The Market Value of R&D: theory and empirics

> Bronwyn H. Hall UC Berkeley, NBER, and IFS London

The context

Valuing or pricing innovation at the firm level

- Possible input measures: R&D, patent counts, patents weighted by citations
- Possible output measures: patents, profits, revenue productivity
- But, innovation returns are intertemporal and also uncertain
 - Forward-looking measure the market value of the firm
 - Griliches 1981, followed by a long list of others

Large Literature

- **Economics of innovation US**
 - Ben-Zion 84, Jaffe 86, Cockburn & Griliches 87
 - Griliches, Pakes, & Hall 87, Hall 93a,b
 - Megna & Klock 93, Thompson 93, Hunt 96
 - Darby et al 04
- Economics of innovation Europe & Australia
 - Blundell et al 95, Bosworth & Rogers 01
 - Toivanen et al 02, Hall & Oriani 04, Greenhalgh & Rogers 04
- Accounting for intangibles
 - Connolly et al 86, Connolly & Hirschey 88, 90
 - Chauvin & Hirschey 93, 97, Johnson & Pazderka 93
 - Hirschey et al 98, Lev 02

Outline

- Brief overview of previous work
- A theoretical model to aid interpretation
- New results on European data
 - Hall and Oriani (2004)

What have we learned?

- Market value positively related to R&D
- Wide variability over time and industry
- Range of estimates for shadow value
 - R&D expenditure coefficient: ~1.5 to 8 or 9
 - R&D stock coefficient: 0.2 to 2
- Substantial variability in specification, making comparisons difficult
 - Intangibles, patents, trademarks
 - Leverage, sales growth, market share

Some questions

- What functional form should we use for the market value equation?
- What variables belong on the right hand side?
 - What about unobservable firm effects?
- How should we interpret the variations in the shadow value of R&D over time?
 - Most likely cause is *ex post* obsolescence, but how to measure this
- Reduced form? Or correct for endogeneity?

Functional Form

Next two slides – Kernel regression of

Log Q on K/A

Log Q on Log (K/A)

where Q = V/A

V = total market value of the firm

K = R&D stock of the firm (nominal)

A = Tangible assets of the firm (nominal)

Conclusions:

over the central range of the data, log linear is a reasonable approximation

In the tails (K/A<.01 or K/A>1) relationship is flatter

Theory – model profit-maximizing firm with 2 assets

December 2004

"Theory"

 Ideal: model investment in tangible and knowledge (intangible) assets under uncertainty using a dynamic program for the firm. Obtain a value function of the assets (state variables) of the firm.
Common practice: use a first order approximation to the value of the assets Usual hedonic regression for market value

 $V_{it}(A_{it}, K_{it}) = b_t \left[A_{it} + \gamma K_{it}\right]$

Non linear: $\log V_{it} - \log A_{it} = \log Q_{it} = \log b_t + \log(1 + \gamma_t K_{it}/A_{it})$

Linear approx.: $\log Q_{it} = \log b_t + \gamma_t K_{it}/A_{it}$

Interpretation:

 $Q_{it} = V_{it} / A_{it}$ is Tobin's q b_t = overall market level (approximately one). γ_t = Relative shadow value of K assets (γ = 1 if depreciation correct, investment strategy optimal, and no adjustment costs => no rents).

December 2004

Theoretical Q model (1)

- Tobin's original Q = ratio of the market value V of a (unique) asset to its replacement cost A
 - Q>1 => invest to create more of the asset
 - Q<1 => disinvest to reduce asset
 - Q=1 in equilibrium
- Hayashi (1982) the asset is a firm
 - derived Q from the firm's dynamic program
 - gave conditions under which marginal Q (dV/dA) equal to average (V/A)
- Hayashi-Inoue (1991) and Wildasin (1984)
 - developed the theory with more than one capital

Theoretical Q model (2)

 Using the capital aggregator approach of Hayashi-Inoue, can show that

 $V_t(\tilde{A}_t, \tilde{K}_t; s_t) = p_t'(1 - \delta_t)\tilde{A}_t + p_t^R(1 - \delta_R)\tilde{K}_t + Q(s_t)\Phi(\tilde{K}_t, \tilde{A}_t)$

- $p_t^I(1-\delta_l) \tilde{A}_t$ and $p_t^R(1-\delta_R) \tilde{K}_t$ are the end of period replacement values of the two assets A and K.
- $\Phi(K_{t,},A_t)$ is the capital aggregator index under constant returns, constructed using the costs of the two capitals
- *s_t* is the exogenous shock process (a vector of prices, demand, the macro economy, etc.)
- Q(s_t) is an index that summarizes the shocks (=0 in equilibrium)

December 2004

December 2004

EC2 - Marseilles

14

Implications

- End of period capital should incorporate depreciation
- Both intercept and slope contain a term due to supranormal rents
- The slope of K/A contains three terms:
 - 1 (equilibrium value)
 - Depreciation δ (negative)
 - Rents φ₁Q(s)/p^R (positive)
- Cannot be identified separately unless
 - φ is nonlinear in K/A OR
 - add more information (for example, current R&D)

Results – US Manufacturing 9900 observations; 1500 firms

		(1)	(2)		(3)	
		K/A only	K/A	Phi(K/A)	K/A	R&D/A innov.
	1981- 1985	1.58 (.13)	1.31 (.03)	86 (.10)	2.19 (.17)	7.33 (.88)
	1986- 1990	1.04 (.09)	1.12(.05)	60 (.15)	1.09 (.09)	3.46 (.41)
	1991- 1995	0.78 (.06)	1.03 (03)	65 (.04)	0.78 (.07)	2.43 (.37)
	1996- 2000	0.87 (.06)	0.97 (.03)	44 (.04)	0.81 (.06)	2.62 (.27)
December 2004 EC2 - Marseilles						17

Hall-Oriani (2004)

- No previous studies of the market value of innovation for many countries in the European Union (e.g., France, Germany, and Italy)
- Capital markets in these countries are different from those of Anglo-Saxon countries
 - looser discipline exerted by public stock markets
 - much lower share of institutional ownership
 - higher propensity for long-term investments?
- => Related data problems for these countries
 - lower number of publicly traded firms
 - no accounting requirement for R&D disclosure

December 2004

EC2 - Marseilles

Our empirical approach

- New database of firm-level data for a panel of manufacturing firms publicly-traded in France, Germany and Italy
- Data on comparable samples for the UK and US
- Hedonic valuation model based on prior work
 - Market value (price) of firm as a function of its assets (characteristics)
- Explore some econometric issues in estimation
 - Sample selection estimation to correct for selection biases
 - Possible presence of firm-specific effects

Findings

Econometrics:

- Sample selection matters very little
 - Process generating R&D reporting ignorable
- Firm effects not correlated for Germany, France, and Italy
 - Low power because of small sample size?
- Substantive:
 - R&D capital valued positively by the market with a coefficient of about 0.3/0.4 in France, Germany, US
 - higher in UK; lower in Italy?
 - For non-R&D firms, majority control earns a premium in France and Italy (around 15-30%) but not in Germany
 - For R&D firms in France and Italy, R&D is discounted substantially (to about zero) if majority controlled
 - Lesser discount for Germany

December 2004

EC2 - Marseilles

Data

New panel of publicly traded firms from 1989 to 1998, with and without data on R&D

Country	Number of Firms	Share of Industrial R&D
France	127	50.6%
Germany	283	63.6%
Italy	86	71.2%
UK	592	92.2%
US	1366	57.8%

December 2004

EC2 - Marseilles

Variables in our model

Dependent variable Q = V/A

- V = Market value of equity + outstanding debt
- A = Book value of physical capital and inventories
- R&D capital K
 - Perpetual inventory of the past and present annual R&D expenditures with a constant depreciation rate (15%) and alternative initial growth rates

Control variables

- I = Other intangible assets
- Iog sales (size proxy) could use log assets
- year dummies

OLS and NLLS results: Coefficients of R&D capital (K)

	France	Germany	Italy	UK	US
OLS	.28***	.33***	.01	.88***	.33***
NLLS	.41***	.36***	14	1.94***	.80***
Avg. Slope (S.D.)	.28 (.06)	.44 (.07)	.14 (.01)	1.45 (.27)	.46 (.11)

The average slope is the derivative of logQ wrt K/A for the nonlinear model, averaged over the data

No relevant differences appear when K is calculated using alternative initial growth rates

Majority shareholder effect

Control = majority shareholder with >33% of ownership of firm

NLLS Coefficient Estimate for K/A

Country	France	Germany	Italy
Share of R&D firms	57%	47%	55%
Premium for control	.42***	.11	.32***
Baseline R&D coeff. (no control)	.66***	.56***	.94***
R&D discount for control	56**	37***	-1.00***
December 2004	EC2 - Marseilles		24

Estimation issues

- Some continental European firms do R&D but do not report it.
 - Build a model of selection into the sample and estimate jointly with the valuation equation
- Permanent differences across firms that are correlated with R&D (so shadow value γ may be mismeasured)
 - Use panel data methods

Sample selection

- Censored regression model (generalized tobit) with a stochastic threshold (Maddala, 1983; Hall 1987 for firm size and growth)
 - Regression equation for observed data
 - Probit equation for selection into sample
 - Disturbances allowed to be correlated
 - Test for normality using OLS regression with Heckman terms (lambda, lambda*P,)

Explaining R&D reporting

- Lack of R&D data for US or UK firms means
 - The firm did not do "material" R&D
- Lack of R&D data for continental firms either
 - the firm did not do R&D or
 - it did not report R&D
- Predictor variables used:
 - Debt (D) to assets ratio (leverage)
 - Log sales (size)
 - Industry R&D intensity
 - Industry growth
 - Whether the majority owner had >50% of the firm
- December 2004 ear dummies

Sample selection: Probit for reporting R&D

	France	Germany	Italy	UK	US
D/A	.092*	.050 ^{***}	059	037	.002
	(.051)	(.022)	(.081)	(.047)	(.009)
Log Sales	.081 ^{***}	.052 ^{***}	.112 ^{***}	.084 ^{***}	.050 ^{***}
	(.008)	(.003)	(.011)	(.004)	(.003)
Industry R&D	1.46 ^{***}	1.58 ^{***}	4.28 ^{***}	4.61 ^{***}	3.19 ^{***}
intensity	(.32)	(.13)	(.91)	(.41)	(.12)
Industry growth rate	04	.34 ^{***}	.41	.75 ^{***}	.72 ^{***}
	(.38)	(.11)	(.27)	(.14)	(.10)
D (control)	.01 (.03)	02 ^{**} (.01)	09 ^{***} (.03)		
<i>Total obs.</i>	1145	2688	685	4723	10892
<i>Positive obs.</i>	308	337	239	2010	6995
Pseudo R-squared	. 18	.25	.30	.23	.14

Sample selection:								
Coefficients of R&D capital (K)								
	France	Germany	Italy	UK	US			
K/A	.68 ^{***} (.19)	.38 ^{***} (.03)	.73 ^{***} (.26)	.90 ^{***} (.11)	.28 ^{***} (.02)			
Control*(K/A)	49 ^{**} (.20)	17 (.10)	89 ^{***} (.21)					
I/A	.69 ^{***} (.14)	.94 ^{***} (.14)	1.17 ^{***} (.28)	.59 ^{***} (.08)	.60 ^{***} (.04)			
Control	.49 ^{***} (.11)	04 (.07)	.23 ^{***} (.07)					
Estimated rho	.53 (.37)	.00 (.20)	.05 (.14)	.08 (.16)	05 (.06)			
Uner variables in equation: log sales, year dummles								

Panel data estimation

- Random effects differences across firms that introduce serial correlation within firm, but are not related to R&D-value relation
- Fixed effects differences across firms that are correlated with R&D
 - Within (LSDV) inconsistent if R&D not strictly exogenous with respect to market value
 - First differences
 - possibly more downward biased if measurement error (Griliches & Hausman, 1986)
 - need to use GMM for estimation, but hard to find valid instruments – unsuccesful for market value equation

Panel results: Coefficients of R&D capital (K)

	France	Germany	Italy	UK	US
OLS	.56***	.38***	.71	.88***	.33***
First differences	61	.26***	16	.16	.31***
Within (F. E.)	.26	.27***	.74	01	.15***
Random effects	.38***	.30***	.65	.50***	.22***

Non-

correlation Accepted Accepted Accepted Rejected Rejected Other variables in regression: I/A, log sales, control, control*(K/A), year dummies

Conclusions

- Germany and France, but not Italy
 - R&D capital for firms reporting it is valued positively by the stock market with a coefficient of about .3/.4
 - Not affected by selection or left-out firm effects
- Italy and France
 - Majority control earns a premium (around 15-30%)
 - But R&D in majority controlled firms is discounted substantially (to about zero)
 - R&D in non-controlled firms has coefficient of about .6/.7
- Similar to UK and US, except
 - The OLS coefficient for the UK sample is quite a bit higher
 - confirmed by evidence on R&D productivity in UK firms (Bond, Harhoff, Van Reenen 2003)

Discussion

- European financial markets value R&D in a similar way as the US and UK, but with variations due to ownership structure
- Market valuation of R&D expenditures in all countries except UK is lower than predicted by simple theory
 - (also decreased in all the countries over time, not shown)
- Possible explanations:
 - Non-optimal R&D investments (too high)
 - Higher R&D depreciation rate
 - Lower R&D effectiveness (realized return<expected)
 - Public incentives for R&D investments
 - R&D accounting regime/intangibles
 - Short-termism of the stock market

What belongs in the value eq?

- Only the assets (resource base) of the firm
 - Physical capital (A)
 - Knowledge capital (K), including IT capital such as software
 - Purchased intangibles (I)
 - Reputational capital, brand name value
 - Human capital, to the extent that it is not captured in wages
 - Other infrastructural capital, such as the existence of a distribution network
- Not such things as growth in sales or profitability unless they are used as proxies for left-out types of capitals (similarly for fixed effects)

December 2004

Constructing R&D stock

 $K_t = (1 - \delta) K_{t-1} + R_t$

where K_t = knowledge stock at end of period t

 R_t = flow of R&D during t

 δ = depreciation rate of *K*, usually = 15%

(Varied the definition of presample growth rates)

If R grows at a constant rate g over time,

 $K_t \approx R_t / (\delta + g)$

Example: $K_t \approx R_t / (0.15 + 0.05) = 5R_t$

 \Rightarrow Low coefficient on K or R may imply $\delta >>0.15$

December 2004

EC2 - Marseilles