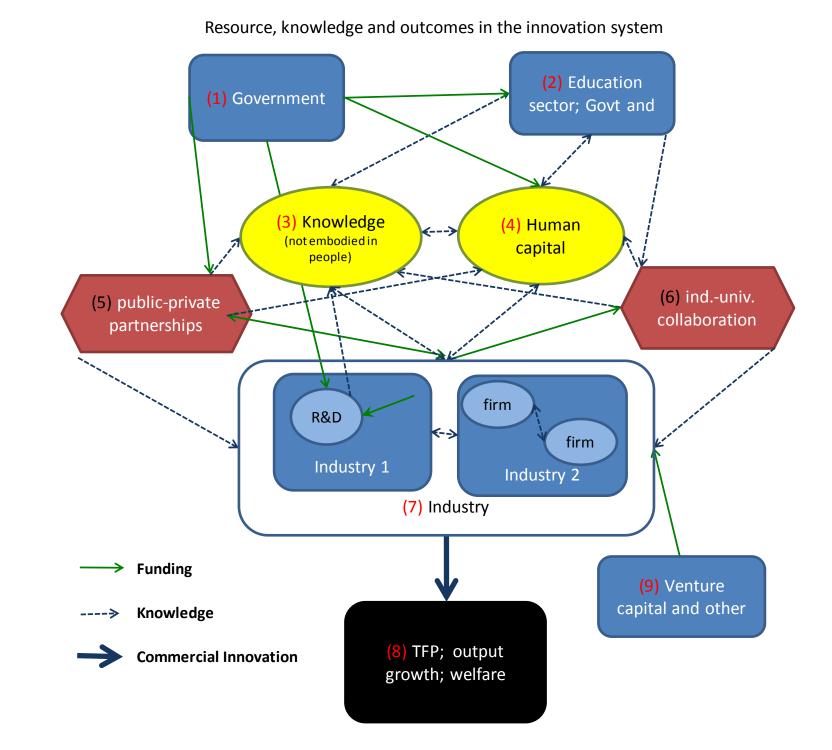
Measuring Science, Technology, and Innovation: A Review Bronwyn H. Hall (UC Berkeley and NBER) Adam Jaffe (MOTU NZ and NBER)

Overview

- Desirable characteristics of indicators
 - How are they to be used?
 - Data collection and quality issues
- Framework for the STI system
- Existing US indicators and gaps
- Policy uses of indicators

Uses of STI indicators


- Performance assessment and benchmarking
- Informing public policy decisions
- Informing private sector decisions
- Academic research
 - Micro-level information desirable
 - Matched to firm and individual data

Data collection

- Passive lower respondent burden, less gaming:
 - As a by-product of other activities (e.g., accounting data)
 - Via public sources or web-scraping (e.g., patent data)
- Active higher respondent burden but possibly better targeted:
 - Surveys government or private

Data quality

- From Griliches (1986)
 - Extent how long collected, how broad is coverage, etc.?
 - Reliability signal-to-noise in the data, would it be reproducible?
 - Validity relevance and representativeness
 - Added to this list by the Capturing Change report – Accessibility

Growth accounting framework

Very simplified model:

$$g_Y = \alpha g_C + \beta g_L + \gamma g_K + e$$

Y =output, C =physical capital, L =labor input

K = a measure of knowledge assets

g = growth rate

e = any output growth that cannot be explained by the inputs.

Measuring α , β , γ :

Growth accounting – assume normal returns and estimate by shares of output (the *input cost* approach)

Micro-econometric – estimate via a production function (the *output contribution* approach)

Limitations of growth accounting

- Assumes normal rates of return is this appropriate for intangible inputs like R&D?
- Omits unpriced output (e.g., health and environmental improvements)
- A black box obscures the function of the underlying STI system
- Linear versus feedback (chain link) model
 - Inputs are things subjet to policy intervention
 - Outputs, less so, and rather unpredictable

Current US indicator coverage

- Resource flows well covered, with breakdowns into source and use of funds
 - Flows within sectors less well measured
 - Non-R&D inputs not measured
- Human capital formation and knowledge output also measured fairly well, but proxies may be distant from the underlying concept

• E.g., counts of degrees, papers, patents, etc.

 Innovation output or success much less well measured; fewer if any indicators

Gaps in US STI indicator coverage

- Innovation, at least until recently
- Service sector
- Non-R&D inputs to innovation
- Timeliness
- Linkages (networks, licensing, JVs, etc)
- Knowledge advance in non-GDP areas
- Capital for financing innovation (angel finance, private equity?)
- Exports and imports that is, allocation of value added

STI Indicators for policy

- Overall level of public investment in R&D
- Overall level of public investment in education and training
- Allocation of both by scientific or technological fields
- Allocation of public R&D investment by performer
- S&T policy choices beyond spending
- Immigration policy
- Indicators for universities and firms