Measuring the Returns to R&D

Bronwyn H. Hall University of Maastricht and UC Berkeley

The problem

- Estimating the returns to R&D (and other intangible investments)
 - Intrinsically of interest
 - May help to choose among R&D strategies
 - Needed for "contributions to growth" analysis based on new systems of national accounts that incorporate intangibles
- Existing methods try to deal with several challenges:
 - Lack of secondary markets for R&D output
 - Smoothness of R&D over time
 - Importance of depreciation measure for estimated net returns

Some illustrative examples

- Internet
 - packet-switching technology funded by the U.S.
 Department of Defense.
 - protocols of the worldwide web conceptualized and developed by researchers on the payroll at CERN
- Technology underlying biotechnology
 - developed jointly by researchers at the UC San Francisco and Stanford University
 - based on earlier double helix work at Cambridge
- Bell Labs transistor, radio astronomy

How do we measure the returns to these R&D efforts?

Presentation outline

- Basic measurement framework
- Estimating private returns
 - Production functions
 - Market value equations
- Overview of spillover channels
- Estimating social returns
 - Production functions
 - Summary of some results

Starting point for analysis

- Premise: R&D is a kind of investment
- Definition of returns: If we spend one \$, euro, or krone on R&D today, how much will we receive from increased sales, GDP, etc in the future?
 - Should we compute this by looking backwards at past expenditure or by looking forward to future output?
- As they say in the financial prospectuses:
 Past performance is no guarantee of future results
- In the case of R&D, the uncertainty of returns is magnified

Approaches used

- Backward looking: production function of R&D stock
 - Essentially assumes a stationary world
 - Can be used at any level of aggregation
 - Suitable for social as well as private returns
- Forward looking: market valuation of R&Ddoing firms
 - Assumes market efficiency
 - Can be highly volatile
 - Requires a market that prices firm assets (including R&D)

Measurement Methodologies

- Case study e.g., the development of the laser
- Trace technology flows from one industry to another using purchased inputs or patent data
- Trace research flows to industry using scientific or patent citations
- Willingness to pay in downstream industry as a measure of benefits received
- Relate productivity growth to R&D at various levels of aggregation
- Attempt to determine the price (valuation) of R&D output

Hall, Mairesse, Mohnen (2009)

- Measuring the Returns to R&D. In Hall, B. H. and N. Rosenberg, Handbook of the Economics of Innovation, Elsevier, pp. 1034–1076.
- Also available as
 - NBER Working Paper No. w15622 (December 2009)
 - UNU-MERIT Working Paper No. 2010-006
- Surveys econometric results obtained using production and cost functions on firms, industries, and countries
 - Includes spillover evidence
 - Covers a number of developed economies, mostly US, Canada, and European

Some measurement issues

- Long and variable lags, especially for publiclyfunded R&D
- Double counting of R&D inputs (excess return?)
- Rate of return depends crucially on rate of depreciation (obsolescence) of the technology
- How to account for quality change in outputs and inputs?
 - Affects the allocation of returns between producing and using sector

Depreciation of R&D

- Assumption: R&D creates a stock of knowledge (K)
- What is its depreciation?
 - At the firm level, the rate at which returns to *K* decline
 - The result of Schumpeterian competition endogenous to the behavior of competitors
 - Sometimes called private obsolescence
- Do we need to estimate it?
 - Yes, to estimate net rate of return
 - Yes, to construct knowledge stock

Hall (2005) reference

- Measuring the Returns to R&D: The Depreciation Problem, *Annales d'Economie et de Statistique N°* 79/80, special issue in memory of Zvi Griliches, dated July/December. Also NBER Working Paper No. 13473 (September 2007)
- Assumes R&D capital receives a normal rate of return (plus a risk premium)
- backs out depreciation from both production function and market value estimates
 - MV approach qualitative similar results
 - Prod fcn approach depreciation near zero, but badly identified (with an attempt to correct for double counting of <u>R&D</u> inputs)

Productivity framework

- Cobb-Douglas production (first order log approximation to prod function)
- Line of business, firm, industry, or country level
 - At higher levels of aggregation, includes some spillovers
- Variety of estimating equations:
 - Conventional production function
 - Partial productivity
 - R&D intensity formulation
 - Semi-reduced form (add variable factor demand equations)

Productivity framework (cont.)

$Y = AL^{\alpha}C^{\beta}K^{\gamma}e^{u}$

where L = labor C = capital K = research or knowledge capital u = random shock

Productivity framework (cont.)

Take logarithms and model the intercept with year and firm (or industry) effects:

 $Y_{it} = \eta_i + \lambda_t + \alpha I_{it} + \beta C_{it} + \gamma K_{it} + U_{it}$

i = 1, ..., N t = 1, ..., T

Simultaneity: shock *u* may possibly be correlated with the current (and future) input levels.

Correlated firm effects: η may also be correlated with the input levels.

R&D input measurement

- Deflation
 - No good measure of "real" costs of R&D
 - With time dummies, little bias from *R* deflation
- Stock computation (δ assumed =15%)

$$K_{t} = (1 - \delta_{K})K_{t-1} + R_{t}$$
$$\Rightarrow K_{t} \cong R_{t} / (\delta_{K} + g_{R})$$

- Externalities
 - How to measure the external knowledge that is useful to a particular firm or industry?
 - Does leaving this out lead to bias in own R&D coefficient?

Output deflation

Productivity growth regressions at the firm level:

(1)
$$\Delta Y_{it} = \Delta \lambda_t + \alpha \Delta I_{it} + \beta \Delta C_{it} + \gamma \Delta k_{it} + \Delta U_{it}$$

(2)
$$\Delta S_{it} = \Delta Y_{it} + \Delta p_{it} = \Delta \lambda_t + \alpha \Delta I_{it} + \beta \Delta C_{it} + \gamma \Delta k_{it} + \Delta U_{it}$$

where s is revenue and y is deflated output If (2) is estimated instead of (1), we obtain an estimate of

$$\gamma_S = \gamma_Y + \gamma_P$$

The *revenue* productivity of R&D is the sum of

• *true* productivity

January 2012

- the effect R&D has on the prices at which goods are sold due to
 - quality improvements (decreases)
 - product differentiation (increases)

B H Hall – Oslo

Interpretation

- Revenue productivity is a determinant of private returns
- True productivity (more constant quality output for a given set of inputs) is closer to social returns
- The difference represents
 - Negative pecuniary externalities
 - Positive output "stealing" or market power increases due to R&D

Illustration

- Some U.S. deflators at the industry level are hedonic, notably those for the computer industry and now the communications equipment industry (see next slide)
- Deflate firm sales by 2-digit deflators instead of one overall deflator
- Result: true productivity is substantially higher than revenue productivity, because of hedonic price declines in these R&Dintensive industries.

Hedonic Price Deflator for Computers

Shipments Deflators for U.S. Manufacturing NBER Bartlesman-Gray Productivity Database

Estimated R&D Elasticity – U.S. Manufacturing Firms

		Dep. Var = Log	
	Dep. Var = Log	Sales, 2-digit	Difference
Period	Sales	deflators	("price effect")
1974-1980	003 (.025)	.102 (.035)	0.099
1983-1989	.035 (.030)	.131 (.049)	0.096
1992-1998	.118 (.031)	.283 (.041)	0.165

Method of estimation is GMM-system with lag 3 and 4 instruments. Sample sizes for the three subperiods are 7156, 6507, and 6457.

Private firm level returns to R&D

Authors	Country	Years	Rate of return to R&D
Griliches-Mairesse (1984)	US	1966-77	35% *
Cuneo-Mairesse (1984)	France	1974-79	~90% *
Mairesse-Cuneo (1985)	France	1974-79	~128% **
Griliches (1986)	US	1967, 72, 77	51% to 76% *
Hall (1993)	US	1964-90	18% to 43% *
Hall-Mairesse (1995)	France	1980-87	78% *
Mairagea Hall (1004)	France	1981-89	75% *,**
Mairesse-Hall (1994)	US	1981-89	28% *
Harhoff (1998)	Germany	1979-89	71% *
Medda-Piga-Siegel (2003)	Italy	1992-95	29%, 36%
Wang-Tsai (2003)	Taiwan	1994-2000	8% to 35% *,**
Rond Harboff van Roonon (2005)	Germany	1988-96	19%
Bond-Harhoff-van Reenen (2005)	UK	1988-96	38%
Mairassa Mahnan Kramp (2005)	France	2000	16%
Mairesse-Mohnen-Kremp (2005)	France	2000	27%
Griffith-Harrison-van Reenen (2006)	UK	1990-2000	14% *
Do nom (2000)	ик	1989-2000	40% to 58% (mfg)**
Rogers (2009)			53% to 108% (non-mfg)**
Hall-Foray-Mairesse (2009)	US	2004-06	23% *
Ortega-Argilés et al. (2009)	EU	2000-05	35%

* computed from the elasticities using means or medians of the R&D and output variables

timates using capital and labor corrected for double counting.

Unless otherway ented, estimates use uncorrected data.

Market value model

- Assumes market efficiency
- Two versions
 - Theoretical value function from firm's dynamic program as a function of state variables (capital, R&D, etc.)
 - Hedonic value of a set of goods that have a lower– dimensional vector of characteristics – yields a measure of current shadow value of the assets (not stable over time)

Hedonic regression for market value

$$V_{it}(A_{it},K_{it}) = b_t \left[A_{it} + \gamma K_{it}\right]$$

Non linear:

 $log(V_{it}/A_{it}) = logQ_{it} = log b_t + log(1 + \gamma_t K_{it}/A_{it})$

Linear approx.:

$$\log Q_{it} = \log b_t + \gamma_t K_{it} / A_{it}$$

Interpretation:

 $Q_{it} = V_{it} / A_{it}$ is Tobin's q for firm i in year t b_t = overall market level (approximately one). γ_t = relative shadow value of K assets ($\gamma = 1$ if depreciation correct, investment strategy optimal, and no adjustment costs => no rents).

Summary of past results

- Market value positively related to R&D
- Range of estimates for shadow value
 - R&D expenditure coefficient: ~1.5 to 8 or 9
 - R&D stock coefficient: 0.2 to 2
- Wide variability over time and industry
- Substantial variability in specification, making comparisons difficult
 - Intangibles, patents, trademarks
 - Leverage, sales growth, market share

Extracting depreciation rate

- Strong assumptions:
 - Equilibrium in R&D
 - Market efficiency
 - Negligible adjustment costs
 - Only mismeasurement in K is using wrong depreciation rate to construct it

Market value estimates – US manufacturing sector

	K/A		Median	
Period	Coefficient	(s.e.)	depreciation	(s.e.)
1974-1978	0.398	0.028	42.8%	9.2%
1979-1983	0.573	0.028	30.3%	4.9%
1984-1988	0.362	0.029	54.0%	9.0%
1989-1993	0.352	0.033	55.3%	7.8%
1994-1998	0.507	0.040	37.8%	5.5%
1999-2003	0.745	0.044	21.8%	2.9%

Estimated depreciation of R&D for selected sectors

	Drugs & medical	Computers &
Period	instruments	electronics
1974-1978	9.9% (4.2%)	31.9% (8.1%)
1979-1983	19.6% (7.9%)	50.1% (14.5%)
1984-1988	5.8% (3.1%)	88.1% (27.6%)
1989-1993	20.6% (6.6%)	51.3% (8.6%)
1994-1998	18.8% (5.6%)	51.2% (11.6%)

Differences across sectors are plausible, but there is high variability over time.

Returns to R&D

- Private
 - firms do R&D and improve their products and processes
 - have higher sales and/or lower costs
 - returns are amount of additional profit achieved per unit of R&D spending
- Social
 - firms, universities, PROs in the economy do R&D
 - achieve higher profits and other improvements to health, defense, the environment
 - real output increases more than inputs of capital, labor, materials
 - returns are increase in welfare due to aggregate R&D

Why are these two measures different? spillovers

Evidence on social returns

- Early papers show high social returns, using a wide variety of methods
- Most econometric evidence on the direct immediate contribution of public (govt– funded) R&D to private firm returns finds little contribution
 - However, weak identification due to high correlation of company and govt-funded R&D within firms

R&D Spillovers

- From firm to firm in the same or related industries.
 - Reverse engineering
 - Migration of scientists and engineers (e.g., within Silicon Valley)
 - Lower cost imitation of innovative products
- From firms to downstream customers
 - Improved capital equipment (e.g., computers in financial services)
 - Consumer electronics, healthcare (e.g., CT scanner)
 - Much of this welfare increase captured by pricing flows to consumers

R&D Spillovers (cont.)

From govt. and university research to firms

- commercial product improvements from defense R&D (e.g., airframes, satellites)
- scientific base for innovation (e.g., biotech)
- From govt. and university research to consumers
 - via new industrial products
 - directly (environment, healthcare, etc.)

Conclusion: some of the benefits to R&D go to individuals and firms that do not bear its cost.

R&D spillover schematic

Estimating spillover returns

- Usually estimate social = private + spillover
- Construct measures of flows from other sectors or countries based on trade, patent citations, inter-industry investments, etc.
- Weight external R&D measure using these flows
- Include in a productivity regression along with own R&D

Industry estimates of returns

Authors	Sample	Years	Private returns	Social returns
Griliches-Lichtenberg (1984a)	US industries	1959-78	11% to 31% (8%)	50% to 90% (36%)
Odagiri (1985)	Japan industries	1960-77	157% to 315%	-606% to 734%
Sterlacchini (1989)	UK industries	1945-83	12% to 20%	15% to 35%
Goto-Suzuki (1989)	Japan industries	1978-83	26%	80%
Bernstein (1989)	Canada industries	1963-83	24% to 47%	29% to 94%
Bernstein-Nadiri (1989)	US industries	1965-78	7%	9% to 13%
Mohnen-Lepine (1991)	Canada industries	1975, 77, 79, 81-83	56% (5% to 275%)	30% (2% to 90%)
Wolff-Nadiri (1993)	US industries	1947, 58, 63, 67, 72,77	11%-19%	0%-14%
Bernstein-Yan (1997)	Canada industries	1964-82	17.2%	62% to 183%
	Japan industries	1964-82	17.4%	9% to 56%
Bernstein (1998)	Canada industries	1962-89	12.8%	19% to 145%
	US industries	1962-89	16.4%	28% to 167%
Bernstein-Mohnen (1998)	Canada industries	1962-86	44.0%	47%
	Japan industries	1962-86	47%	0%
Griffith-Redding-van Reenen (2004)	12 OECD countries/ 11 industries	1974-90	47% to 67%	57% to 105%

Conclusions from this literature

- In general, the social returns to most R&D investments are greater than the private returns.
 - Gap varies by industry and type of research
 - some R&D investments have high private returns and do not need to be subsidized.
- Some kinds of public research spending (academic science; advanced training) have very high social returns, some of them geographically concentrated.
- R&D process is highly uncertain; probability of success not sensitive to fine financial tuning; project choice is difficult, for firms or government agencies.

Some remaining questions

- Quality-adjusted price deflators and their effect on measured R&D contribution.
- How do we target the marginal project? If we are going to subsidize some (pre-)commercial projects, how should we choose and evaluate them?
- Conflict between the goals of the firm (product differentiation) and those of society.
- Short run response to R&D subsidies is an increase in the wage of R&D workers (elasticity ~.2). How does the long run play out?

Growth accounting intro Supplementary slides

Introduction – Growth Accounting

In developed economies, over half of output growth cannot be explained by growth in conventional inputs.

- Correcting the inputs (labor and capital) for quality improvement leaves about a third unexplained.
- Presumption: unexplained growth AND quality improvements are a result of research and technological activity, broadly defined.
- Thus our interest in the R&D-Growth relationship.

Basic growth accounting (1)

Assume the economy can be described by a "production function" with technical progress A(t) and two inputs, capital C(t) and labor L(t):

Q(t) = A(t)F[C(t), L(t)]

Q(t) is aggregate output (GDP) in year t

Labor *L(t)* is measured in person-hours or number of workers.

Other inputs such as energy or materials can be included Productivity level A(t) grows over time

=> more output for a given level of capital and labor

Basic growth accounting (2)

What is the growth of output as a function of the growth of labor and capital?Differentiate output Q(t) with respect to time t, using the chain rule. Express the result in terms of growth rates:

$$G_Q = G_A + \varepsilon_C G_C + \varepsilon_L G_L$$

where elasticity is defined as $\mathcal{E}_{\chi} = \frac{d \log Q}{d \log X}$

in competitive markets, ϵ_{χ} = share of X in output; competitive assumption can be relaxed somewhat

How do we measure this?

- output:
 - sum over sales of all final goods and services in the economy
 - sum value added in each sector
- capital:
 - sum over plant and equipment
 - sum over imputed rental cost (depreciation plus interest rate or required net rate of return)
- labor:
 - number of workers
 - number of worker hours

Measurement issues

- input utilization
- price deflation
 - Values from National Income Accounts = P^*Q
 - Choice of deflator *P* affects measurement of real output *Q*
 - similarly for real capitals C,K
- quality change
 - Capital, output, labor today not the same quality as that in earlier years
- aggregation
 - Can sum values (in the same units)
 -but cannot sum different kinds of output or capital types – must convert to real value

Growth accounting example

Aggregate US Data 1900–1949 (Solow, with elasticities equal to shares):

$$G_{A} = G_{Q} - S_{C}G_{C} - S_{L}G_{L}$$

$$= 2.75\% - (.35) 1.75\% - (.65) 1.00\%$$
$$= 2.75\% - 0.61\% - 0.65\%$$
$$= 1.49\%$$

Implication: slightly more than half of output growth is not explained by growth in capital and labor inputs. This quantity (G_A) is often called the "residual" or "total factor productivity growth."

43

Growth Accounting for the US 1960–2001

	Growth rate	Growth due to			Growth rate	
Period	of GDP	Capital	Labor	TFP (A)	of GDP/worker	
1960-1970	4.0	0.8	1.2	1.9	2.2	
1970-1980	2.7	0.9	1.5	0.2	0.4	
1980-1990	3.5	1.5	1.3	0.6	1.7	
1989-1995	2.5	1.2	1.0	0.3	1.5	
1995-2001	4.2	2.1	1.1	1.0	2.7	
Source: Jorgenson (2004)						

These estimates have been corrected for changes in capital and labor quality.

Contribution of R&D & ICT to growth - France

	1980-1990	1990-1995	1995-2000	2000- 2002			
Growth in VA	2.63	0.48	2.55	1.61			
Contribution from:							
R&D	0.08	0.10	0.05	0.06			
ICT	0.08	0.03	0.12	0.25			
Adjusted for quality improvement, using social deprec. rate:							
R&D	0.34	0.42	0.32	0.33			
ICT	0.14	0.11	0.22	0.38			

Scope: Business Sector

Source: Kocoglu and Mairesse (2004) – calculations based on National Accounts and OECD (for R&D)

B H Hall – Oslo January 2012

Contribution of R&D & ICT to growth - United States

	1980-1990	1990-1995	1995-2000	2000- 2002			
Growth in VA	3.09	2.41	4.28	1.13			
Contribution from:							
R&D	0.11	0.07	0.10	0.14			
ICT	0.21	0.14	0.37	0.41			
Adjusted for spillovers, quality improvement:							
R&D	0.47	0.41	0.46	0.57			
ICT	0.33	0.30	0.60	0.67			

Scope: Business Sector

Sources: Koceglu and Mairesse (2004) – calculations based on National Accounts and OECD (for R&D)

B H Hall – Oslo January 2012

Private returns to public R&D (1)

- Measured returns to govt.-funded R&D performed by private firms (contract R&D for defense, space, etc.):
 - zero at the firm or industry level in the U.S. (Bartelsman, Griliches, Lichtenberg, Nadiri and Mamuneas, etc.)
 - zero using cross-country data (Lichtenberg 1993)
 - zero for Canada (Hanel 1994), Norway (Klette 1991, 1997), Germany (Harhoff 1993), but positive for France (Hall and Mairesse 1995), Israel (Griliches and Regev)
- most studies use TFP methodology with measures of govt. funded R&D together with private R&D
 - Due to high correlation between private & govt R&D across industry, identification often weak

Private returns to public R&D (2)

- Individual case study evidence shows that contribution can be large
 - Mowery (1985) on commercial aircraft spillovers
 - Hertzfeld (1985) on communications satellites
 Etc.....
- Why the difference?
 - long and variable lags
 - diffuse benefits outside the industry of origin
 - measurement difficulties (deflators again)
 - problems defining and measuring the appropriate R&D input cost
 - focus on successes

Social returns to public R&D

- Defense, space, environment, etc. output not measured.
- Science and basic research some earlier work
 - Adams (1990) stocks of scientific articles enter into related industry productivity with long (20 year) lags. Social returns average 70-80%, but very disperse.
 - Mansfield (1995) direct traceable returns to academic R&D about 20–30 percent, ignoring longer lags, other spillovers, spillovers outside U.S., etc.
 - Griliches (1986); Lichtenberg & Siegel (1991) basic research has higher returns than ordinary R&D at firm level in US.
 - Hall & Mairesse (1995) French firms with a large share of basic research have lower productivity.