Assessing Creative and Scientific Commons

Bronwyn H. Hall Maastricht University and University of California at Berkeley

The problem

- How should we evaluate the perfomance of the scientific and creative commons?
 - What do we mean by performance?
 - Why do we want to know?

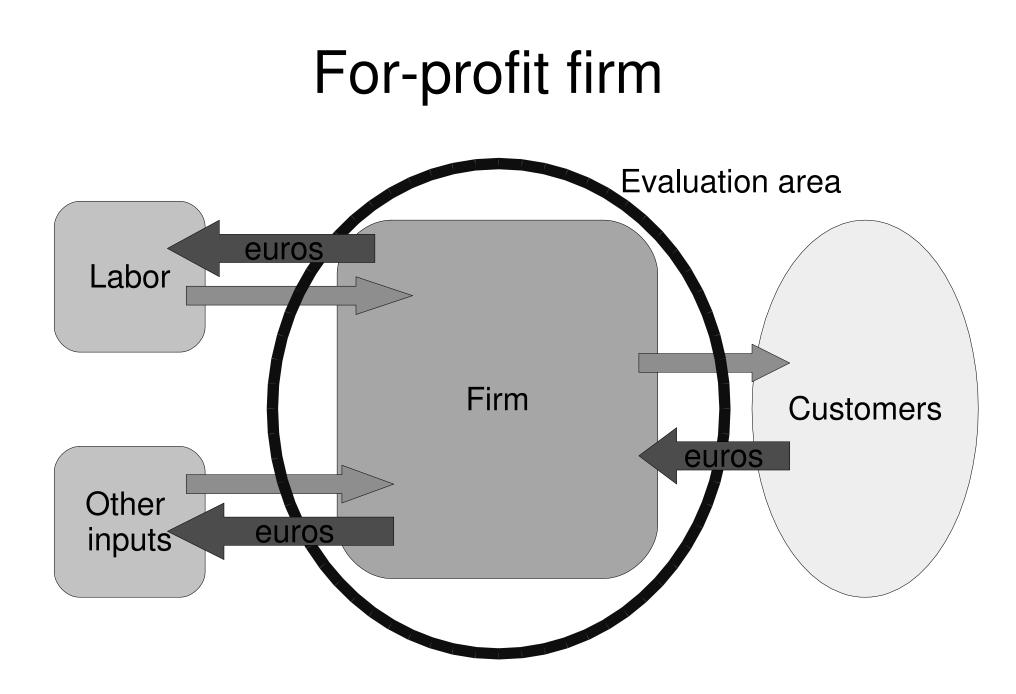
Creative and scientific commons

- Examples:
 - Free and open source software
 - Open access scientific and engineering preprint databases
 - Databases common use licensing of data contributed to repositories
 - Cross-licensing of patented research tools, materials transfer licensing on RAND terms
- Most of the above have some form of contract associated with them, implied or otherwise

Performance

- Multi-dimensional:
 - Ease of submission, updating
 - Ease of access, use, search
 - Comprehensiveness
 - Accuracy and quality
 - In some cases, the ability to use the contents for statistical purposes
- "efficiency" better outcomes at lower cost

Why do we want to know?


- To compare and evaluate different methods of organizing such commons
- To allocate funds to help in the provision and maintainance of such commons
- To establish best practices in organizing commons
- ...other reasons?


Conventional economic evaluation

 Productivity or profitability of a "closed" system (firm, line of business, etc.)

- Measurement principle: output less input

- Aggregation over different types of outputs and inputs performed by measuring them in terms of monetary units
 - feasible and appropriate in a market system because of the willingness-to-pay test

Three differences

- Lack of market-mediated transactions that would provide appropriate aggregation.
- Input suppliers may incur costs.
 - But not always (survey evidence)
- Some participants are both customers and contributors.
- => Suggests that we need a different approach to measurement.

Inputs and outputs (1)

- Costing the inputs has two pieces:
 - The usual methodologies apply to inputs like computing power, website maintainance, telecommunications, etc.
 - More important the willingness of users to contribute and the quality of their contributions
 - May be useful to subsume these into the output measures (assume that input cost is uniform across quality)

Inputs and outputs (2)

- Like evaluating basic research where a large share of benefits are produced as "externalities" or "public goods"
 - see David, Mowery, Steinmueller 1992 on the supercollider
- Output has two parts:
 - enabling of future research
 - input to a variety of private profit-making activity
- Valuing the output "willingness to use"

"Willingness to use"

 Willingness to pay assigns a value to a transaction by observing that at a certain price, the transaction takes place.

- Allows comparison of "apples and oranges"

 Willingness to use assigns "value" from the observation that an individual finds the database or repository useful enough to access it.

Measures of willingness to use

- Website hits
- Downloads
- Citations to included papers, databases, etc.
- Willingness to contribute

next few slides review these for different types of commons

Open source software

- Tracking contributions:
 - Code is usually signed (but not always by employing firm- see next slide)
 - Comes in units (lines) that are measurable
 - Information on re-use available
 - Quite a bit now known on this topic
- Tracking use and quality:
 - Require registration before download
 - Speed of bug correction
 - Growth of firms producing complementary outputs

Science and engineering preprint databases

- Measuring input
 - Number of contributions (relative to discipline)
 - Geographical spread?
 - Time lags?
- Measuring output
 - Downloads
 - Citations to papers in the database changes in citation practice – see next slide

Gaulé and Maystre 2008

- Previous work:
 - Computer science conference articles freely available over the web cited substantially more than those that were not (Lawrence 2001)
 - Citations rates of articles freely available on the web substantially higher than those that were not (Antelman 2004; Harnad and Brody 2004)
 - Open access articles from PNAS receive a higher number of citations controlling for... (Eysenbach 2006)
- Their work attempts to distinguish quality from diffusion:
 - PNAS experimented with authors' paying for open access authors chose open access for higher quality articles and they are more highly cited (but not after instrumenting by funding)

Databases and research tools

- Measures are similar
- Costs are higher
- Quality and accuracy more to the forefront
 - Track corrections?
 - User evaluations?
- License counts, citation counts
- More difficult: trace from research output to downstream output

Citations

- We know quite a bit about patent citations, less about paper or data citations. Summary:
 - They are correlated with economic and spillover value and with the resources spent to obtain the invention, but still explain less than half of the variability
 - They are very skew (also in the case of paper citations) but so is invention value
 - Getting good measures requires waiting
 - Practices change over time and across disciplines
 - Most of this carries over to other citations

Some suggestions

- Effectiveness of a collection (contents plus distribution):
 - Web views or downloads (possibly adjusted for database or repository size)
- Value of a collection:
 - Citations per hit (adjusted for time period and type of collection)
 - Need a variety of statistics mean is not enough, may also want median or top 10 per cent

Caution

- Comparing firm-level productivities is difficult due to heterogeneity of activities and intertemporal fluctuations
- The problem is even more difficult here due to the lack of a uniform measure (monetary value)
- As in the case of various research assessment exercises, it is essential to supplement numerical evaluation with qualitative evaluation.