-

ditional on. This implies that the relationship between a firm’s (unobserved) productivity

and its (observed) input level, is independent of its (observed) type. If the observed and

unobserved firm characteristics, respectively  and , enter the production function non-

separably, then it will generally be the case that firms with specific configurations of  and

, as opposed to just  alone, will differentially demand certain types of workers. Phrased

in this way it is clear that the no matching on unobservables restriction is quite strong.

Nevertheless it is weaker the requiring an allocation to satisfy the double randomization

condition.

Consider once again the education example. Under a no matching on unobservables

allocation we do allow schools with unobserved high quality principals to differentially hire

teachers with certain types of observed qualifications. We do not allow them to differentially

hire teachers with certain types of unobserved qualifications. Likewise we allow teachers with

certain unobserved attributes to differentially work at schools with certain types of observed
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characteristics, but do not allow them to differentially work at schools with certain types of

unobserved characteristics. Assume that both principal and teacher years of experience are

observed but ‘qualities’ are not. No matching on unobservables implies that schools with

high quality principals may hire more experienced teachers. Likewise high quality teachers

may work at schools with more experienced principals. This, in turn, implies that the

conditional distributions of principal and teacher quality will vary across subpopulations of

matches defined in terms of observed principal and teacher experience. However, within such

subpopulations, there is no matching on unobserved quality.

Let  =
¡
| (1|)      | ( |)

¢0
and  =

¡
| (1|)      | (|)

¢0


This gives  = (1     ) and  = (1     ) equal to, respectively, the  ×  and

× matrices of probability masses which define the conditional distributions of  given

and  given . Using this notation the ( )

block of , for an allocation satisfying the

no matching on unobservables assumption, takes the form 
0
 (which is of dimension

 ×). Therefore

 = ( ⊗  
0
) ∗  ∗ 0 (12)

where the notation  ∗ 0 denotes the Hadamard, or entrywise product, of the matrices

 =  ⊗ ( ⊗ 0)   =  ⊗ ( ⊗ 0 ) 

Restrictions (10) and (11) may be expressed in matrix form as

 =   =   =  0 =  (13)

0 =  0 =   0 = 1

These conditions imply that  admits a ( − 1) × (− 1) parameterization and  a

(− 1)× ( − 1) parameterization. This, along with a ( − 1)× (− 1) parameterization
of  means that no matching on unobservables imposes

( − 1)× (− 1)− ( − 1)× (− 1)− (− 1)× ( − 1)− ( − 1)× (− 1) 

additional conditions on  beyond those required for feasibility. Relative to the dou-

ble randomization condition, the no matching on unobservables condition adds a total of

( − 1)× (− 1) + (− 1)× ( − 1) degrees of freedom to .

Consider once again the special case where  =  =  =  = 2. Implementing a no

matching on unobservables allocation requires choosing feasible values for ,  and  .

The latter choice was described above. The choice of  involves selecting a 2×2 matrix with
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columns summing to one and rows summing to . This imposes 3 non-redundant constraints

on  (since  (1) +  (2) = 1). Let 11 = | (1|1)  the conditional frequency of type
 = 1 firms among those matched to type  = 1 workers, and 11 = | (1|1), the
conditional frequency of type  = 1 workers among those matched to type 

 = 1 firms.

We have

 (11) =

Ã
11

(1)−111
1−1

1− 11 1− (1)−111
1−1

!
  (11) =

Ã
11

(1)−111
1−1

1− 11 1− (1)−111
1−1

!


To gauge the effects of 11 and 11 on the properties of the assignment note that the

average difference in productivity between firms who match with type 2 (‘high’) versus type

1 (‘low’) workers is

E [| = 2]− E [| = 1] = −
µ
 (1)− 11

1− 1

¶
(2 − 1) R 0 as 11 R  (1) 

If 11   (1)  then ‘low’ productivity firms (i.e.,  = 1) more frequently choose ‘low’

type workers (i.e.,  = 1). In such an allocation observed worker type predicts unobserved

firm productivity. Knowing a firm’s type, however, does not help to predict its productivity.

Similarly the average difference in ability between workers who match with type 2 (‘high’)

versus type 1 (‘low’) firms is

E [| = 2]− E [| = 1] = −
µ
 (1)− 11

1− 1

¶
(2 − 1) R 0 as 11 R  (1) 

so that if 11   (1)  then ‘low’ ability workers (i.e., 
 = 1) more frequently choose

‘low’ type firms (i.e.,   = 1). In such an allocation firm type predicts unobserved worker

ability. Knowing a worker’s type, however, does not help to predict its ability.

If 11 =  (1) and 11 =  (1) we recover the doubly randomized assignment. Fi-

nally, as with double randomization, the no matching on unobservables requirement does

not restrict the degree of assortativeness on observed firm and worker attributes.

3.2 Average reallocation effects (AREs)

A major motivation for the empirical analysis of matching markets is to predict the dis-

tribution of outcomes that would prevail under alternative feasible assignments of workers

to firms. Here, following Graham, Imbens and Ridder (2007, 2009a), I consider identifying

the change in average outcomes induced by a different allocations (i.e., average reallocation

effects (AREs)). In some settings implementing a particular assignment, while in principle
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feasible, might be difficult in practice. For example, the private incentives for re-matching

may be strong under certain assignments, suggesting that they would ‘unravel’ if actually

implemented. I ignore these issues in what immediately follows. There are at least two mo-

tivations for doing so. First, an exploration of the outcome effects of alternative assignments

is a prelude to more complete policy formulation. If the social benefits from a particular

assignment are deemed large relative to the status quo, then further thought can be given to

developing a decentralized mechanism which produces the desired assignment. In contrast,

the mechanism design question is less interesting if the distribution of outcomes is largely

invariant across different assignments. Second, in some institutional settings agents’ exercise

little control over whom they match with. In these settings the estimands introduced below

are directly relevant.

3.2.1 Definition of target estimands

In order to identify AREs, knowledge of the match output function, or certain features of it,

is required. A general form for the match output associated with the pairing of firm  with

worker  is

() = 
¡


  

¢
 (14)

Equation (14) is a fully nonparametric specification of match output, being non-separable

in the unobserved attributes of the matched firm and worker. Importantly, it allows for

arbitrary complementarity or substitutability between observed and unobserved firm and

worker attributes. No dimensionality or monotonicity assumptions on  or 
 are imposed.

Since  and  enter nonseparably, the identification of (14) may be too ambitious a

goal. Instead we might consider conditions under which we can identify the average match

output function (AMF):

 ( ) =

Z Z
 (   )  ()  () dd (15)

= E
£
E

£

¡
   


¢¤¤



The second line of (15) establishes notation for an expectation taken with respect to the

product of two marginals.

The AMF corresponds to the expected match output associated with a pairing of a type

 =  firm with a type  =  worker when both the firm and worker are independent and

random draws from their respective subpopulations.

The AMF is an average with respect to the product of two unobserved heterogeneity

distributions, one for each side of the matching market. The analog to (15) in a single agent
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model would be the average structural function (ASF) of Blundell and Powell (2003). A

direct application of the ASF definition to (14) would involve replacing  ()  () in (15)

with  ( ). Such a definition would not correspond to a structural object as  ( ) is

not invariant across feasible assignments; it is a by-product of such assignments.

Now consider the effect of a reassignment of workers-to-firms on the distribution of match

output. As a benchmark consider the case where the planner is unable to use information

on  and 
 when making her assignments; that is she is constrained to choose an allocation

from among the set of doubly randomized allocations. Let

 (a) =

Z Z
 ( ) a ( ) dd

denote average match output under the alternative doubly randomized allocation a ; for

 and  discretely-valued,

 (a) =

−1X
=1

−1X
=1

a × { (  )−  (  )− [ ( )−  ( )]}

+

−1X
=1

 { (  )−  (  )}+
−1X
=1

 { ( )−  (  )}

+  (  )

The equality follows from using the  +  − 1 non-redundant marginal constraints to re-
parameterize a (see Table 1). Let 

sq
 denote the  ×  matrix of mass probabilities

which define the joint distribution of and  under the status quo. The effect of choosing

allocation a on average match output relative to 
sq
 , the average reallocation effect

(ARE) of Graham, Imbens, and Ridder (2007, 2009a), is then

 (a) =  (a)−  (
sq
) =

−1X
=1

−1X
=1

{a − 
sq
} ×  (16)

where

 =  (  )−  ( )− [ ( )−  ( )]  (17)

is a measure of average local complementarity (ALC) between and . To see this observe

that (17) measures the expected difference between the incremental return associated with

hiring a type  versus  worker across type versus  firms. Consider two randomly sampled

firms and workers; if (17) is positive the sum of expected output across an assortative ()

and ( ) assignment will exceed that across an anti-assortative ( ) and ( ) assignment.
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It is important to understand that  is a local measure of complementarity. Consider

     and      we may have   0 and   0; there is no presumption

that  ( ) exhibits increasing differences or is supermodular (e.g., Topkis, 1998). This a

priori flexibility vis-a-vis  ( ) is important for making the study of reallocations empiri-

cally interesting.

The representation of the average reallocation effect in terms of ( − 1) (− 1) ALC
parameters facilitates its identification since, as we shall see below, (17) may be identified

even if  ( ) is not.

Some focal assignments Among the class of feasible allocations positive and negative

assortative matchings have attracted substantial attention (e.g., Becker, 1973; Legros and

Newman, 2002). These allocations maximize output when  ( ) is, respectively, super-

modular and submodular. The definition of these allocations requires that  =  with

+1   and +1   for all  = 1     − 1. In a positive assortative matching (pam)
the rank order of  and  to the extent that feasibility allows, coincide. The highest type

firms are assigned to the highest type workers. In a negative assortative matching (nam)

the opposite pattern occurs: the highest type firms are assigned to the lowest type workers.

Mathematically these two allocations concentrate the maximal feasible amount of probability

mass on, respectively, the primary and secondary diagonals of a .

Recall that when  =  = 2, the set of feasible allocations is indexed by 11. In this

case the positive assortative matching chooses 
pam
11 = min (1 1). This choice induces the

maximal amount of feasible assortativeness yielding an ARE of

pam = min {1 − 
sq
11 1 − 

sq
11}2211

The negative assortative matching chooses nam11 = max {0 1 + 1 − 1}  which induces the
maximal feasible amount of mixing. This yields an ARE of

nam = −max {sq11 1− 1 − 1 + 
sq
11}2211

When  =  = 3 the set of feasible allocations is indexed by 11, 12, 21 and 22. The
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positive assortative matching chooses the values


pam
11 = min (1 1)


pam
12 = max (0min {2 1 − 

pam
11 })


pam
21 = max (0min {2 1 − 

pam
11 })


pam
22 = max (2 − 

pam
21  2 − 

pam
12 ) 

with the negative assortative matching constructed analogously. For the general  = 

case a recursive algorithm can be used to construct the positive and negative assortative

matchings.

An interesting feature of both the pam and nam estimands is their dependence on mar-

ginal distributions of firm and worker type as well as on the production technology. This

dependence affects the sampling properties of their analog estimates (see Section 4.5). It also

highlights, yet again, the interplay between the resource constraint, here the firm and worker

type distributions, and the production technology in the analysis of matching problems.

A third focal allocation is the random matching, the ARE of which is given by

rm =  (0) =
−1X
=1

−1X
=1

{ − 
sq
} × 

This captures the outcome effects of switching to an assignment in which agents are randomly

paired to one another.

In many situations it may be of interest to assess the maximum gain in average outcomes

available via reallocation or the maximum average reallocation effect (MRE). One attractive

feature of the assumption that  and  are discretely-valued is that this is a tractable

estimand. The MRE, analyzed by Graham, Imbens and Ridder (2007) and Bhattacharya

(2009), is

mre = max
a


∈R

−1X
=1

−1X
=1

{a − 
sq
} ×  (18)

where R denotes the set of feasible allocations:

R = {a : 
a
 =  a0 =  0

a
 = 1 a ≥ 0 for all  } 

This is a linear assignment program, a special case of the transportation problem (e.g., Lu-

enberger, 2005, Chapter 5). While the maximizing allocation need not be unique, the value

function will be. An allocation can be thought of as a ( − 1)×(− 1) dimensional polyhe-
dron, the extreme points of which correspond to extreme allocations. By the Fundamental
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Theorem of Linear Programming (Luenberger, 2005; Chapter 2.4) an optimal allocation will

be one of the extreme allocations. The maximum reallocation effect, mre, can be used to

assess the efficiency of the status quo (Bhattacharya, 2009).

When  =  = 2 the two extreme allocations respectively correspond to the positive

and negative assortative matchings. Since the optimal allocation must be one of these two

assignments we get the elegant solution (Graham, Imbens and Ridder, 2007)

mre11 = min (1 1) · 1 (2211 ≥ 0) + max {0 1 + 2 − 1} · 1 (2211  0) 

with

mre = (mre11 − 
sq
11)× 2211

When   2 the form of mre is more complicated, but is easily solved for numerically

using linear programming methods. The solution in the  =  = 3 case is discussed in

Graham, Imbens and Ridder (2007).

3.2.2 Identification under double randomization

First, consider unrestricted match output functions of the form given in (14). If the status

quo allocation satisfies the doubly randomized restriction the AMF is identified by

E [| =  = ] =  ( ) 

Identification of  and the average reallocation effect  (
a) follows directly under ad-

ditional support conditions.

Proposition 3.1 (Identification Under Double Randomization) If

(i) () =  ( 
  

) 

(ii) the status quo assignment is of the form given by (4), and

(iii) a  0 only if 
sq
  0 then

E [| =   = ] =  ( )

and  (a) is identified. If 
sq
  0 for all  = 1     and  = 1     , then mre is also

identified.

Condition (iii) requires the status quo and alternative allocations share a common sup-

port. Proposition 3.1 is implicit in Graham, Imbens and Ridder (2007).
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Identification of  ( ) under conditional double randomization is more involved. Con-

sider the proxy variable regression

 (   ) = E [| =  =  =   = ]

=

Z Z
 (   ) | (| ) | (| ) d()d()

with the second equality following from the conditional double randomization assumption.

This suggests recovering  ( ) by

 ( ) = E [E [ (   )]]  (19)

Equation (19) is similar to the partial mean estimand introduced by Newey (1994) and

widely-used in recent work on the nonparametric identification of single agent models (e.g.,

Blundell and Powell, 2003; Imbens, 2007a). It is distinctive in that it involves two marginal

averages, as opposed to one. To understand the importance of sequentially averaging over

the two marginal distributions, note that the conventional partial mean

E [ (   )] 

does not equal the AMF. This is because any unobserved dependence between  and 

will be mirrored in the observed dependence between  and  Therefore averaging over

the joint distribution of the latter will not recover the AMF. The idea that unobserved

heterogeneity may be ‘averaged out’ in a two-agent model by averaging over the product

of two proxy variable marginal distributions, one for each agent, appears to be new (cf.,

Graham, Imbens, Ridder, 2009b).

This idea is summarized by Proposition 3.2.

Proposition 3.2 (Identification Under Conditional Double Randomization) If

(i) () =  ( 
  

) 

(ii) the status quo assignment is of the form given by (8),

(iii) the support of   given  =   =  does not depend on ( ),

(iv) the joint support of  and  coincides with the product of its two marginals’ supports,

(iv) a  0 only if 
sq
  0 then,

 ( ) = E [E [ (   )]] 

for  (   ) = E [| =  =  =   = ] and  (a) is identified. If


sq
  0 for all  = 1     and  = 1     , then mre is also identified.
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Condition (iii) ensures that for any configuration of proxies all types of groups, defined

in terms of their () value, are observed. This is similar to the ‘overlap’ assumption

in the program evaluation literature. Condition (iv) is specific to the matching context. It

requires that their not be too much dependence between  and . Averaging over the the

two marginal distributions in (19) eliminates any bias due to observed matching on  and

 (which proxies for unobserved matching on  and ). If there is two much dependence

between  and  in the status quo this double averaging cannot be performed. Conditions

(iii) and (iv) are strong conditions. It situations where point identification fails,  (a)

and mre may still be set identified. This possibility is not explored here.

3.2.3 Identification under no matching on unobservables

Propositions 3.1 and 3.2 leave the match output function unrestricted, but make strong a pri-

ori assumptions about the form of the status quo assignment. If we restrict the match output

function positive identification results are possible without assuming double randomization.

Consider the following restricted match outcome function


¡
 

  

¢
= 

¡



¢
+ 

¡
 


¢
+ 

¡
 


¢
 (20)

where

E [ ( )] = E
£

¡
 

¢¤
= 0 (21)

These normalizations imply that that  ( ) is the AMF as defined in (15) above. Re-

striction (20) will also feature in the analysis of equilibrium matching data when agent

characteristics alone are observed (Section 4 below).

Equation (20) is restrictive. Holding unobserved firm and worker complementarity fixed

we have, for 0   and 0  

 (0 0  )−  (   )− [ ( 0  )−  (   )]

=  (0 0)−  ( )− [ ( 0)−  ( )] 

The degree of complementarity between observed firm and worker attributes does not vary

with unobserved firm and worker attributes.

Similarly, holding observed match characteristics fixed, for 0   and  0  ,

 (  0  0)−  (  0 )− [ (    0)−  (   )] = 0

which rules out complementarity in unobserved agent attributes.

26



The match surplus function does allow for complementarity between  and  as well

as  and . Specifically

 ( 0 0 )−  (  0 )− [ ( 0  )−  (   )]

=  (0 0)−  (0 )− [ ( 0)−  ( )] 

and

 (0    0)−  (0   )− [ (    0)−  (   )]

=  (0  0)−  (0 )− [ (  0)−  ( )] 

may be non-zero.

The form of the surplus function drives matching incentives. Restriction (20) has strong

implications for these incentives. While it does allow for complementarity between observed

attributes, generating incentives for matching on observables, it does not allow for comple-

mentarity between unobserved attributes. This eliminates any incentive to sort on unobserv-

ables within -by- assignment cells. It also restricts the types of complementarity allowed

between observed and unobserved inputs. While it allows for complementarity between 

and , so that firms will seek out different types of workers depending on their value for

, this complementarity is constant in firm type (). This suggests that the intensity of

any matching of  on  will not vary with  Complementarity between  and  is

similarly restricted.

Under (20) and the no matching on unobservables restriction we have

E [| =  = ] =  ( ) +  () +  ()  (22)

for  () = E [ ()| = ] and  () = E
£

¡
 

()
¢¯̄
 = 

¤
22

Unlike the case of double randomization, average output across matches with  = 

and  =  does not coincide with  ( ). The two additional terms,  () and  (), are

22To see this note that

E [| =  = ] =
X

=1

X

=1
 (    )  | ( |) | (|)

=  ( ) +
X

=1
 (  )  | ( |) +

X

=1
 ( ) | (|)

=  ( ) + E [ ()| = ] + E
h

³
 

()
´¯̄̄

 = 
i

 ( ) +  () +  () 
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due to selection bias. Under the no matching on unobservables assumption it is still possible

that firms with different values of  differentially match with workers of type 
 = . This

matching of  on  is captured by  (). Likewise workers with different values of  may

differentially match with firms of type  = . This matching of  on  is captured by

 ().

Although allocations which satisfy the no matching on unobservables restriction do not

allow for identification of the AMF, they do allow for identification of average local comple-

mentarity. To see this note that (22) implies that

E [| = 0 = 0]− E [| = 0 = ]

− (E [| =  = 0]− E [| =  = ])

=  (0 0)−  ( )− [ ( 0)−  ( )] 

The ‘difference-in-differences’ structure of the ALC estimand means that any selection bias

allowed for by the no matching on unobservables restriction is differenced away (assuming

the production function is given by (20) above).

Since  (a) only depends on  ( ) through the ALC terms it is also identified under

additional support conditions.

Proposition 3.3 (Identification Under No Matching on Unobservables) If

(i) () =  ( 
) +  ( 

) +  ( 
) 

(ii) the status quo assignment is of the form given by (9), and

(iii) a  0 only if 
sq
  0 then

 = E [| =   = ]− E [| =   = ]

− (E [| =  = ]− E [| =  = ]) 

and  (a) is identified. If 
sq
  0 for all  = 1     and  = 1     , then mre is also

identified.

Proposition 3.3 is new. It is a consequence of (i) the ‘difference-in-differences’ or ‘increas-

ing differences’ structure of the ALC estimand and (ii) the type of selection bias allowed

under the no matching on unobservables assumption. Consider the difference in match out-

put across matches with workers of type  = 0 versus  =  :

E [| = 0  = 0]−E [| = 0 = ] =  (0 0)− (0 )+ (0)− ()  (23)

The first term —  (0 0)−  (0 ) — is the systematic return that a type  = 0 firm gets
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from hiring a type  = 0 versus  =  worker. The second term —  (0)− () — captures
the difference in average firm productivity across the two types of matches. This may arise

from selective input choice on the part of the firm. The key point is that the combination of

the restricted match output function (20) and the no matching on unobservables assumption

implies that this latter term is constant in firm type. Consequently we also have

E [| =  = 0]−E [| =  = ] =  ( 0)−  ( ) +  (0)−  ()  (24)

Subtracting (24) from (23) yields the ALC. Underlying Proposition 3.3 are strong assump-

tions the appropriateness of which will vary from application to application. The proposition

does highlight the gains from directly searching for restrictions which identify ALC (as op-

posed to first identifying the AMF and then computing ALC).

3.2.4 Further thoughts on the identification of AREs

The definition of the AMF as an average over the product of two unobserved heterogene-

ity distributions makes identification of reallocation effects particularly challenging. This

section has outlined two approaches. The first leaves the match surplus function nonpara-

metric but imposes strong restrictions on the status quo assignment. These restrictions can

be weakened somewhat by additional conditioning (Proposition 3.2). The second approach

involves imposing separability assumptions on the match output function. As noted above

these restrictions are strong, particularly in the context of allocation problems where comple-

mentarity properties are paramount. However, such assumptions allow for the formulation

of positive identification results under weaker restrictions on the status quo assignment.

An area that merits further thought is the value of partially identifying restrictions of

the type discussed in Manski (2003). For example sign, monotonicity or other restrictions

on the ALC may be both well motivated and informative about reallocation effects in some

situations.

3.3 Continuously-valued match characteristics

Graham, Imbens, and Ridder (2009a) study identification and estimation of AREs when

match characteristics are continuously-valued. Continuity of agent characteristics makes

some features of assignment problems simpler. For example the definitions of the positive

and negative assortative matchings are less clumsy in this case. Other aspects of the problem

become more challenging. The class of feasible assignments becomes very large, making

identification of optimal allocations difficult. Formally the planner’s problem is a nonconvex
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functional (i.e., infinite dimensional) optimization problem. Such problems, unlike linear

programs, are quite hard to solve in general (e.g., Luenberger, 1969).

As before match output is given by () =  ( 
  

)  However, now both and

 are continuously-valued. The average match output function is

 ( ) =

Z Z
 (   )  ()  () dd

with  () and  () the marginal density functions for, respectively, firm productivity and

worker ability.

To keep the exposition simple assume double randomization such that the status quo

assignment density is given by

sq (   ) = 
sq
 ( )  ()  () 

so that the AMF is identified by  ( ) = E [| =  = ] 

Feasibility of an assignment density,  ( ), requires thatZ


 ( ) d =  () 

Z


 ( ) d =  ()  (25)

with  () and  () the marginal density functions for, respectively, the firm and worker

attributes (or types). The class of reallocations studied by Graham, Imbens and Ridder

(2009a) consists of all joint densities satisfying (25).

The first estimand they consider is expected outcome gain from perfect assortative match-

ing of  on :

pam = E
£

¡
−1 (() 

¢− 
¤
 (26)

where (
) denotes the CDF of , and −1 () is the -th quantile of the distribution of

. Therefore 
−1
 (()) computes the location of match 0 worker on the CDF of 

and reassigns her to a firm on the corresponding quantile of the distribution of . Those

workers with the highest value of  are reassigned to firms with the highest value of ,

and so on.

The average outcome gain from negative assortative matching follows similarly with

nam = E
£

¡
−1 (1− ()) 

¢− 
¤
 (27)

Note that (26) and (27) are related to the partial mean estimand introduced by Newey

(1994b). While the average match function  ( ) is a bivariate function, both (26) and
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(27) are averages over a single random variable. This reflects the fact that under perfectly

assortative matchings the conditional distributions of  given  is degenerate: knowledge

of  implies knowledge of . This feature of the pam and nam estimands affects the

limiting distribution of their sample analogs (see Section 3.4).

Because the class of feasible allocations is so large, Graham, Imbens and Ridder (2009a)

do not attempt to identify optimal allocations. Instead they introduce a two parameter

family of feasible allocations called correlated matchings. Let  (· ·; ) denote the CDF of a
standard bivariate normal random variable with correlation coefficient .23 Let sq ( ), in

a change of notation, denote the CDF of the joint distribution of () under the status

quo. Correlating matchings are given by

cm ( ;   ) = sq ( ) + (1− )
¡
Φ−1 ( ()) Φ

−1 ( ()) ; 
¢


for  between zero and one and  between −1 and 1.
The effect of implementing a correlated matching on average outcomes is thus

cm( ) = (1− ) (28)

×
½Z



Z


( )
 (Φ−1( ())Φ

−1(()); )

 (Φ−1( ())) (Φ−1(()))
 ()()dd− E []

¾


By varying  from 1 to −1 for  = 0 correlated matchings trace a path from the positive,
through the random ( = 0), to the negative assortative matching. By setting  = 1 they can

reproduce the status quo assignment. Note that unless  ( ) is supermodular, cm ( )

need not vary monotonically with  Furthermore there is no guarantee that an average

outcome maximizing allocation corresponds to a correlated matching. Indeed, it would be

surprising if it did.

One way to conceptualize correlated matchings is to view them as particular perturbations

of the random allocation. To see this note that

cm( ) = (1− )
©
E

£
E

£

¡



¢

¡


; 
¢¤¤− E []ª 

for


¡
 

; 
¢
=

 (Φ−1( ())Φ
−1((

)); )

 (Φ−1( ())) (Φ−1(()))


If  = 0, the weight function  ( ; ) is identically equal to one for all  and  and

cm(0 ) = (1− ) {E
[E [ ( 

)]]− E []}  If   0, then  ( ; ) will be larger

23To avoid small denominator problems, they actually work with a truncated bivariate normal distribution

function.
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for pairs of  and  that correspond to similar quantiles of their respective marginal

distributions. Likewise if   0, then  ( ; ) will be larger for pairs of  and 

that correspond to very different quantiles. In the limit as  → 1 the weight function

 (
; ) is only non-zero when the quantiles of  and  coincide, as in the perfect

positive assortative matching. When → −1 we recover the negative assortative matching.
Identification of pam, nam and cm( ) requires strong support conditions. A sufficient

condition for identification is that the joint support of the status quo assignment sq ( )

coincides with the product of its marginals’ support. This condition allows the econometri-

cian to learn about ( ) at all conceptually possible combinations of  and . Given this

knowledge the average outcome across any feasible assignment can be computed by integra-

tion. Unfortunately in many datasets this support condition will fail (or effectively fail) to

hold. For example, if under the status quo there is strong positive dependence between 

and , then it will be difficult to identify 
nam. This is because nam is an average of ( )

over pairs of  and  where  is large (small) and  is small (large). These are precisely the

match types that are infrequently observed in a status quo with ‘lots of’ positive dependence.

In addition to being difficult to identify, assignments that are distant from the status quo

may be less policy relevant. Policies which represent incremental modifications of the status

quo may be politically and/or logistically easier to implement than large reallocations.24

Motivated by these issues Graham, Imbens and Ridder (2009a) also study local reallocation

effects (LREs) (i.e., the effects of small reallocations ‘away’ from the status quo and ‘toward’

the perfect positive assortative matching).

They derive the LRE by matching on a family of transformations of  and , indexed

by a scalar parameter , where for some values of  the matching is on  (corresponding

to the status quo), and for other values of  the matching is on  or −, corresponding

to positive and negative assortative matching respectively. Assume that the supports of of

 and  are given by the intervals [ ] and [ ] Let () be the following smooth

function that goes to zero at the boundary of the support of :

() = 1 · ( − ) + 1≤ · ( − )

For  ∈ [−1 1], define the random variable  as the following transformation of ():

 =  · · ()
1−|| + (

p
1− 2) ·

24Of course some organizations, like the military, have a greater ability to implement radical organizational

changes.
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Now we consider reallocations based on positive assortative matching on :

lr() = E[(−1 (()) )] (29)

For  = 0 and  = 1 we have  = and  =  respectively, and hence 
lr(0) recovers

the status quo average outcome E [] and 
lr(1) = pam The negative assortative matching

is also nested in this framework since

Pr
¡− ≤ −¢ = Pr ¡ ≥ 

¢
= 1−  () 

and hence for  = −1 we have lr(−1) = nam Values of  close to zero induce reallocations

of  that are ‘local’ to the status quo, with   0 and   0 generating shifts toward

positive and negative assortative matching respectively.

Graham, Imbens and Ridder (2009a) consider the direction of the effect on average out-

comes associated with a small step toward the positive assortative matching:

lc =
lr


(0) (30)

Theorem 3.1 of their paper presents two representations of this derivative:

lc = E
∙
( ) · C

µ



 ()  

¯̄̄̄


¶¸
 (31)

and

lc = E
∙
() · 2


 ()

¸
 (32)

where the weight function ( ) is non-negative and has the form

( ) = ()·| (|) · (1− | (|))
| (|) ·

³
E [|   = ]−E [| ≤  = ]

´


The first representation of lc motivates their approach to estimation. It implies that lc will

be positive if the conditional covariance between 

 () and  is positive. This will

occur if the return to increases in firm type, 

 (), tends to be larger when  exceeds

its conditional mean E [| ]. Intuitively this suggests that increasing assortativeness should
raise average outcomes. Representation (31) makes this intuition precise.

The second representation shows that lc is a weighted average measure of complemen-

tarity between firm and worker type. This provides a connection between the presence of

complementarity and reallocation effects.
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3.4 Estimation of AREs when match output is observed

The estimation of matching models raises complex and interesting statistical issues. Some

of these issues are well-known from the literature on semiparametric estimation (Powell,

1994), others are less familiar. Consider the structure of the ARE estimand. It is a function

of three primitives (i) the production technology, (ii) the marginal distribution of the two

inputs (firm and worker type) and (iii) the chosen allocation. This intertwined aspect of the

target parameter can generate surprises. For example, Graham, Imbens and Ridder (2007)

show that the limiting distribution of pam when firm and worker type are discretely-valued,

changes discontinuously in the marginal distributions on  and  Discontinuities in limit

distributions arise elsewhere in econometrics, for example in the literature on unit roots,

weak instruments, and moment inequalities, but their presence in assignment problems is,

at least a priori, surprising. When  and  are continuously-valued Graham, Imbens and

Ridder (2009a) show that the rate of convergence is slower for their estimates of the two

extremal allocations pam and nam, than for non-extremal correlated matchings cm.

3.4.1 Estimation of the average match output function (AMF)

Consider a setting where the status quo assignment is ‘as if’ conditionally doubly randomized

as described in Section 3.1. If all covariates are discretely-valued the estimated proxy variable

regression introduced in Proposition 3.2 is given by the cell mean

b (   ) = P

=1 1 ( =  =  =   = )P

=1 1 ( =  =  =   = )


When covariates are continuously-valued  (   ) can be estimated by kernel regression.

Graham, Imbens and Ridder (2009a) use the Nearest Interior Point (NIP) kernel estimator of

Imbens and Ridder (2009). This estimator eliminates boundary bias present in the standard

Nadaraya-Watson estimate.

In either case the average match output function (AMF) is recovered by separately av-

eraging over the sample distributions of  and :

b ( ) = 1

2

X
=1

X
=1

b (   )  (33)

Equation (33) is similar to the partial mean estimator of Newey (1994b). It differs in that it

averages over a product of two marginals instead of the joint distribution of ( ). Its

asymptotic properties are unknown, although they should be straightforward to derive.
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For simplicity in what follows I will assume the status quo assignment is doubly random-

ized. Many of the results will also hold if instead it satisfies the no matching on unobservables

condition and the match production function is given by (20). When this is the case should

be obvious by the context. Under double randomization, with discretely-valued covariates,

we may estimate the AMF by

b ( ) = P

=1 1 ( =  = )P

=1 1 ( =  = )
 (34)

With continuously-valued covariates  ( ) may be estimated by NIP kernel regression.

3.4.2 AREs with discretely-valued covariates

Fixed ‘interior’ allocations Inference on AREs for fixed interior allocations when match

characteristics are discretely-valued is straightforward. To illustrate I consider only the

simple  =  = 2 case. Generalizing what follows to allow for   2 is straightforward,

albeit tedious.

Recall from Section 3.1 that when  =  = 2 we have the one parameter representation

a (
a
11) =

Ã
a11 1 − a11

1 − a11 1− 1 − 1 + a11

!


for all a11 such that 
a
 is a valid joint distribution or

1 −min {1 1} ≤ a11 ≤ min {1 1}  (35)

Interior allocations consist of all allocations where a11 is non-stochastic and the inequalities

in (35) are strict.

Letting  (a) = a the analog estimator is

ba = {a11 − bsq11} × b
with b = b22 − b21 − ³b12 − b11´ 
and b = b ( ) given by (34) above. Note that sampling error in ba will reflect both
uncertainty in (i) the form of the match production technology (in this case  the comple-

mentarity measure) and (ii) the status quo assignment distribution (in this case 
sq
11).
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The delta method gives

√

³b− 0

´
→ N

µ
0
211

sq
11

+
212

1 − 
sq
11

+
221

1 − 
sq
11

+
222

1− 1 − 1 + 
sq
11

¶


where 2 = V (| =  = ).

The status quo assignment, which enters the definition of a through 
sq
11, is assumed

unknown. However it may be consistently estimated by

b1 = 1



X
=1

1 ( = 1)  b1 = 1



X
=1

1 ( = 1)  bsq11 = 1



X
=1

1 ( = 1  = 1) 

with a large sample distribution equal to

√


⎛⎜⎝ b1 − 1b1 − 1bsq11 − 
sq
11

⎞⎟⎠ → N

⎛⎜⎝
⎛⎜⎝ 0

0

0

⎞⎟⎠ 

⎛⎜⎝ 1 (1− 1) 
sq
11 − 11 

sq
11 (1− 1)


sq
11 − 11 1 (1− 1) 

sq
11 (1− 1)


sq
11 (1− 1) 

sq
11 (1− 1) 

sq
11 (1− 

sq
11)

⎞⎟⎠
⎞⎟⎠ 

Note that sampling error in the estimate of sq is asymptotically independent of that in b
Since ba is a continuous function of sample averages ba is consistent for a A second

application of the delta method then gives an asymptotic sampling distribution of

√

³ba − a

´
→  (36)

where  is the normally distributed random variable

 ∼ N
µ
0 (a11 − 

sq
11)

2

½
211

sq
11

+
212

1 − 
sq
11

+ 

221
1 − 

sq
11

+
222

1− 1 − 1 + 
sq
11

¾
+ 20

sq
11 (1− 

sq
11)

¶


The asymptotic sampling variance of ba has two components. The first reflects sampling
error in b the degree of average local complementarity between  and , as well as the

distance between the new allocation and the status quo, a11 − 
sq
11. The greater the distance

between the counterfactual assignment of interest and the status quo, the greater our uncer-

tainty about the magnitude of the ARE. The second source of sampling error in ba arises
from our imperfect knowledge of the status quo assignment distribution; sampling error inbsq11. Since all the components entering its asymptotic variance are consistently estimable,
conducting large sample inference on ba is straightforward.
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Extreme allocations Estimation of, and inference on, extremal allocations raises new

and interesting issues. First consider the case of the positive assortative matching. When

 =  = 2 the positive assortative matching chooses 
pam
11 = min {1 1}  so that

pam = min {(1 − 
sq
11) (1 − 

sq
11)}  (37)

The analog estimator is

bpam = minn(b1 − bsq11) b (b1 − bsq11) bo 
Since the function min {(1 − 

sq
11) (1 − 

sq
11)} is continuous we have, by the continuous

mapping theorem, bpam → pamWhile the demonstration of consistency is straightforward,

characterizing the asymptotic sampling distribution of bpam is more difficult. This is because
the definition of pam depends on unknown features of the population distribution of firm and

worker types. In particular bpam has three possible limit distributions depending on whether
(i) 1  1, (ii) 1  1, or (iii) 1 = 1 Since we do not know which case obtains a priori

Graham, Imbens and Ridder (2007) suggest a conservative approach to inference. To describe

this approach to inference we first need to characterize the three limiting distributions.

Case 1 1  1: When 1  1, so that type 1 firms are more numerous than type 1

workers, we have

√
 (min {b1 b1}−min {1 1}) =

√
 (min {b1 b1}− 1)

= min
n√

 (b1 − 1) +
√
 (1 − 1) 

√
 (b1 − 1)

o


Since
√
 (1 − 1)  0 this gives¯̄̄√

 (min {b1 b1}−min {1 1})−√ (b1 − 1)
¯̄̄

→ 0

which allows us to replacemin
n
(b1 − bsq11) b (b1 − bsq11) bo in (79) with (b1 − bsq11) b. Following

a sequence of steps analogous to those described above for fixed interior allocations we then

get √

³bpam − pam

´
→ − (38)

37



with − the normal random variable

− ∼ N
µ
0 (1 − 

sq
11)

2

½
211

sq
11

+
212

1 − 
sq
11

+
221

1 − 
sq
11

+
222

1− 1 − 1 + 
sq
11

¾
+ 2 (1− 1 − 

sq
11) (1 − 

sq
11)

¶


Note that uncertainty in two features of the status quo, 1 and 
sq
11, are reflected in the

sampling variance of −. This is because 1 enters in the definition of 
pam

Case 2 1  1: When 1  1, so that type 1 firms are less numerous than type 1

workers, we have, following an argument parallel to case 1 above,

√

³bpam − pam

´
→ − (39)

with − the normal random variable

− ∼ N
µ
0 (1 − 

sq
11)

2

½
211

sq
11

+
212

1 − 
sq
11

+
221

1 − 
sq
11

+
222

1− 1 − 1 + 
sq
11

¾
+ 2 (1− 1 − 

sq
11) (1 − 

sq
11)

¶


Case 3 1 = 1: The limit distribution for the third case, which corresponds to the

marginal distributions of  and  coinciding, is nonstandard. To see this note that when

1 = 1 we have

√
 (min {b1 b1}−min {1 1}) = min

n√
 (b1 − 1) 

√
 (b1 − 1)

o
→ min ( ) 

with ( ) the bivariate normal random variable:Ã




!
∼ N

ÃÃ
0

0

!


Ã
1 (1− 1) 

sq
11 − 21


sq
11 − 21 1 (1− 1)

!!


Recalling the definition of pam we then get

√

³bpam − pam

´
→ min {− −} 
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with − and − the normal random variables defined by (38) and (39) above. Their

covariance is given by

(1 − 
sq
11) (1 − 

sq
11)

½
211

sq
11

+
212

1 − 
sq
11

+
221

1 − 
sq
11

+
222

1− 1 − 1 + 
sq
11

¾
− 2 (1 − 

sq
11) (1 − 

sq
11) 

While the distribution of min {− −} is difficult to characterize analytically, it is
straightforward to simulate from: (i) draw − and − jointly, (ii) calculate their mini-

mum, and (iii) repeat. If we knew that 1 = 1 in the population, then we could simulate

critical values for testing hypotheses. Consider the null hypothesis pam = 
pam
0 versus the

alternative pam 6= 
pam
0  The proposal is to construct the statistic  =

√

³bpam − 

pam
0

´
and reject if | |  1− where 1− is the 1−  quantile of the simulated distribution of

|min {− −}|. To obtain a 1−  confidence level we invert the test.

In practice we do not know which state of the world obtains: 1  1 1  1 or 1 = 1.

Graham, Imbens and Ridder (2007a) suggest calculating the critical value for each case and

choosing the largest of the three. That is reject if | |  1− with 1− such that

sup
11111=1

n
lim
→∞

Pr
³¯̄̄√


³bpam − 

pam
0

´¯̄̄
 1−

´
≤ 

o


An interesting feature of the above analysis is that attributes of the distribution of the ‘re-

gressors’ feature centrally in the inferential procedure. This is quite different from textbook

hypothesis testing. The difference arises from the nature of the estimand: the distribution

of agent characteristics features directly in the definition of pam.

Inference on the negative assortative matching is essentially the same as in the positive

case. The negative assortative matching sets

nam11 = max {0 1 + 1 − 1} 

yielding the estimand

nam = max {−sq11− (1− 1 − 1 + 
sq
11)} 

As before we must consider three cases: (i) 1  1−1 (which also corresponds to the 1  1

case above), (ii) 1  1− 1 (which corresponds to 1  1 case above) and (iii) 1 = 1− 1

(which need not coincide with the 1 = 1 case discussed above).

In the first case 1  1 − 1 so the limiting distribution of bnam coincides with that of
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− (1− b1 − b1 + bsq11) b giving
√

³bnam − nam

´
→ 1−−+ (40)

for 1−−+ the normal random variable

1−−+ ∼ N
µ
0 (1− 1 − 1 + 

sq
11)

2

½
211

sq
11

+
212

1 − 
sq
11

+
221

1 − 
sq
11

+
222

1− 1 − 1 + 
sq
11

¾
+ 2 (1 + 1 − 

sq
11) (1− 1 − 1 + 

sq
11)

¶


In the second case 1  1− 1 so the limiting distribution of bnam coincides with that of
−bsq11b giving √


³bnam − nam

´
→ − (41)

for − the normal random variable

− ∼ N
µ
0 (

sq
11)

2

½
211

sq
11

+
212

1 − 
sq
11

+
221

1 − 
sq
11

+
222

1− 1 − 1 + 
sq
11

¾
+ 2

sq
11 (1− 

sq
11)

¶


In the third case 1 = 1− 1 so that the limit distribution coincides with

√

³bnam − nam

´
→ max {− 1−−+} 

with 1−−+ and − as defined in (41) and (40) with a covariance of


sq
11 (1− 1 − 1 + 

sq
11)

½
211

sq
11

+
212

1 − 
sq
11

+
221

1 − 
sq
11

+
222

1− 1 − 1 + 
sq
11

¾
− 2

sq
11 (1− 1 − 1 + 

sq
11) 

We can conduct inference on nam in a manner analogous to the method described for the

positive assortative matching above.

Optimal allocations The average reallocation effect associated with an optimal assign-

ment is given by, continuing with the  =  = 2 case, mre = max {pam nam}  It is
consistently estimated by bmre = maxnbpam bnamo 
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Marginal Type Distribution Limiting distributions for

pam nam

Panel A: Positive assortative matching optimal√

³bmre − mre

´
→ pam with:

1  1 − n.a.

1  1 − n.a.

1 = 1 min {− −} n.a.

Panel B: Negative assortative matching optimal√

³bmre − mre

´
→ nam with:

1  1− 1 n.a. −
1  1− 1 n.a. 1−−+
1 = 1− 1 n.a. max {− 1−−+}
Panel C: Degenerate case√

³bmre − mre

´
→ max {pam nam} with:

1  1 & 1  1− 1 − −
1  1 & 1  1− 1 − 1−−+
1 = 1 & 1  1− 1 min {− −} −
1 = 1 & 1  1− 1 min {− −} 1−−+
1  1 & 1 = 1− 1 − max {− 1−−+}
1  1 & 1 = 1− 1 − max {− 1−−+}

Table 2: Possible limit distributions for the maximum average reallocation effect when K =

L = 2

Let pam denote a random variable whose distribution coincides with the limiting dis-

tribution of
√

³bpam − pam

´
. Recall from the discussion above that this limit distri-

bution may take any of three forms. If pam  nam in the population then we have√

³bmre − mre

´
→ pam Let nam denote the ‘limiting distribution’ of

√

³bnam − nam

´
,

which may also take three forms. If pam  nam then we have
√

³bmre − mre

´
→ nam.

Finally consider the degenerate case where pam = nam (this occurs if the ALC is identically

equal to zero). In the degenerate case the limit distribution is given by
√

³bmre − mre

´
→

max {pam nam} 
As in the case of the two extremal allocations conservative tests and confidence intervals

may be constructed by computing critical values under all possible cases and picking the

largest one. Now however there are now a total of 12 possible limit distributions to consider

(see Table 2).25

The number of cases that must be considered will increase with  and/or . Given

25Bhattacharya (2009) also considers inference on mre, however he assumes that the marginal type dis-

tributions are known so he needs to only consider a total of three limit distributions when  =  = 2.
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its conservative nature the approach to inference outlined above is likely to have low power

for modestly large  and/or  (this is consistent with the pattern found by Bhattacharya

(2009) in his empirical application).

An alternative method of inference would adopt a Bayesian perspective. The planner

would formulate a prior distribution for the parameters characterizing the status quo as-

signment as well as those of the production function. Inference would then be based on the

resulting posterior distribution. Chamberlain (2009) considers some Bayesian aspects of un-

constrained treatment choice. A number of his insights might be applicable here. Graham,

Imbens, and Ridder (2007) provide a preliminary treatment of some decision theoretic issues.

3.4.3 AREs with continuously-valued covariates

Fixed ‘interior’ allocations The starting point for estimating the average outcome gain

associated with implementing a correlated matching is equation (28) above. Note that

cm( ) is an integral over the product of the marginal pdfs of  and , not the joint.

Graham, Imbens and Ridder (2009a) estimate cm( ) by replacing these integrals with

sums over the two empirical distribution functions to get the analog estimator

bcm( ) = (1− )

⎧⎨⎩ 1

2

X
=1

X
=1

b( )

³
Φ−1(̂ ())Φ

−1(̂()); 
´


³
Φ−1(̂ ())

´

³
Φ−1(̂())

´ − 1



X
=1



⎫⎬⎭ 

This estimator would be a standard second order V-statistic if ( )  () and ()

were known. Instead bcm( ) depends on nonparametric estimates of each of these objects.
Sampling error in these nuisance parameters affects bcm( )’s sampling properties.
To characterize the large sample properties of bcm( ) Graham, Imbens and Ridder

(2009a) first formulate a general theorem for double averages of kernel estimates (Theorem

A.3). Their results demonstrate that the average outcome effects of correlated matchings are

estimable at the regular
√
 parametric rate. The influence function for their estimator is

complicated with functions of the production technology, the marginal distributions of firm

and worker types, the status quo assignment, and the precise correlated matching under

consideration entering.

Extreme allocations Graham, Imbens and Ridder (2009a) also present estimation results

for the extremal positive and negative assortative matchings. Their estimates are the sample
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analogs of (26) and (27) above, namely,

bpam = 1



X
=1

b ³̂−1 (̂())

´
− 1



X
=1

 (42)

and bnam = 1



X
=1

b ³̂−1 (1− ̂()) 

´
− 1



X
=1

 (43)

It is straightforward to demonstrate consistency of these estimates. The nonparametric

estimates b ( ), ̂ (), and ̂ () are uniformly consistent under their assumptions.

Consistency then directly follows. The derivation of their sampling distributions is more

involved. In contrast with correlated matchings, both bpam and bnam involve only a single
average. This is because the conditional distribution of  given  is degenerate under

an extremal assignment. Since in the first stage b ( ) is estimated with two arguments,
but in the second stage averaged over only one, its sampling error dominates the asymptotic

variances of bpam and bnam This property is shared by the partial mean estimator of Newey
(1994b). Graham, Imbens and Ridder (2009a) nevertheless propose accounting for asymp-

totically dominated terms when conducting inference. Their Monte Carlo results suggest

that this idea has some merit.

Local reallocations The local reallocation effect is estimated by

̂
lc
=
1



X

=1




b ( ) · () · ( − b ()) (44)

where b () is the NIP kernel regression estimate of E [|]  This estimator is similar to

the class of weighted average derivative estimators surveyed by Powell (1994) and Newey and

McFadden (1994). To see this note that if− b () is removed from (44), then the estima-

tor coincides with an weighted average derivative estimator (with () equalling the known

weight function). The derivation of ̂
lc
’s asymptotic sampling distribution closely parallels

that of weighted average derivatives. However the covariance structure of the estimator,

as well as the additional nonparametrically estimated object, b (), renders its influence

function more complicated (see Theorem 4.4 of Graham, Imbens and Ridder, 2009a).

Implementation issues A precise implementation of the methods described in Graham,

Imbens and Ridder (2009a) would prove challenging to the typical empirical researcher. The

absence of easily usable software implementing the NIP kernel estimator of Imbens and

Ridder (2009) is one barrier. An additional issue is that an analog approach to variance
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estimation would require non-parametric estimation of many objects. Finally, as in much of

the semiparametric literature, the issue of bandwidth selection is left unaddressed.

Nevertheless the simple analog structure of the estimators suggests several natural short-

cuts that may be appropriate for empirical work (at least experimentally). First  ( ),


 ( ) and  () may be estimated by local linear regression methods. One can

estimate () by the empirical CDF and −1 () by the   sample quantile. With these

objects in hand the computation of bcm( ), bpam, bnam and ̂
lc
involve only summation.

For this last step it may be advisable to trim observations that are near the boundary of the

joint support of  and . No nonlinear optimization is involved. Each of these steps can

be performed with commercial software. Finally, while Graham, Imbens and Ridder (2009a)

provide no formal justification for it, the bootstrap can be used to conduct inference.

4 Identification and estimation of one-to-one matching models when match

output is unobserved: equilibrium approaches

This section considers what features of the match output function are identified when only

match attributes are observed. What does the choice of one’s partner alone reveal about

preferences and/or match output? As noted above, this question shares important simi-

larities with those which motivated the development of single agent discrete choice models

(McFadden, 1974; 1981). The two-sided nature of the matching problem, however, compli-

cates the identification challenge. I emphasize choice in a decentralized market where agents

are ‘rivals to match’ and transfers between agents adjust to clear the market (e.g., Becker,

1973). Conveniently this allows the econometrician to focus directly on match output, as

opposed to the separate utility functions of the two agents. This is the case considered by

Choo and Siow (2006a,b), which are the key references.

When match output is observed, as was assumed in the previous section, identifying

AREs requires identifying (features of) the average match output function (AMF). This

is difficult because units may purposely select their match partners; hence the observed

‘inputs’ in the production function will covary with the unobserved ones. When match

output is unobserved, in contrast, the challenge is not to ‘correct for’ the effects of purposeful

matching, but rather to draw inferences directly from it. This requires an explicit behavioral

model of partner choice or a ‘structural’ matching model.26

Section 4.1 outlines one such model. Under specific distributional assumptions the model

corresponds to the one introduced by Choo and Siow (2006a,b); this point is developed in

Section 4.2. Matching is one-to-one. Each firmmatches with one worker and vice versa; hence

26Of course, a structural model of partner choice may also be helpful in settings where match output is

observed and, of course, (features of) the matching mechanism are central to any approach to identification.
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firms are rivals (as are workers). Associated with each match is an unobserved transfer from

the firm to the worker. The level of this transfer, which may be negative, is an equilibrium

outcome. For concreteness, I will sometimes refer to this transfer as a wage. The equilibrium

concept is that of pairwise stability: in equilibrium no firm is willing to pay the wage required

to match with a different worker and no worker is willing to accept the wage offered by a

different firm (e.g., Roth and Sotomayor, 1990).

The matching market consists of a finite number of ‘firm’ and ‘worker’ types. However

there are a large number of firms and workers of each type. This large market assump-

tion is important. It effectively transforms the matching problem into an applied general

equilibrium one.

Section 4.3 considers the identifying content of micro-data pairwise comparisons without

distributional assumptions as first proposed by Fox (2009a,b). A key aspect of his approach is

the interpretation of assortativeness in the data, the tendency for, say, high quality teachers

to match with high quality schools, as evidence of complementarity. This is also implicit in

Choo and Siow (2006a,b).27,28 Writing down explicit data generating process under which

this inference is valid is non-trivial.

As a prelude to nonparametric analysis, Section 4.3 begins by showing that the Choo and

Siow (2006a,b) model can be identified and estimated via micro-data pairwise comparisons.

This point, while straightforward to show, appears to be new. I term the resulting estimation

procedure ‘pairwise logit’. Pairwise logit is intriguingly similar to the fixed effects conditional

logit estimator for binary choice panel data models (e.g., Chamberlain, 1980). However there

are important differences. For example, the pairwise logit estimate is the minimum of a U-

process, to which standard M-estimation theory does not directly apply.

The pairwise implications of the CS model are interesting for at least three reasons.

First, they highlight that the method interprets local assortativeness as evidence of local

complementarity. Second, they provide a way to estimate the model without aggregate data.

Third, they show that method relies on the same insight which underlies Fox’s (2009a,b)

semiparametric approach: pairwise stability implies that if we draw any two pairs of matches

at random, then switching match partners should not raise welfare.

27The complementarity measure discussed by Galichon and Salanié (2009) and Siow (2009), for example,

is the logarithm of the likelihood ratio measure of dependence (e.g., Lehmann, 1966).
28This interpretation of dependence in the data has obvious pitfalls. A simple example illustrates the

problem. Say agents on both sides of the market are characterized by two binary attributes only the first of

which is observed. These two attributes are positively dependent so that if an agent has the first attribute,

she is more likely to have the second and vice versa. Now say there is complementarity in match output

between the first pair of attributes and substitutability between the second. If the substitutability in the

unobserved agent attribute is strong enough we may observe negative assortative matching on the observed

attribute despite the underlying structural complementarity.
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In addition to its potential empirical applicability, the pairwise logit estimator suggests

natural semiparametric extensions. Section 4.3 explores these extensions under one set of

primitive conditions. The main result is given in Theorem 4.1. The primary contribution of

Theorem 4.1 is to provide a primitive justification for a specific version of the pairwise method

first suggested by Fox (2009a,b). An explicit data generating process, with unobserved

heterogeneity on both sides of the market, is specified from which the identifying population

restriction is formally derived.

The assumption of transferable utility is not tenable in some settings. Some thoughts on

the non-transferable case, as well as a brief survey of existing results, are provided in Section

4.4. Issues of estimation and inference are discussed in Section 4.5.

4.1 A two-sided model of multinomial choice

Consider an assignment where firm  matches with worker . The firm’s profit from such a

match is assumed to be

Π
¡


 
¢
= 

¡



¢
+ 

¡



¢− 

¡
 


¢
 (45)

where  (
) +  (

) is the firm’s match output and E [ ( )] = 0. This output

consists of two parts: (i) a deterministic or average component,  (
), and (ii) a firm-

specific component,  ( 
)  The transfer/wage paid by the firm to the worker is given

by  ( 
). Note that the transfer function,  (

), depends only on observed firm

and worker characteristics. That this is an equilibrium feature of the model will become

apparent below (cf., Galichon and Salanié, 2009).

The effect of  is to generate heterogeneity, across observationally identical firms, in the

incremental return to matching with a type 0 instead of a type  worker:

Π ( 0 )−Π (  ) =  ( 0)−  ( ) + [ ( 0)−  ( )] 

Such heterogeneity ensures that the conditional distribution of observed worker type, given

observed firm type will be non-degenerate in equilibrium (cf., Galichon and Salanié, 2009;

Siow, 2009).

Equation (45) imposes a strong restriction: firm match profits are constant in unobserved

worker characteristics, . Put differently neither firm output, or the wage paid, depends

on the particular worker employed, only her type matters. From the perspective of firms,

workers, conditional on their type, are homogenous inputs or perfectly substitutable. This

assumption will be reasonable in some settings and strain credulity in others. Choo and Siow
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(2006a,b) and, especially, Chiappori, Salanié, and Weiss (2010) and Galichon and Salanié

(2009) discuss this assumption further.

Let τ  = ( ( 1)       ( ))
0
denote the  vector of wages/transfers at which a

type  =  firm can ‘hire’ each of the  types of workers. Firm’s treat these transfers as

fixed when matching. Therefore, under the maintained assumption of profit maximization,

the type of worker hired by firm , , is equal to

 = argmax
∈X

{Π (  )} 

with Π (  ) as defined by (45).

Consider an assignment where worker  matches with firm . The worker’s utility from

such a match is


¡


 
¢
= 

¡



¢
+ 

¡
 


¢
 (46)

where  ( 
) is a utility shifter such that E [ ( )] = 0 Observationally identical

workers may rank the desirability of matching with different types of firms differently. That

is, a worker’s utility is individual-specific, but analogous to firm profits, does not depend on

the specific firm at which she works, only its type.

Let τ  = ( (1 )       ( ))
0
denote the  vector of wages/transfers available to

a worker of type  =  in exchange for matching with each of the  types of firms. Utility

maximization implies that worker  will match with a firm of type

  = argmax
∈W


¡
 

¢
with  ( ) as defined by (46).

Total match surplus () is equal to the sum of (45) and (46),

() = 
¡



¢
+ 

¡
 


¢
+ 

¡
 


¢


which is identical to the restricted match surplus function (20) discussed in Section 3.2

above.29

In the absence of an outside option with exogenously-specified utility (i.e., the ability not

to match), it is clear that an across the board increase or decrease in equilibrium transfers

will leave both firm and worker preferences unchanged. In particular changing transfers to

τ ∗ = τ  +  leaves type  =  firms’ rankings over worker types unchanged. Likewise

29The interpretation of the two sources of unobserved heterogeneity, 
¡



¢
and 

¡
 


¢
, is somewhat

more flexible then suggested by the language adopted here (cf., Chiappori, Salanié, and Weiss, 2010).
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τ ∗ = τ +  leaves type  =  workers’ rankings unchanged. Consequently the equilibrium

transfer vector will be non-unique. Therefore I normalize the first element of τ  and τ  to

zero for all firm and worker types. This generates +−1 non-redundant normalizations.30
Note that the restriction that firms (workers) are indifferent across workers (firms) of the

same type implies that in equilibrium the transfer function will vary with  and  alone.

Firms are unwilling to pay a premium for workers with different realizations of , neither

are they required to compensate workers for variability in their own realization of . This

means that some firms and workers will earn inframarginal rents in equilibrium.

Associated with each firm is a vector of  productivities: one specific to each of the 

types of workers with which it may match. This vector is independently and identically

distributed across firms :

( ( 1)       ( ))
0 ∼  (47)

Consistent with Condition 3.1 this distribution is constant in firm type.

Associated with each worker is a vector of  utility shifters: one specific to each of the

 types of firms with which it may match:

¡

¡
1 


¢
    

¡
  


¢¢0 ∼  (48)

This vector is independently and identically distributed across all workers.

For what follows it will sometimes be convenient, as well as conceptually helpful, to use

the abbreviated notation

(1     )
0 ∼ 

¡


1     




¢0 ∼ 

where  =  ( ) and 

 =  ( 

).

The equilibrium assignment of workers to firms is determined by the interaction of three

primitives of the model: (i) the marginal distributions of firm and worker types, respectively

 = (1    )
0
and  = (1    )

0
, (ii) the distribution functions of the firm productivi-

ties and worker utilities, respectively  and , and (iii) the production function at each

possible ( ) pair δ = (01    
0
)

0
(where  = ( ( 1)       ( ))

0
denotes the

‘deterministic’ component of the  vector of outputs available to a type  firm).

Consider a type  firm facing the wage/transfer vector τ . This vector contains the wage

a type  firm must pay in order to match with each of the  types of workers. The total

30The introduction of an outside option for each firm and worker type (with an exogenously given utility

level), will eliminate this indeterminancy. The parallel with the role of an outside good in discrete choice

models of demand is quite close (e.g., Nevo, 2000).
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demand for matches with type  workers by type  firms is

D = Pr ( = | = ; τ   )×  (49)

The first term in (49) is the conditional probability that a type  firm’s most preferred match

is with a type  worker given the vector of prevailing wages τ . The precise form of this

conditional probability will depend on the joint distribution of unobserved productivities,

. The second term in (49) is the marginal frequency of type  firms in the population.

The product of the two terms gives the total demand for -to- matches.

Now consider a type  worker facing the wage/transfer vector τ . This vector contains

the wages available to a type  worker in exchange for matching with each of the  types of

firms. The total supply of matches with type  firms by type  workers is

S = Pr
¡
  = 

¯̄
 = ; τ  

¢×  (50)

The first term in (50) is the conditional probability that a type  worker’s most preferred

match is with a type  firm given the vector of available wages τ . The second is the marginal

frequency of type  workers in the population. Their product gives the total supply of -to-

matches.

The ( − 1)× (− 1) non-normalized transfers adjust to equate supply and demand for
each of the  ×  types of matches. That is τ

eq
 and τ

eq
 adjust to satisfy

Pr ( = | = ; τ
eq
   )×  = Pr

¡
  = 

¯̄
 = ; τ

eq
  

¢×  (51)

for  = 1     and  = 1      After eliminating the +− 1 redundant conditions, we
are left with ( − 1)× (− 1) equilibrium conditions which pin down the ( − 1)×(− 1)
transfers.

Given the equilibrium transfer vectors, the equilibrium frequency of -to- matches, 
eq
 ,

is given by (49) or (50) after substituting in τ
eq
 or τ

eq
 

4.2 Parametric identification of AREs when match output is unobserved

If  and  belong to a parametric families indexed by parameter , then the analysis of

identification is conceptually straightforward (although, as in single agent multinomial choice

models, the details may be involved). The problem is one of multinomial choice subject to

the ( − 1) × (− 1) market clearing conditions (51). The parametric assumptions on 

and  induce specific functional forms for the conditional choice probabilities (49) and (50).

Fixing  = (δ0 )0 one can therefore use (51) to solve for the set of transfers which will
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clear the market τ (). This vector is then plugged back into the firm’s conditional demand

equation. Finally,  is chosen to align the predicted with the actual match-type ‘market

shares’.

Specifically, let 
 ( τ ) and 


 ( τ ) be the parametric forms for, respectively, type 

firms’ demand for type  workers and type  workers’ supply to type  firms. These forms

are induced by the parametric assumptions on  and  In ‘step 1’ we find, fixing , the

vector of transfers τ () which solve the  = 1    −1 and  = 1     −1 market clearing
conditions


 ( τ ())×  = 

 ( τ ())×  (52)

In ‘step 2’ we choose  such that


 ( τ ())×  =  (53)

for all  = 1     − 1 and  = 1     − 1. Here  denotes the equilibrium or status quo
frequency of -to- matches (I drop the ‘sq’ superscript to simplify the notation).

Under conventional distributional assumptions ‘demand’ 
 ( τ ) will be strictly de-

creasing in ‘price’  and ‘supply’ 

 ( τ ) will be strictly increasing in ‘price’ ; con-

sequently (52) should be straightforward to solve.31 However without additional assump-

tions  is not point identified. Equation (53) provides only ( − 1)× (− 1) equations for
dim () = dim (δ) + dim () =  + dim () unknowns. Point identification requires addi-

tional assumptions. Two basic options are available. First, we might impose extra structure

on the  match-specific surpluses so that δ = δ () for some low dimensional . If the

support points of and
 have a natural ordering then such structure can be quite natural

(e.g., following from smoothness assumptions on  ( )).32 A priori restrictions on  ( )

allow for more flexibility in the specification of the joint distributions of unobserved firm

productivities and worker preferences (i.e., a higher dimensional ). Even if  and  are

known, additional assumptions will be required in order to identify the  match-specific

surpluses δ. One approach, which may be both useful and empirically relevant, is to allow

agents not to match. Introducing an outside option for each firm and worker type, and

normalizing its profit/utility to zero, will sometimes allow for the identification of δ

As an example of a parametric treatment consider the work of Choo and Siow (2006a,b).

They study the model outlined above under the additional assumption that  ( ) and

31Depending on the precise distributional assumptions uniqueness issues could arise. Goeree, Holt and

Palfrey (2005) give examples of distributional assumptions that lead to choice probabilities which are non-

monotone in their indices.
32If  and  are themselves functions of multiple underlying characteristics then separability assump-

tions could also be imposed on  () 
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 ( 
) are independently and identically distributed centered Type I extreme value ran-

dom variables. Galichon and Salanié (2009) relax this assumption by allowing the common

scale parameter for the firm heterogeneity to differ from that associated with the worker

heterogeneity. Adopting this latter formulation assume that

(1     ) =
Y

=1
exp

µ
− exp

µ
− 



¶¶
(54)

(1     ) =
Y

=1
exp

µ
− exp

µ
−


¶¶


Under this assumption McFadden (1974) shows that there exist closed form expressions

for the equilibrium firm demand equations (49) of, letting 
eq
 = 

eq
1 ( ) and  =

 ( ),

1 = 
1

1 +
P

=2

exp
¡
−1 [ − 1 − 

eq
]
¢   = 1 (55)

 = 
exp

¡
−1 [ − 1 − 

eq
 ]
¢

1 +
P

=2

exp
¡
−1 [ − 1 − 

eq
]
¢   = 2      (56)

for  = 1     (recall that 1 = 0 by normalization). Taking logarithms of (55) and (56)

and subtracting then gives

 ln (1) =  − 1 − 
eq
  (57)

Similarly the equilibrium worker supply equations (50) take the form

1 = 
1

1 +
P

=2

exp
¡
−1 [

eq
]
¢   = 1 (58)

 = 
exp

¡
−1 [

eq
 ]
¢

1 +
P

=2

exp
¡
−1 [

eq
]
¢   = 2     (59)

for  = 1      (recall that  1 = 0 by normalization). Taking logarithms of (58) and (59)

and subtracting then gives

 ln (1) = 
eq
  (60)
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Finally, adding (57) and (60) yields (cf., Equation (10) of Choo and Siow (2006a)):

 ln (1) +  ln (1) =  − 1 (61)

Further manipulation then gives (Galichon and Salanié, 2009; Siow, 2009):

ln

µ








¶
=

 −  − [ − ]

 + 
=



 + 
  = 1     − 1  = 1     − 1

(62)

which identifies the average local complementarity (ALC) between  and and  up to

scale Knowledge of  up to scale is sufficient to identify  (
a) up to scale (see Section

3.2).

In the CS model the ( − 1)× (− 1) average local complementarity (ALC) parameters
are parametrically just identified by the ( − 1) × (− 1) non-redundant entries in sq.

Embodied in the setup are a number of strong, a priori, restrictions. To see this consider the

case where  and 
 equal male and female years of completed schooling. Consider a man

with  years of schooling, it seems likely that if his idiosyncratic valuation of women with 

years of schooling,  is above average, then so is his valuation of women with  + 1 years

of schooling, +1. Men who are particularly attracted to college educated women may be

similarly attracted to those with graduate degrees. The CS model rules out such correlations

in unobserved tastes. Furthermore, in the absence of placing additional structure elsewhere,

such correlations are unidentified. Unfortunately, if they are present in the population, the

model will generate poor forecasts of, say, the effect of increasing the fraction of women who

are college graduates on the equilibrium pattern of marriages. The problem is analogous to

McFadden’s (1981) well-known Red bus/Blue bus problem.33

As noted above if δ = δ () for some low dimensional  then it will typically be possible

to make the parametric assumption on  and  less restrictive.
34 Methods refined in

the empirical industrial organization (IO) literature on differentiated product demand may

be helpful in this regard (e.g., Berry, Levinsohn and Pakes, 1995; Nevo, 2000; Ackerberg,

Benkard, Berry and Pakes, 2007). An recent work, Chiappori, Salanie andWeiss (2010), have

emphasized the identifying power of observing multiple markets where (i) the distribution of

agent preferences in the same across markets, but (ii) the distribution of agent types varies.

33In recent, pedagogically-oriented work, Imbens (2007b) has re-cast this as the Chez Panise/Lalime’s

problem. Debreu (1960) is the first published account of this problem.
34Galichon and Salanié (2009) consider restrictions of the form δ = δ (); however they do not use the

resulting extra degrees of freedom to relax the Type I extreme value forms for  and  Instead they use

the extra restrictions for specification testing.
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4.3 Nonparametric identification

Fox (2009a) initiated the study of nonparametric identification in transferable utility match-

ing games when only agent characteristics are observed. In addition to approaching the

problem nonparametrically, his results, unlike Choo and Siow (2006a,b), who work with ag-

gregate ‘market share’ data, rely only on match-level pairwise comparisons. Fox’s (2009a)

theorems require that a ‘rank order property’ hold. This property ensures that, across a pop-

ulation of observationally identical markets, assignments which yield more surplus when the

stochastic component of match surplus is ignored will be more frequently observed. While

this assumption is intuitive, and analogous to those underlying single agent discrete choice

models, Fox (2009a) notes that it is difficult to write down data generating processes under

which it holds.

A virtue of Choo and Siow’s (2006a,b) likelihood-based approach is its complete specifica-

tion of the data generating process. Unfortunately its heavy reliance on the conditional logit

model is unattractive. The discussion in Section 4 clarifies that the CS model is perhaps best

viewed as particular specification of a two-sided multinomial discrete choice problem subject

to market clearing conditions. Manski (1975) demonstrated semiparametric identification

of a single agent multinomial choice model and proposed an associated ‘maximum score’

estimator (see also Lee, 1995; Matzkin, 2007; Powell and Ruud, 2008). The discrete-choice

structure of the CS model suggests that it too may have semiparametric analog.

To explore this possibility this section begins by developing some ‘pairwise implications’

of the CS model. This leads naturally to a semiparametric approach based on pairwise

comparisons similar to those first suggested by Fox (2009a). The valued-added here, relative

to Fox (2009a), is in providing a primitive justification for these comparisons. A limitation is

that this justification hinges on agent characteristics being discretely-valued (which allows me

to adopt a two-sided multinomial modelling approach). In contrast Fox (2009a), under the

maintained rank order property, can accommodate continuously-valued agent characteristics.

Fox (2009a) is also able to accommodate situations where matching is many-to-many.

4.3.1 Pairwise logit identification

Consider the subpopulation of type  and  firms that choose to match with either type 

or  workers. Likewise consider the subpopulation of type  and  workers that choose to

match with either type  or  firms. This defines a conditional analog of the simple 2× 2
assignment problem discussed above. Consider two matches, say match  and match , which
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W\X  =   = 
 =    −  

 =  −  1−  −  +  1− 

 1− 

Table 3: The set of feasible klmn sub-allocations

are independent random draws from a population of equilibrium matches. Let


 = 1 ( ∈ { })1 ( ∈ { })1 ( ∈ { })1 ( ∈ { })  (63)

be a binary indicator for the event that both matches belong to the  sub-allocation

(i.e., belong to the set of -to-, -to-, -to- and -to- matches). There are a total

of  =

µ


2

¶
×
µ


2

¶
such sub-allocations.35 Each randomly sampled pair of matches will

belong to at least one sub-allocation. If  6= and  6= , an event I will condition on

below, then they will belong to a unique sub-allocation.

We can imagine locally reallocating workers across firms within the  sub-allocation

of matches. If we normalize

 =


 +  +  + 

(64)

 =
 + 

 +  +  + 

 =
 + 

 +  +  + 



then the set of feasible sub-reallocations is summarized in Table 3. The  sub-allocation

may be made more assortative by increasing  and less so by decreasing it.

Now, for randomly sampled matches  and , define

 =  {( −) ( −)}  (65)

If match  and  are assortatively paired, consisting of, for example, one ( ) and one ()

match, then  = 1 If, in contrast, the two matches are ‘integrated’ or anti-assortatively

paired, consisting of, for example, one ( ) and one ( ) match, then  = −1 If either
firm or worker type (or both) are the same across the two drawn matches then  = 0.

In such cases a switch of workers by the two firms would leave the joint distribution of

( ) unchanged. This case corresponds to sampling matches which belong to multiple

35Note that this definition allows two sub-allocations to be over-lapping. For example the  and

 sub-allocations overlap.
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sub-allocations. The above discussion assumes, as is conventional, that the support points

of  and  are ordered in increasing magnitude.

Consider the probability of drawing an assortatively matched pair conditional on (i) the

draw being either assortative or anti-assortative and (ii) the pair belonging to the 

sub-allocation. By the definition of conditional probability we have

Pr
¡
 = 1| ∈ {−1 1}  

 = 1
¢

=


¡
1−  −  + 

¢
 (1−  −  + ) + ( − ) ( − )



By equation (62) above the right-hand-side of this expression, under the maintained assump-

tions of the CS model, is

Pr
¡
 = 1| ∈ {−1 1}  

 = 1
¢
=

exp
³
−−(−)

+

´
1 + exp

³
−−(−)

+

´ 
Recall that  =  −  − ( − ) equals average local complementarity (ALC) in

the  sub-allocation. Let A be the  × 1 vector of all sub-allocation indicators and 

the corresponding set of average local complementarities. We have shown

Pr ( = 1| ∈ {−1 1} A) =
exp

¡
( + )

−1
A0


¢

1 + exp
¡
( + )

−1
A0


¢  (66)

Equation (66) has the form a two-period panel data conditional logit probability (e.g., Cham-

berlain, 1980). This is a consequence of its pairwise formulation and event conditioning (i.e.,

discarding  = 0 draws). Insights from the panel data literature on discrete choice will

prove useful below (Manski, 1987; Chamberlain, 2010).

Galichon and Salanié (2009) propose the following parameterization of the average match

surplus function

 ( ) =  () +  () +  ( )
0
 (67)

for  ( ) a known low dimension vector of basis functions and  () and  () arbitrary.36

Define

 =  ( )−  ( )− [ ( )−  ( )] 

and let M be the matrix composed of  rows of the form 0
. This gives  =M and

36There is a close connection between (67) and models used to parameterize  ×  ordinal contingency

tables (e.g., Goodman, 1979).
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hence

Pr ( = 1| ∈ {−1 1} A) =
exp

¡
( + )

−1
A0

M
¢

1 + exp
¡
( + )

−1
A0

M
¢ 

Now, imposing the scale normalization  +  = 1, consider the the criterion function

 () =

X
=1

X


||
©
A

0
M − ln £1 + exp ¡A0

M
¢¤ª

 (68)

Assuming that in the population   0 for all  and  the minimizer of (68), the pairwise

logit estimate b, will be consistent for . This estimate is the minimizer of a second order
U-Statistic. This class of estimators was introduced by Huber (1964). Honoré and Powell

(1998) provide distribution theory for minimizers of U-processes.37 The sampling properties

of the minimizer of (68) are outlined in Section 4.5 below.

4.3.2 Nonparametric identification in a 2 x 2 matching market

This section demonstrates that the sign of  is identified in semiparametric analog of the

CS model. Fox (2009a,b) also shows that the sign of local complementarity is identified, but

under non-primitive assumptions about the data generating process. The derivation given

below provides a primitive justification of Fox’s (2009a,b) approach.

To keep the analysis simple initially consider a market with just two types of firms and

two types of workers (i.e.,  ∈ { } and  ∈ { }). This allows a demonstration
of identification that formally resembles Manski’s (1987) extension of maximum score to two

period binary choice panel data models.

As in Section 4 firm profits are given by

Π
¡


 
¢
= 

¡



¢
+ 

¡
 


¢− 

¡
 


¢

and worker utility by


¡


 
¢
= 

¡



¢
+ 

¡
 


¢


There are four types of matches in a 2 × 2 market. To show identification it suffices to
consider just two of them. Consider first matches between =  firms and type 

 = 

workers. Firms in such matches, at the equilibrium vector of transfers, prefer type  to

37Honoré and Powell (2005) characterize the large sample properties of minimizers of kernel weighted

U-statistics. In the statistics literature Bose (1998, 2002) studies the asymptotic properties of U-statistic

minimizers.

56



type  workers. This generates the inequality, first recalling the notation  =  ( ),

 =  ( ),  =  ( ) and 

 =  ( 

) 

 −  +  ≥  −  +  (69)

The left-hand-side equals firm profits when matched with a type  worker, the right-hand-

side profits when matched with a type  worker. Rearranging yields the equivalent expression

 −  ≤  −  − ( − ) 

which says that a firm chooses a type  worker if the systematic ‘gains’,  −  −
( − ), exceed the idiosyncratic ‘losses’, −, from doing so. Since transfers adjust

such that all type  firms who prefer type  workers may match with one in equilibrium we

have

− ( −  − ( − )) =  (70)

with − (·) the (unknown) distribution of  −  and  the fraction of type 

firms matching with type  workers in equilibrium.

Now consider the opposite side of the market. For type  workers who choose to match

with type  firms we must have

 + () ≥  + 
()

 

so that

− ( − ) =  (71)

with − (·) the (unknown) distribution of  −  and  the fraction of type 

workers matching with type  firms in equilibrium.

Now consider type  firms who choose to match with type  workers. For such firms we

have

 −  +  ≥  −  + 

so that

1− − ( −  − ( − )) =  (72)

Finally for type  workers who choose to match with type  firms we have

 + 
()

 ≥  + () 
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so that

1− − ( − ) =  (73)

Assume that both − (·) and − (·) are strictly increasing on the entire real line
with continuous, bounded derivatives. Subtracting the sum of the inverses of (72) and (73)

from the sum of the inverses of (70) and (71) yields.

−1−

µ
1−  −  + 

1− 

¶
+ −1−

µ
1−  −  + 

1− 

¶
(74)

−−1−

µ
 − 



¶
− −1−

µ
 − 



¶
=  −  − ( − ) 

where the feasibility conditions  = 1−   = 1−  and  = 1−  −  +  are also

substituted in.

Equation (74) shows that the average local complementarity parameter  =  −
− ( − ) can be written in terms of the observed allocation and the unobserved het-

erogeneity distribution functions. Under the extreme value assumption of Section 4 equation

(74) is equivalent to the complementarity measure derived by Galichon and Salanié (2009)

and Siow (2009) (see (62) above).

Observe that if  =  the left-hand-side of (74) evaluates to

−1− (1− ) + −1− (1− )− −1− (1− )− −1− (1− ) = 0

If the status quo allocation is the random allocation we may conclude that  = 0.

Differentiating with respect to  yields

1

−
³
1−−+

1−

´ 1

1− 
+

1

−

³
1−−+

1−

´ 1

1− 

+
1

−
³
−


´ 1

+

1

−

³
−


´ 1


 0

So that if    we may conclude that   0 and if    we can conclude the

opposite. Summarizing we have

 { − } =  {}  (75)

so that assortativeness implies complementarity and mixing implies substitutability.

Now consider the median of  conditional on it equalling 1 or −1. Since  always
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equals 1 or −1 its median is necessarily one or the other with

 (| ∈ {−1 1}) = 1⇔ (1−  −  + )   (1− ) (1− )

 (| ∈ {−1 1}) = −1⇔ (1−  −  + )   (1− ) (1− ) 

Since (1−  −  + )   (1− ) (1− )⇔    we have therefore have

 (| ∈ {−1 1}) =  () 

4.3.3 Nonparametric identification in a K x L matching market

Generalizing the argument outlined above to general  ×  matching markets requires im-

posing additional structure on the distributions of firm and worker heterogeneity. Theorem

4.1 provides a formal result based on one sufficient set of conditions. The proof shows how

monotonicity of the firm demand and worker supply probabilities in their indexes, com-

bined with the assumption that the matching market clears, delivers a conditional quantile

restriction that can be used to identify the sign of .

Theorem 4.1 (Semiparametric Identification)

Consider the two-sided multinomial discrete choice model described in Section 4.1 with firm

profits given by (45) and worker utilities by (46). If

(i)  is known for all  = 1     and  = 1     

(ii)  =  implies that Π (  ) ≥ Π (  ) for all  = 1      and   = 

implies that  (
 ) ≥  ( 

 ) for all  = 1    ,

(iii) at the equilibrium wage schedule all firms hire their preferred type of worker, and all

workers are employed by their preferred firm type,

(iv) (1     |) =
Q
=1

 ()  (

1     




¯̄
) =

Q
=1



¡




¢
, and

(v)  () and 

¡




¢
are strictly increasing on the entire real line, with bounded, continuous

derivatives, then the sign of average local complementarity (ALC)

 =  −  − ( − )

is identified, for   and  as defined in (64) above, by


©
 − 

ª
=  {} 

for all  (with  6= ) and all   (with  6= ).
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Proof. The proof consists of four parts. First, following Manski (1975), I use (iv) and (v) to show

monotonicity of the choice probabilities in the deterministic firm and worker payoffs (so that if, for example,

 −    − , then Pr ( = | = )  Pr ( = | = )). Second, following Fox

(2009c), I show that monotonicity holds within subsets. Parts one and two of the proof are entirely standard

and included only for completeness. Let − ( ·| =  ∈ { }) be the distribution function for
 −  in the subpopulation of type  firms who choose to match with either type  or  workers in

equilibrium and let − ( ·| =  ∈ { }) be the same function for type  firms. The third part
of the proof uses monotonicity and market clearing (iii) to show that − ( ·| =  ∈ { }) and
− ( ·| =  ∈ { }) cross just once and at that this point of crossing is their 1− quantile

( is defined by (64) above). Finally, this conditional quantile restriction is then used to show the main

result in an adaptation of the simple argument developed for the 2× 2 case in the previous section.
Part 1: The conditional probability that a type  firm chooses a type  worker is, using (ii) and (iv), given

by

Pr ( = | = ) = Pr ( −    −  − ( − )   = 1       6= )

=

∞Z
−∞

Y
=16=

 ( +  −  − ( − ))  () d

so that for all  6= 

Pr ( = | = )− Pr ( = | = ) =

∞Z
−∞

⎡⎣ Y
=16=

 (+  −  − ( − ))

−
Y

=16=
 (+  −  − ( − ))

⎤⎦  () d
This gives, using (v),

Pr ( = | = ) T Pr ( = | = ) (76)

according to whether

 −  − ( − ) T 0

Part 2: Dividing both sides of (76) by Pr ( = | = ) + Pr ( = | = ) does not change

the inequality that so that by the definition of a conditional probability we have

Pr ( = | =  ∈ { }) T Pr ( = | =  ∈ { })

60



according to whether  −  − ( − ) T 0 Replicating the above arguments also gives

Pr
¡
  = 

¯̄
 = 

 ∈ { }
¢
T Pr

¡
  = 

¯̄
 = 

 ∈ { }
¢

according to whether  −  T 0
Part 3: Note that

Pr ( = | =  ∈ { }) = − ( −  − ( − )| =  ∈ { })
Pr ( = | =  ∈ { }) = − ( −  − ( − )| =  ∈ { })

Conditional monotonicity implies that these two CDFs cross just once. Furthermore, market clearing, or

hypothesis (iii), implies the sub-allocation feasibility condition:

¡
1− 

¢
− ( −  − ( − )| =  ∈ { })

+ − ( −  − ( − )| =  ∈ { }) = 1− 

That is, within the  suballocation, the ‘demand’ for matches with type  workers equals the available

‘supply’. This gives the conditional quantile restriction

−1−
¡
1− 

¯̄
 =  ∈ { }

¢
= −1−

¡
1− 

¯̄
 =  ∈ { }

¢
 (77)

A parallel argument gives

−1−
¡
1− 

¯̄
 = 

 ∈ { }
¢
= −1−

¡
1− 

¯̄
 = 

 ∈ { }
¢
 (78)

Part 4: Inverting the conditional ‘demands’ and ‘supplies’ yields

−1−

µ
1−  −  + 

1− 

¯̄̄̄
 =  ∈ { }

¶
=  −  − ( − )

−1−

µ
1−  −  + 

1− 

¯̄̄̄
 = 

 ∈ { }
¶

=  − 

−1−

µ
 − 



¯̄̄̄
 =  ∈ { }

¶
=  −  − ( − )

−1−

µ
 − 



¯̄̄̄
 = 

 ∈ { }
¶

=  − 

Following the derivation beginning with Equation (74) in the discussion of the 2× 2 case gives the result.
The assumption of independence across the elements of (1     ) and (1     )

could be relaxed to exchangeability (cf., Goeree, Holt and Palfrey, 2005; Fox, 2009c).
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The conclusion of Theorem 4.1 is a discrete analog of Fox’s (2009a, Theorem 5.1) derivative-

based approach to identifying local complementarity for continuously-valued inputs. The

underlying intuition behind the two results coincide: assortativeness suggests complemen-

tarity. The value-added of Theorem 4.1 is that it is an implication of an explicitly specified

data generating process, whereas Fox’s (2009a) result is not primitively justified.

The availability of a large number of each type of firm and worker is essential for the

conclusion of Theorem 4.1. Market thickness ensures that equilibrium transfers depend only

on firm and worker types. This allows the econometrician to construct functions of the data

that are invariant to these transfers. Identification requires the observation of only a single

market. In contrast, Fox (2009a) formally considers identification in a population of many

small markets. If markets are truly small, with only a few agents on each side, one can,

using the linear programming representation of the equilibrium matching and a parametric

specification of  and , write down a likelihood for the market-level assignment (cf., Fox,

2009b). When markets are medium-sized this approach is less tractable numerically. In such

situations the large market result of Theorem 4.1 may be an useful approximation.

Theorem 4.1 generates, recalling the definitions of  A and  given in the discussion

of pairwise logit above, the following conditional median restriction

 (| ∈ {−1 1} A) = 
¡
A0


¢
 (79)

Note that (79) has the form of the conditional median restriction derived by Manski (1987)

in the context of a two period binary choice panel data model. In the absence of additional

structure only the signs of the ALC parameters are identified. This loss of point identifi-

cation relative to the pairwise logit case is intriguingly analogous to Chamberlain’s (2010)

identification analysis for binary choice panel data.

If we assume that  = M then (79) suggests choosing b to maximize the rank

correlation criterion suggested by Han (1987):

 () =

X
=1

X



¡
A0

M
¢
 (80)

This criterion was first advocated by Fox (2009a,b) and Fox and Bajari (2009) in the matching

context.

Since A0
M is discretely-valued b will be set-valued and this will remain true as 

grows large. Consequently  is only set identified, however if its dimension is small relative

to , then the identified set may be quite small (see Cavanagh and Sherman, 1995, Section

5).
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4.4 Identification in one-to-one matching markets without transfers

In some contexts it may be difficult for match partners to make transfers to one another.

For example the institutional structure of the teacher labor market in New York limits

the amount of variation in wages across schools (Loeb, Boyd, Lanford and Wyckoff, 2003).

Theorists, starting with the seminal paper by Gale and Shapley (1962), have extensively

studied two-sided matching problems without transfers (e.g., Roth and Sotomayor, 1990).

Little econometric work on these models has been undertaken.

In a change of notation assume that firm utility is given by


¡


 
¢
= 

¡
 


¢
+ 

¡
 


¢


and worker utility by


¡
 

 
¢
= 

¡
 


¢
+ 

¡
 


¢


Consider two matches,  and , that are assortatively configured. That is matches 

and  consist of, respectively type  and 0 firms and  and 0 workers with   0 and

  0. For this configuration to be stable we require that either the firm in match 

or the worker in match  (or both) prefer the status quo (i.e.,  (  )   ( 0 )

and/or  (0 0 )   ( 0 )). If this were not the case then this pair could block the

assignment by leaving their partners and forming a new match. Similarly stability requires

that either the worker in match  or the firm in match  (or both) prefer the status quo (i.e.,

 (0 0 )   (0  ) and/or  (  )   (0  )).38

These stability conditions, which rule out so called blocking pairs, are considerably more

complicated than those needed when utility is transferable. One implication of the absence of

transfers is that the relationship between complementarity and assortativeness is weakened

(cf., Becker and Murphy, 2000). Consider the case where  ( ) =  () +  () and

 ( ) =  () +  () such that there is no complementarity. If  (
0)   () and

 (
0)   () agents will nevertheless assortatively match (assuming, as maintained

above, that  ( 
0) and  ( ) are identically distributed and similarly for  (

0 ) and

 ( )).

When agents make transfers to one another the equilibrium assignment is (i) generi-

cally unique and (ii) surplus maximizing.39 In the absence of transfers neither of these two

38Stability also requires that each matched agent prefer their assignment to the always available alternative

of not matching at all. For simplicity assume that this condition holds in what follows.
39If externalities are present, as in Baccara, Imrohoroglu, Wilson and Yariv (2009), then multiple equilibria

are possible even when transfers between agents are allowed.

63



conditions typically holds. Multiplicity of equilibria complicate empirical modelling. These

considerations suggests that the recovery of agent preferences from match characteristics

alone is likely to be even more difficult than in the case with transfers.

While identification in two-sided matching problems without transfers has not been for-

mally studied, several papers have implemented different estimation procedures. These pa-

pers make various simplifying assumptions. Loeb, Boyd, Lankford and Wyckoff (2003) rule

out multiplicity by assuming the status quo assignment is the product of the Gale and

Shapley (1962) deferred acceptance algorithm (with firms proposing). Gordon and Knight

(2009), in contrast, restrict preferences to ensure uniqueness. Sørensen (2007) and Logan,

Hoff and Newton (2008) use Bayesian methods. The latter paper attempts to sidestep the

issue of multiplicity by choosing the distribution of firm and worker utilities to maximize the

probability that the observed assignment is stable. Unfortunately it seems likely that ‘the’

maximizing distribution of preferences is not unique, particularly if the matching market is

small.

4.5 Estimation on the basis of match characteristics alone

Variants of the simple two-sided conditional logit model outlined in Section 4.2 underlie a

growing body of empirical work. In an early application Dagsvik, Brunborg and Flaaten

(2001) fit the model with population register data from Norway. Their point estimates

suggest substantial decline in the net returns to marriage over the 1986 to 1994 period.

Chiappori, Salanié and Weiss (2010) use another variant of the model to study changes in

the ‘returns’ to education on the U.S. marriage market since the 1970s. Siow (2008) studies

the effects of sex ratio imbalances generated by a famine associated with the ‘Great Leap

Forward’ on the marriage market in Sichuan, China.

These applications notwithstanding, a systematic approach to inference in the CS model

has yet to be developed. Fortunately the close connection between the model and a  × 

contingency table, suggests that the development of the required estimation and inference

theory is likely to be straightforward. Indeed some of the required results are provided in

Siow (2009) and Galichon and Salanié (2009). Some additional results, based on its pairwise

logit representation, are given below.

When firm and worker preferences are not parametrically specified an estimator based

on Theorem 4.1 can be used. This leads to a simple rank regression estimator. The as-

ymptotic properties of rank regression are well-known (Han, 1987; Cavanagh and Sherman,

1995). The lack of point identification in the matching context results in some inferential

challenges. These may be solved using methods recently developed for models defined by

moment inequalities (e.g., Rosen, 2008; Andrews and Soares, 2010; Romano and Shaikh,
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2010).

4.5.1 Testing for supermodularity

Siow (2009) exploits methods developed for contingency table analysis to test for super-

modularity of the match surplus function. Assessing this hypothesis has been a focus of

empirical research since Becker (1973). Equation (62) shows that the two-sided conditional

logit model equates average local complementarity (ALC) with local dependence as measured

by the local log-odds ratio:

ln

µ
+1+1

+1



+1

¶
=

+1+1 − +1 − [+1 − ]

 + 
  = 1     − 1  = 1     − 1

Positivity of all ( − 1) (− 1) of these local log odds ratios implies that  ( ) exhibits
‘increasing differences’ or is supermodular (Topkis, 1998). Assessing the supermodularity

hypothesis therefore corresponds to a multivariate one-sided testing problem of the type

first studied by Kudo (1963).40 The supermodularity null corresponds to

0 : +1+1 − +1 − [+1 − ]  0  = 1     − 1  = 1     − 1

with the alternative that the inequality is weak or reversed for at least one  and  pair. Siow

(2009) notes that this null is formally equivalent to testing whether a  ×  contingency

table is totally positive of order 2 (TP2) (cf., Douglas et al. 1990):

0 : ln (+1+1)− ln (+1)− [ln (+1)− ln ()]  0  = 1     − 1  = 1     − 1
(81)

Siow (2009) conceptualizes his data as a  draw random draws from a multinomial

population with the probabilities for each match type given by the × assignment matrix

 introduced in Section 3.1 above. This allows him to form a likelihood ratio statistic

for the supermodularity null. Unfortunately the sampling distribution of this statistic is not

2 (it follows a ‘chi-bar-square’ distribution). Dardanoni and Forcina (1998) describe how

to compute critical values.

4.5.2 Parametric modeling of average match surplus

Recall the  =M parameterization for the ALC terms proposed by Galichon and Salanié

(2009) and discussed in Section 4.3 above. From (62) we have, after imposing the scale

40The Silvapulle and Sen (2005) monograph summarizes the extensive statistics literature on this, and

related, testing problems.
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normalization  +  = 1, the equality

ln

µ








¶
= 

The left-hand-side of this expression is consistently estimable from a random sample of

matches (with a asymptotic sampling variance that is also consistently estimable). Galichon

and Salanié (2009) then suggest estimating the structural parameters  in a second step by

minimum distance (e.g., Chamberlain 1982, 1984).41 To be precise let b be vector of all
estimated local odds ratios and b an estimate of their asymptotic sampling variance. An

efficient minimum distance estimator is

b = argmin


³b−
´0 b −1 ³b−

´
=
³
 0b −1´−1 ³ 0b −1b´ 

4.5.3 Pairwise logit estimation

An alternative to minimum distance estimation is the pairwise logit procedure introduced

in Section 4.3. The ‘one step’ nature of the pairwise logit procedure is attractive, as is its

direct connection to the pairwise stability concept emphasized by Fox (2009a,b). In very

large datasets, however, the minimum distance approach may be preferable for computa-

tional reasons (since it requires no nonlinear optimization). A comparison of the asymptotic

properties of the two procedures is beyond the scope of this chapter.

Recall the suggested criterion function

 () =
2

 ( − 1)
X
=1

X


||
©
A

0
 − ln £1 + exp ¡A0


¢¤ª

 (82)

Let

 ( 0) = E

"
|| 0A

(
1 ( = 1)−

exp
¡
A0

0
¢

1 + exp
¡
A0

0
¢)¯̄̄̄¯ 

#


with Ω0 = E
£
 ( 0)  ( 0)

0¤
and

Γ0 = lim
→∞

 0
(

2

 ( − 1)
X
=1

X


||
exp

¡
A0

0
¢£

1 + exp
¡
A0

0
¢¤2AA

0


)


The results of Honoré and Powell (1998, 2005) yield a large sample distribution for the

41Section 5.2 of their paper also introduces an alternative moment matching estimator.
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minimizer of (82) equal to

√

³b − 0

´
→  (0Λ0)  Λ0 = 4Γ

−1
0 Ω0Γ

−1
0  (83)

This limiting variance may be estimated by bΛ = 4bΓ−1bΩbΓ−1 with
bΩ = 1



X
=1



³
 b´  ³ b´0 
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 ( ) = 0
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1

 − 1
X

=1 6=
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(
1 ( = 1)−

exp
¡
A0


¢

1 + exp
¡
A0


¢)) 

and

bΓ = − 0

⎧⎪⎨⎪⎩ 2

 ( − 1)
X
=1

X


||
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³
A0


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
b´i2AA
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⎫⎪⎬⎪⎭

Formulating primitive regularity conditions under which (83) holds is beyond the scope

of this chapter. However to get a feel for the small sample properties of the method Tables

4 and 5 summarize the results of a simple Monte Carlo experiment. I consider two designs.

In both cases  =  = 3. In the first design the ALCs take the form

 = 1 ( − ) ( − ) 

with 1 = 1. This implies that  ( ) is supermodular. As a result the equilibrium

assignment, reported in Panel B of Table 4, is highly assortative.

In the second design I set

 = 1 ( − ) ( − )

+ 2 {1 ( = 3  = 3)− 1 ( = 3  = 3)

− [1 ( = 3  = 3)− 1 ( = 3  = 3)]} 

with 1 = 1 and 2 = −2. This induces a more complicated equilibrium assignment. The

upper-left-hand 2 × 2 portion of the assignment matrix is assortatively matched, while the
lower-right-hand 2×2 portion is anti-assortatively matched. Other features of the two designs
are summarized in Panel A of Table 4.
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Table 4: Pairwise logit Monte Carlo designs

Panel A: Parameterizations of Monte Carlo Designs

 ()  ()  ( ) 2 ( ) 1 2 (1 2 3) (1 2 3)

Design 1    ·  − 1 − (13 13 13) (13 13 13)

Design 2    ·  1( = 3  = 3) 1 −2 (13 13 13) (13 13 13)

Panel B: Average Match Surplus & Equilibrium Assignment

Design 1

Average Match Surplus Equilibrium Assignment

\ 1 2 3 \ 1 2 3

1 3 5 7 1 0205 0100 0028

2 5 8 11 2 0100 0133 0100

3 7 11 15 3 0028 0100 0205

Design 2

Average Match Surplus Equilibrium Assignment

\ 1 2 3 \ 1 2 3

1 1 2 3 1 0198 0080 0055

2 2 4 5 2 0080 0088 0165

3 3 6 7 3 0055 0165 0113

NOTES: Panel A summarizes the two data generating processes. Panel B reports the average match surplus for each  and  combination as well

as the equilibrium assignment, 
sq
  The equilibrium assignments were computed using the algorithm given in Section 6 of Galichon and Salanié

(2009). These allocations are then checked against equation (62) above.
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Table 5: Monte Carlo results for Pairwise Logit estimator

(1)

Meanb()
(2)

Medianb()
(3)

Std. Dev.b()
(4)

Mean

(b())
(5)

Median

(b())
(6)

Coverage

(nom. 0.95)

Design 1

1 (= 1) 0.998 0.998 0.0667 0.0669 0.0667 0.9480

Design 2

1 (= 1) 1.002 1.001 0.0723 0.0753 0.0751 0.958

2 (= −2) -2.002 -2.010 0.1939 0.2002 0.2001 0.956

NOTES: Monte Carlo results based on 1,000 samples of size  = 1 000 drawn from the two equilibrium

assignment listed in Table 4. Columns 1 through 3 report the mean, median and standard deviation of b()
across the Monte Carlo replications. Columns 4 and 5 report the mean and median estimated asymptotic

standard error of b(). Column 6 reports the actual coverage of an asymptotic 95 percent confidence interval.
For both designs I draw 1000 samples of 1000 matches each from the equilibrium as-

signment distributions. For each draw I estimate  by pairwise logit, form an estimated

standard error, and a 95 percent asymptotic confidence interval. Table 5 summarizes the

results. Across both designs the pairwise logit estimates are, up to simulation error, mean

and median unbiased. Their Monte Carlo sampling distributions are also well-approximated

by the asymptotic distribution theory sketched above.

4.5.4 Pairwise maximum score estimation

Fox (2009b) studies semiparametric estimation of matching models. His criterion function is

similar to the one suggested by Theorem 4.1 above. While set identification is not generic in

his set-up, it can occur. For this reason he recommends the use of subsampling methods for

conducting inference (e.g., Delgado, Rodríguez-Poo and Wolf, 2001; Romano and Shaikh,

2010). Fox and Bajari (2009) provide an empirical illustration.

5 Segregation in the presence of social spillovers

Debates about the social costs and benefits of ‘segregation’ are present in many areas of

social policy. As a famous example consider the effect of racial segregation in schools on

academic achievement. Coleman et al. (1966), in research which helped initiate widespread

court-ordered desegregation in the 1970s, argued that racial isolation lowered the academic

achievement of black students. Despite the substantial body of subsequent social science

research, there remains widespread disagreement about the effects of segregation in schools.

The absence of a consensus opinion among social scientists is, at least partially, due to
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methodological difficulties (Schofield, 1995).

This section outlines a framework for measuring the ‘equity and efficiency’ implications

of segregation in the presence of social spillovers based on Graham, Imbens and Ridder

(2009b). The applied theory literature on segregation in the presence of social spillovers

is rich (see the Epple and Romano chapter in this Handbook for a review). As in other

successful applications of economic theory to real world problems, much of this work is

highly stylized. For example Benabou (1996) models agents as binary-typed but otherwise

identical (cf., Becker and Murphy, 2000). While the resulting analysis is insightful and

elegant, in particular allowing for a sharp characterization of the laissez faire assignment

against which the planner’s solution may be compared, it is not obvious how to empirically

evaluate it.

Section 5.1 extends the basic set-up employed by Benabou (1996) to include unobserved

individual- and neighborhood-level heterogeneity. Sections 5.2 and 5.3 then outline two sets

of estimands. The first measure the effects of global reallocations. The second measure the

effects of reallocations which only slightly perturb the status quo. Some parametric examples

are explored in Section 5.4.

5.1 Population setup

Consider a population of individuals (‘students’) indexed by  ∈  Individuals are binary-

typed,  ∈ {0 1}, and heterogenous in unobserved ability,  As in Section 2 I maintain

an inclusive definition of type such that  and  are independent. A second population of

locations (‘classrooms’) indexed by  ∈  also exists. These locations are where reference

groups ‘reside’. Locations are also heterogenous with their unobserved quality given by .

For example, teacher quality might vary across classrooms.

Let  =  if individual  is assigned to location . To avoid double-subscripting let, in

an abuse of notation,  = 
denote the quality of individual ’s location of residence. The

assignment vector G = (1     )
0
completely summarizes the population assignment of

individuals to groups. An individual’s peer or reference group consists of all other individuals

who reside in her location or the index set:

 () = { :  =   6= } 

An individual’s overall neighborhood environment is completely characterized by (i) the

types and abilities of her peers and (ii) her location’s quality. Let  () ()be the vectors

of individual 0s peers’ types and abilities. Without loss of generality assume that peers are

sorted such that low types come first, followed by high types, so that () =
¡

() 


()

¢
,
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with 
() the ability vector for 

0s low type peers and 
() for her high type peers. Collecting

terms let  =
¡
 () () 

¢
be an individual’s overall ‘neighborhood quality’. Observe

that there are two sources of variation in unobserved neighborhood quality: (i) that due to

variation in the ability structure of peers and (ii) that due to variation in location-specific

characteristics.

Graham, Imbens and Ridder (2009b) posit the existence of an individual-specific alloca-

tion response function

(g) g ∈ G (84)

where G denotes the set of all feasible assignments; (g) gives the potential outcome for
individual  associated with allocation g ∈ G Let G denote the observed assignment, then

the observed outcome  coincides with (G) To make further progress Graham, Imbens

and Ridder (2009b) impose two additional restrictions on (g). First they rule out spillovers

across groups. Second they assume peers of the same type are exchangeable within groups

(i.e., equally influential).

The first assumption implies that if the two assignments g and eg are such that  = e
then (g) = (eg). This implies that the allocation response function varies with  alone:

(g) = () = 
¡
() () 

¢
 (85)

The second assumption implies that

() = 
¡
− 

¡
()

¢
 

¡
()

¢
 
¢
 (86)

where  =  +  is total group size, − = 1
−1

P
∈()  is the fraction of high type

peers, 

³
()

´
is the vector of the first  elementary symmetric polynomials on (),

and 

³
()

´
is defined analogously.42

Equation (86) indicates the allocation response is an individual-specific function of peers’

types, peers’ abilities and location quality. There are three distinct sources of unobserved

heterogeneity in this setup: (i) own ability, (ii) peers’ ability and (iii) locational quality.

This heterogeneity arises from two distinct populations: that of individuals and that of loca-

tions. This represents a substantial complication over a conventional single agent econometric

model. Identification arguments in such a setting will necessarily involve restrictions on the

conditional distribution of the three sources of unobserved heterogeneity given observables.

To keep what follows simple I will assume a version of double randomization holds. To

understand the required condition consider a social planner who must assign individuals to

42Allowing for multiple group-sizes is straightforward but ignored here in order to keep the notation simple.
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locations. Assignment is done on the basis of the individual-level binary characteristic. No

additional individual- or location-level characteristics are used by the planner. For simplicity

assume that each location accommodates the same number of individuals. Since the planner

only acts on knowledge of  we may assume that each high type individual in a group is an

independent random draw from the subpopulation of high types (and likewise for low types).

Groups, so formed, are randomly assigned to a location.

Under a doubly randomized assignment mechanism individual ’s expected outcome given

assignment to a group where − of her peers’ are high types is

 e
 (−) =

Z ⎡⎣Z   

Z

¡
− 

¡
()

¢
 

¡
()

¢
 
¢ Y
∈()

 () d

⎤⎦  () d
(87)

Note that  e
 (−) is an expectation over a product of marginals. This is because double

randomization ensures independence between own and peer ability and own ability and

location quality. Loosely speaking it rules out ‘sorting’ and ‘matching’ on unobservables. If

the planner is constrained, either informationally or institutionally, to implement only double

randomized allocations, then she only requires knowledge of the distribution of  e
 (−) 

Restricting counterfactual assignments to be doubly randomized is reasonable; an econo-

metrician cannot do social planning calculations if knowledge of individual ability and/or

location quality is required. Assuming the status quo assignment is doubly randomized is

harder to motivate (outside of the important special case of experimental settings). Much of

what follows can be extended to settings where double randomization does not hold, at least

if auxiliary restrictions on the production technology are also imposed. These extensions

are important for empirical work, but substantially complicate both the notation and analy-

sis (see Graham, Imbens and Ridder, 2009b). Here I wish to focus on a more basic issue:

that of measurement. In particular how one can define estimands that give statistical con-

tent to the various ‘equity versus efficiency’ questions that typically arise when considering

desegregation policies?

5.2 Global reallocations: the social planner’s problem

Let  () denote the expected outcome for a high type individual in a group with compo-

sition , when groups are formed according to the doubly randomized mechanism. Let  ()

be the corresponding expected outcome for low types. If ∗
 (−) = E [

e
 (−)| = 0] and
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∗
 (−) = E [

e
 (−)| = 1] with  e

 (−) given by (87) above, then

 () = ∗


µ


 − 1
¶
  () = ∗



µ
 − 1
 − 1

¶


The composition weighted average

 () =  () + (1− ) ()  (88)

gives the expected average outcome, irrespective of type, in a group of composition . If the

status quo is doubly randomized then

E [| =   = 1] =  ()  E [| =   = 0] =  ()  (89)

Equation (89) is intuitive, perhaps even obvious, under doubly randomized assignment,

but showing the equality holds formally requires some work. This is because  () and

 () are averages over the products of several marginal distributions: one ability distrib-

ution for each group member and one locational quality distribution (cf., Graham, Imbens

and Ridder, 2009b). In what follows I assume that (89) holds. In practice other ways of

identifying  () and  (), which might involve introducing separability assumptions of

the type explored in the context of two-sided matching models above, may be important.

Now consider a planner who, given knowledge of  () and the population frequency of

high types,  , chooses a distribution of group composition,  (), to maximize the average

outcome:

max
(·)

Z
 ()  () d (90)

subject to the feasibility constraint Z
 () d =   (91)

The problem defined by (90) and (91) is one of functional optimization. Although in

general such problems are quite difficult to solve, Graham, Imbens and Ridder (2009b) show

that the above problem has a simple solution. Before considering their solution it is helpful to

underscore why the planner’s problem is, at least on the surface, a challenging one. Consider

the case where both  () and  () are constant in . This corresponds to a complete

absence of social spillovers. In this case we have the maximand in (90) equal toZ
[ + (1− )]  () d =  + (1−)
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where the equality follows by substituting in the feasibility constraint (91). In the absence

of social spillovers the average outcome is invariant across all feasible assignments. For

the assignment problem to be interesting we require the presence of social spillovers. The

presence of such spillovers also makes the planner’s problem non-trivial. This is because the

form of the social spillover is left nonparametric.

It is helpful to begin by analyzing the planner’s problem under two special cases: (i)

 () is globally concave and (ii)  () is globally convex (i.e., ∇ () is respectively less

than and greater than zero for all  ∈ [0 1]). These two cases are the focus of an extensive
applied theory literature on multi-community models (e.g., Benabou, 1993, 1996; Becker

and Murphy, 2000; de Bartolome, 1990; Durlauf 1996a,b, 2004; Epple and Romano, 1998;

Fernández, 2003).

When  () is globally concave Jensen’s inequality implies that

 () ≥ E [ ()] 

for any feasible  (·). Since the restriction holds with equality for the degenerate distribution
concentrated at   corresponding to the perfectly integrated assignment, global concavity

of  () implies that integration maximizes the average outcome.

If  () is globally convex, then a mean value expansion and the feasibility constraint

(91) gives

E [ ()] =  () + E
£∇

¡

¢
( − )

2
¤


for  an intermediate value between  and  . Convexity of  () yields the upper and

lower bounds

 () +

∙
min
∈[01]

∇ ()

¸
·V () ≤ E [ ()] ≤  () +

∙
max
∈[01]

∇ ()

¸
· V () 

These bounds are maximized at the most dispersed distribution on [0 1] with mean  .

This distribution, which corresponds to the perfectly segregated assignment, places a mass

of  on one and a mass of 1−  on zero. Global convexity of  () therefore implies that

segregation maximizes the average outcome. Figure 1 illustrates the planner’s solution when

 () is convex or concave.

The difficult case corresponds to situations where ∇ () may change signs on [0 1];

that is where () is neither concave or convex. Let () be the concave envelope of  ().

Formally  () is a function whose truncated lower epigraph coincides with the convex hull

of the truncated lower epigraph of  () (e.g., Rockafellar, 1970; Horst, Pardalos and Thoai,

2000). Intuitively it is the uniformly best concave overestimator of  (). If the planner
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Figure 1: Social planner’s assignment when  () is globally convex and concave

Notes: Panel A of the figure plots the type specific group composition response functions
 () (black line) and  () (gray line). Panel B plots the associated  () (solid line) and

 () +  () (dashed line) functions. The sign of these functions indicate whether a local

increase in segregation at point  would raise, respectively, movers’ and stayers’ average

outcomes. Panel C plots  (), its concave envelope,  (), and the maximal attainable

average outcome (point ).
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could ‘produce on’  (), then an optimal assignment, by virtue of concavity, would be the

perfectly integrated one. This assignment would yield an average outcome of  (). This

observation yields the following inequality on the planner’s maximand

E [ ()] ≤ () ,

for any feasible  (·)  Now let  and  be the first points respectively below and above

 where  () and its envelope coincide:

 = max { : 0 ≤  ≤    () =  ()}
 = min { :  ≤  ≤ 1  () =  ()} 

Since  () is linear on the interval [  ] the upper bound on the maximand is attained

by the assignment


opt
 () = (1− )1 ( ≥ ) + 1 ( ≥ )   =

(
−
−   
1
2

 = 


Panels C.1 & C.2 of Figure 2 illustrate the planner’s solution. In the figures point 

corresponds to (  ()). To achieve this bound the planner forms two types of groups.

The first has a fraction of high types equal to the -axis value of point  in the figure,

corresponding to ; the second the -axis value of point , corresponding to  . The

feasibility constraint determines the relative frequency of the two types of groups. It is then

not hard to see that the average outcome associated with this assignment is equal to ().

Since () is an upper bound to the planner’s objective function this assignment is indeed

an optimal one.

With the planner’s solution characterized we can define the maximum change in the

average outcome available via reassignment as

mre =
1

 − 
[( − ) () + ( − ) ()]− E [ ]  (92)

Given knowledge of the extreme points of the concave envelope of  () the maximum

reallocation effect is straightforward to compute. Unfortunately finding the concave envelope

of  () requires knowledge of  () at all points on the unit interval. This requires that the

status quo assignment, 
sq
 (·), have support along the entire unit interval.

Graham, Imbens and Ridder (2009b) do not develop estimation and inference results for

mre. Showing consistency of a simple plug in estimator should be straightforward. If b ()
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Figure 2: Social planner’s assignment when  () is neither convex nor concave

Notes: Panel A of the figure plots the type specific group composition response functions
 () (black line) and  () (gray line). Panel B plots the associated  () (solid line) and

 () +  () (dashed line) functions. The sign of these functions indicate whether a local

increase in segregation at point  would raise, respectively, movers’ and stayers’ average

outcomes. Panel C plots  (), its concave envelope,  (), and the maximal attainable

average outcome (point ).

is some uniformly consistent nonparametric estimate of  (), say the NIP estimate used

by Graham, Imbens and Ridder (2009a), then  and  should be consistently estimable

and hence so should mre. Characterizing the asymptotic sampling properties of such an

estimator would be more challenging. Consider the case where   and  are known,

then bmre which would be a function of b () and b (), would behave similarly to a
nonparametrically estimated conditional mean. When   and  are replaced with

estimates, the effects of the additional sampling error would need to be ascertained.
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5.3 Local reallocations: movers versus stayers

Studying the effects of small, local, reallocations on outcomes generates additional insights.

Consider the set of groups with group composition . As before, high- and low-type individ-

uals in these groups are random draws from their respective subpopulations and assignment

to locations is random. Now consider the following local reallocation. In half of the groups

the fraction high is increased from  to  + d. This change is accommodated by reducing

the fraction high from  to to −d in the remaining groups. Implementing this reallocation
requires low type individuals in the first half of groups to switch places with high type indi-

viduals in the second half of groups. Call the set of individuals who actually switch groups

as part of the reallocation movers.

The change in average outcomes for high type movers is given by

 (+ d)− ()  (93)

while that for low type movers is given by

 (− d)− ()  (94)

The average outcome of movers will increase if the sum of (93) and (94) is positive. For d

infinitesimally small this is equivalent to the condition

∇ ()−∇ ()  0 (95)

Equation (95) is a measure of local complementarity between own and peers’ type. If, at

group composition , high type individuals gain more from small increases in peer quality

than do low type individuals, then (95) will be positive. In such situations a high type and

a low type can raise their total expected outcome by switching groups. Note that such a

switch will often involve a ‘winner’ and a ‘loser’. For example if ∇ () and ∇ () are

both positive, then (95) implies that the outcome gain for the high type mover exceeds the

outcome loss for the low type mover.43

Those individuals who do not move as part of the reallocation, or stayers, also experience

changes in expected outcomes. This is because the reallocation changes these individuals’

43The locational sorting literature emphasizes the case where (95) is positive for all  ∈ [0 1] (e.g., Benabou,
1996). This corresponds to assuming that own and peer types are global complements. Assuming that (i)

utility is linear in the expected outcome and (ii) that there is a functioning market for ‘seats’ or ‘residences’

in groups, this condition generates strong incentives for sorting. Since a high type individual initially in a

group with composition  gains more from moving to a group with composition +d than a low type loses

from making the reverse move, high types will outbid low types for spots in high  groups.
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peer groups. To see this note that the total change in expected outcomes, movers and stayers

inclusive, is given by
 (+ d) + (− d)− 2 ()

2


For d infinitesimally small this change will be positive if

∇ ()  0

Local convexity of  () implies that locally increasing segregation will raise average out-

comes. Now observe that

∇ () = 2 () +  ()  (96)

for

 () = ∇ ()−∇ ()   () = ∇ () + (1− )∇ () 

The first term in (96),  (), equals the local complementarity term of (95) above. If it is

positive movers will benefit, on net, from local increases in segregation. The second term,

 (), is what Benabou (1996) has termed ‘curvature’. The direction of the reallocation’s

impact on the stayers’ average outcome depends on the relative magnitudes of complemen-

tarity and curvature. In particular if  () +  () is negative then stayers will be hurt, on

net, by local increases in segregation. Panels B of Figures 1 and 2 plot  () and  ()+ ()

for four different pairs of  () and  ()  In three of these four examples the effects of

local increases in segregation on movers and stayers are opposite signed for at least some

values of . Situations where  () +  () and  () do not have the same sign are of par-

ticular interest as they suggest that the private and social returns to segregation are grossly

misaligned. Even when the two terms share a common sign, there will exist a wedge between

the private and social returns to sorting. This wedge arises because movers have no incentive

to internalize the effects of their actions on stayers.

Translating the above analysis into meaningful estimands in challenging. One approach

would involve estimating  () and  (), as well as their first and second derivatives,

pointwise and constructing sample analogs of Figures 1 and 2. Figures of this type would

give some indication of the likely effects of small increases in segregation at various values

of . This approach is conceptually simple, but would likely result in noisy inferences (e.g.,

the maximal feasible rate of convergence for  () would be that of a one dimensional second

derivative). Graham, Imbens and Ridder (2009b) propose an alternative method. They

introduce a family of feasible reallocations that involves perturbing the group composition

distribution across its entire support. They then study the effects of such reallocations on

average outcomes and inequality. They focus on the case where the resulting reallocation
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becomes vanishingly close to the status quo. While this approach has obvious limitations it

does lead to an intuitive estimand and a tractable estimator (which converges at the normal

parametric rate). Their approach is most likely to informative about the effects of modest

changes in the degree of segregation or integration.

Decompose the derivative of  () as

∇ () =  () +  () 

with

 () =  ()− ()   () = ∇ () + (1− )∇ () 

The first term,  (), captures the private, or compositional effect, of a small change in

group composition on the average outcome. The second term,  (), in an external effect. It

captures the effect of changes in group composition on the outcomes of stayers.

Now consider implementing a reallocation of the following form

∆ =  ( − )×  ()    0 (97)

with  () = 1 (  )1 (  1− ) for some  ∈ (0 1) and  = E [|  () = 1]  This
allocation takes high type individuals in predominately low type groups and switches them

with low type individuals in predominately high type groups. The function  () excludes

groups with compositions close to zero or one from the reallocation. This ensures that,

for small enough , (97) is feasible. The  () also serves as a fixed trimming device for

estimation purposes.

Graham, Imbens and Ridder (2009b) show that the sign of the effect on average outcomes

from implementing (97) in the limit where  approaches zero coincides with the sign of

lsoe = E [ ()∇ () ( − )]  (98)

They term lsoe the local segregation outcome effect (LSOE). The form of lsoe is intuitive. If

∇ () tends to be larger for   , then increasing segregation should lower average

outcomes. This is because the returns to group composition are highest in those groups that

have few high types. Increasing segregation therefore involves taking high types away from

groups where the return to their presence is highest.

The LSOE can be broken down into the two components

lmse = E [ ()  () ( − )]

lsse = E [ ()  () ( − )] 
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with lsoe = lmse + lsse. The signs of lmse and lsse respectively coincide with the signs

of the reallocation’s effect on the average outcomes of movers and stayers. To show this

Graham, Imbens and Ridder (2009b) provide the following representations

lmse = V (|  () = 1)× E [ ()  ()|  () = 1]
lsse = V (|  () = 1)× E [ () { () +  ()}|  () = 1] 

for  = E [ ()] and  () a mean one weight function That is lmse is equal to a weighted

average of the local complementarity measure  (). Recall that it is the sign of  () that

determines whether movers gain from local increases in segregation in the neighborhood of .

A weighted average of these local measures gives the overall direction of implementing (97)

on movers. Likewise lsse is equal to a weighted average of  () +  (), the sign of which

determines the effect of local increases in segregation on stayers’ average outcomes.

Under random sampling analog estimation of lsoe is straightforward; ∇ () may be

estimated by differentiating the Nadarya-Watson kernel regression estimate of  () and

 by the trimmed sample mean of . With these estimates in hand blsoe is given by the
sample analog of (98) after replacing ∇ () and  with their estimates. Characterizing

the limiting distribution of the resulting estimator is more involved. Graham, Imbens and

Ridder (2009b) derive the appropriate influence function and show how to properly take into

account the group-structure of the data when conducting inference.

Policy debates which touch on issues of segregation often center on its implications for

inter-type inequality. Graham, Imbens and Ridder (2009b) show that the sign of the effect

of a local increase in segregation on inter-type inequality is given by

lsie = E
∙
 ()


{ () + ∇ ()} ( − )

¸
− E

∙
 ()

1− 
{− () + (1− )∇ ()} ( − )

¸


They call lsie the local segregation inequality effect (LSIE). As with the LSOE they propose

an analog estimator and characterize its large sample properties.

5.4 Parametric examples

Empirical work on the socioeconomic effects of segregation generally assumes parametric

forms for  () and  ()  This section evaluates several widely-used parametric models

in light of the material reported in Sections 5.2 and 5.3 above.

Perhaps the most common empirical peer effects model is the linear-in-means one ana-
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lyzed by Manski (1993). A reduced form version of this model amounts to assuming that

 () =  +   () =  + 

This model restricts the marginal effect of group composition to be the same for high and

low type individuals. Since ∇ () = ∇ () =  and ∇ () = ∇ () = 0

this model implies that the LSOE is zero by construction. All assignments lead to the same

average outcome. The model does allow for segregation to generate inequality. The LSIE,

for example, equals

lsie = V ()× 2

 (1− )


where, to simplify the expression, I set  = 0 such that  () = 1 Note that segregation al-

ways increases inequality (if   0). Although the linear-in-means model is widely-used (e.g.,

Graham, 2008) it is clearly inappropriate for studying the effects of alternative assignments

to groups.

A slight generalization of the linear-in-means model allows the return to group composi-

tion to vary by type. This model is frequently employed in analyses of the effects of racial

segregation on student achievement (e.g., Schofield, 1995; Angrist and Lang, 2004; Guryan,

2004; Card and Rothstein, 2007). We have

 () =  + 

 () =  + 

This model, while more flexible than the linear-in-means one, also rules out curvature by

construction:  () = 0. This means that the interests of movers and stayers are perfectly

aligned. This is an important limitation given the focus on inefficient segregation in theo-

retical work.

In this model the LSOE equals

lsoe = V ()× 2 ( − ) 

Note that the sign of lsoe coincides with the sign of  − . Features of the status quo

group composition distribution cannot alter the LSOE’s sign. The LSIE effect is given by

lsie = V ()× 2
½
(1− ) + 

 (1− )

¾


As with the outcome effect, the direction of the effect of local increases in segregation on
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inter-type inequality is independent of the status quo.

A simple parametric model that allows for curvature is the ‘quadratic-in-means’ model:

 () =  + + 
2

 () =  + + 
2

In this model complementarity equals  () = ( − )−( − )  and curvature is given

by  () = − [ + (1− ) ]. Global complementarity is not assumed a priori and the

model is flexible enough to allow for a misalignment between the interests of movers and

stayers (see Figures 1 and 2 above for examples).

The LSOE in this model is given by

lsoe = V ()×
h
2 ( −  + ) +

h
2 +V ()

12 S ()
i
× 3 ( − )

i


where S () is the skewness of . Note that features of the status quo assignment meaning-

fully enter the above expression. The sign of 2 + V ()
12 S () will vary depending on

the form of 
sq
 (·). Thus, even if the production function is the same across two ‘societies’,

the effect of small increases in segregation need not be. The interplay between the produc-

tion technology and the distribution of types in the population is a fundamental feature of

assignment problems. This feature is often obscured when simple parametric forms for the

production technology are employed. It motivates the focus on nonparametric approaches

throughout this chapter.

6 Treatment response with spillovers

The conventional approach to causal inference assumes the absence of interference between

units (Holland, 1986). In practice many interventions are likely to generate spillover effects.

For example, providing college scholarships to a few students may increase the college at-

tendance of non-recipients within the same school. The probability of viral infection for

unvaccinated individuals may vary with the fraction of their close peers who are vaccinated

(e.g., Ali et al. 2005). A common reaction to ‘interference’ among statisticians has been to

treat it as a nuisance; something to be avoided by experimental design or method of data

collection (see Rosenbaum (2007) for a related discussion). This approach is problematic

since social planning requires knowledge of the entire treatment response; inclusive of any

spillover effects. This point is elegantly made by Manski (2009a,b).

In recent work Hudgens and Halloran (2008) and Manski (2010) have developed frame-

works for analyzing treatment response in the presence of social spillovers. The exposition
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here follows Manski (2010). Let  ∈  index individuals in a population who receive treat-

ment  ∈ T . In the most general setup an individual’s potential outcome may vary with
the entire population vector of treatment assignments. This yields a treatment response

function of


¡

¢
 (99)

where  is one element of the Cartesian product of T across the entire population: T  =

×∈T . Note the similarity, in terms of the degree of interconnectedness across agents, with
the allocation response function introduced in the previous section (equation (84) above).

Manski (2010) emphasizes two sets of restrictions on (99). The first, which he calls

constant treatment response (CTR), assumes that outcomes remain constant when  varies

within specified subsets of T  . For example an individual’s outcome might only depend

on own and peers’ treatments. Reference groups may be person-specific, but are assumed

to be non-manipulable.44 The second restriction is that interactions are distributional. This

corresponds to exchangeability of peers within reference groups. These two assumptions play

roles similar to those of the no spillovers across groups and peer exchangeability assumptions

made by Graham, Imbens and Ridder (2009b).

Let  (·) be a function mapping the population treatment vector onto a set. The CTR
assumptions is that, for treatment vectors  and  


¡

¢
= 

¡

¢⇒ 

¡

¢
= 

¡

¢
 (100)

Let  ⊂  be individual ’s reference group. If (99) varies only with own and peers’

treatments, then 
¡

¢
= 

Let − denote the leave-own-out reference group and 
¡
−

¢
the distribution of treat-

ments across ’s peers. If interactions occur only within-groups and are additionally distrib-

utional then


¡

¢
=

Ã



¡
−

¢ !  (101)

If the treatment is binary-valued then the within-group distribution of treatment effects is

entirely summarized by the fraction of one’s peers who are treated (implicit in Manski’s

formulation of distributional interactions is that reference group size does not matter). This

means that if  is binary (100) and (101) give


¡

¢
= 

¡
 

¢
 (102)

44That is reference groups may be directional in the sense that  may belong to ’s reference group but

not vice-versa (i.e., reference groups may be overlapping). This differs from Graham, Imbens and Ridder

(2009b) who require that reference groups form a non-overlapping partition of the population.
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Note that, in contrast to the allocation response function introduced in the previous section,

peer unobservables do not directly enter (102). This simplification arises because here peer

groups are non-manipulable.

The law of total probability yields an identification region for 
£

¡
 

¢¤
, the distrib-

ution of 
¡
 

¢
, equal to

H
©

£

¡
 

¢¤ª
=
©

£

¡
 

¢¯̄
 =    = 

¤ ·  £ =    = 
¤

+ ·  £ 6=  or   6= 
¤
  ∈ ∆

ª


where ∆ denotes the space of all probability distributions on  . Manski (2010) studies a

variety of additional restrictions that may tighten H
©

£

¡
 

¢¤ª
.

Manski (2009a,b) studies social planning problems in the presence of treatment spillovers.

Let 
¡
 

¢
= 

£

¡
 

¢
  

¤
be the utility of individual  when she is assigned treat-

ment  =  and  of her reference group receives treatment. Define


¡

¢
= E

£

¡
0 

¢¤
 

¡

¢
= E

£

¡
1 

¢¤


to be the average utility of a non-treated and treated individual, respectively, when  of

reference group members are treated. For example 
¡

¢
and 

¡

¢
might be the average

probability of infection given vaccination and non-vaccination when  of the reference group

is vaccinated. Assume that 
¡

¢
adjusts for the cost of vaccination as well as any vaccine

side-effects.

What fraction of the reference group should be vaccinated? The planner’s criterion

function is


¡

¢
=
¡
1− 

¢

¡

¢
+ 

¡

¢
 (103)

If the vaccine is fully effective, then 
¡

¢
= . Assume further that spillovers onto the

untreated are linear


¡

¢
=
¡
1− 

¢
0 + 1

Under these assumptions Manski (2009a) shows that the optimal vaccine rate is


∗
 = max

½
0min

½
1

2
+
1

2

 + 0

1 − 0
 1

¾¾


Knowledge of the structure of any treatment spillovers, in this case, 0 and 1, is required

to implement this rule. Manski (2009a,b) also studies social planning under ambiguity. The

point I wish to make here is that social planning requires knowledge of the external effect.
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7 Areas for further research

Several areas touched on in this chapter merit further study. Developing identification results

and estimation methods for nontransferable utility matching models is one. Since the set

of stable matchings can be large it seems likely that the parameters of these models will

be set identified in absence of additional restrictions on the matching mechanism. Results

for more complex matching structures, such as those with one-to-many and many-to-many

matching, are also needed. Fox (2009a,b) provides some results along these lines. Relatedly,

tractable, yet microtheory-founded, econometric models of network formation would help

empirical researchers in their analyses of (increasingly available) social network data (e.g.,

Christakis, Fowler, Imbens and Kalyanaraman, 2010).

The material surveyed above has unduly focused on restrictions which result in point

identification of the parameter of interest. The underlying economics of the class of models

surveyed above naturally generates partially identifying restrictions (e.g., stability inequal-

ities). Developing results based on these restrictions would help to extend the material

surveyed above to a larger number of empirical problems.
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