
ANNALES DE L'INSEE - N? 30-31/1978 

A general framework 

for the time series 

cross section 

estimation 

Bronwyn H. HALL * 

This paper presents the design of a program to 

handle the specific estimation problems asso 

ciated with time series-cross section data. In 

order to minimize the costs of dealing with this 

kind of data, the program design relies on the 

forming of the appropriate moment matrices by 

summing over one or the other dimension, 

weighting or not, as desired. It is shown how 

this method may be used to estimate several 

different models, such as OLS with individual 
constant terms, GLS, Balestra-Nerlove, and 
the variable coefficients model of Mundlak. In 

addition, the method is extended to a nonlinear 

model, the binary probit model with variance 

components. 

* Harvard University. Finan 

cial support was provided by 
the National Science Found 

ation and the Hoover Insti 

tution. I am grateful to Gary 

Chamberlain, Zvi Griliches, 
Robert E. Hall, Jerry Hausman, 
and Yair Mundlak for helpful 
discussions. 



I. INTRODUCTION 

Estimation with time series-cross section data is now 

generally done by researchers using conventional regression 

packages. The constraints of such programs usually mean that 

the user is restricted to methods which pool the data, treating 

all observations alike. If he wishes to use dummy variables to 

model the differences among individuals, firms, or regions, the 

number of variables needed usually exceeds the space available 

in his program, and he must "sweep" them out before running the 

regression. In any case, he finds himself yery restricted in 

the kinds of models he can estimate which exploit the two 

dimensional nature of his data. The design of a program 

specifically for time series-cross section data, TSCS, is pre 

sented here. This program is capable of estimating models with 

fixed effects or random effects; such models may be the usual 

linear ones or they may be nonlinear. The specific application 

of a nonlinear model which is presented is that of the binary 

probit model, where the dependent variable is a 0-1 dummy vari 

able. In addition, it is shown how the program can be extended 

to handle the problem of variable coefficients described by 

Mundlak (5), where the slopes as well as the intercepts are 

allowed to vary over individuals. 

The important simplifying assumption of TSCS is that while 

intercepts and slopes are allowed to vary across the cross sec 

tion dimension, they remain constant over time. This means that 

the data may be summarized as a set of N moment matrices, one 

for each individual, and the N group mean vectors. Obviously 

for many panel data problems (data on individuals over several 

years) this amount of data will not fit into the computer memory 

usually available. TSCS is designed with this in mind and does 

not form all these moment matrices at once; it assumes that the 

data have been organized on tape with the time dimension varying 

most rapidly (the observations of different years for an indivi 

dual are adjacent) and it passes through the tape forming sums 

of the N moment matrices and sums of the moments of the group 

means. As an option, these may be weighted sums, which enables 

the program to handle the problem of heteroskedasticity of the 

residuals, as well as data which are unbalanced (a different 

number of years observed for each person). If the number of 

time units is small, the weight for the moments may be a T by T 
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matrix, this would allow for GLS estimation to correct for 

serial correlation, for example. 

II. ESTIMATION OF THE tINEAR MODEL 

The basic linear model is specified as follows: 

(1) yu 
= 

Xu3 
+ 

ai 
+ 

un 
1 = 

1,...,N t=l,...,T 

Ui 
^ N(0, a? 

IT). 
9 

The variance of u-, a-, may or may not be constant across 

individuals. The a- are the individual intercepts which can 

have a distribution imposed on them, yielding the variance com 

ponents model, or can be left free to be estimated as individual 

constants. As we shall see below, some of the assumptions of 

this model can be relaxed and it will still be estimable in the 

computer program described here. These assumptions include the 

linearity of the model, the homoskedasticity of the residuals 

for the ith individual, and the constancy of 3 across the indi 

viduals. In this section I will describe the estimation of the 

simple model shown above, and later sections will show how to 

generalize the program for more complicated models. 

In the following I assume that there exist data on N time 

series, each T in length. The data are stacked in the follow 

ing manner: 

y' = 
[y\ y? 

- 
y^] 

where each y. is a length T column vector, and simi1arly for the 

X-. There are K independent variables X, including the constant. 

A TSCS subroutine is avai1able to form the overall moment matrix 

X'X (including y'y and X'y) as well as the moments of the group 

means, 1 T.X'.X,. . Some desirable estimators whi ch can be obtained 
i ill 

with these matrices are described below: 

1. Constant coefficients with no individual differences among 

groups (pooled OLS) 

Obviously, this estimator is available in any standard re 

gression package. It is included here mainly because it might 

be wanted for comparison to the more complex estimators. The 

model is 
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<2> *it 
= 

xit? 
+ 

uit 
2 

where u ^ (0, a 
INT) 

The appropriate estimator is 

i = l ,. . . ,N; t=l ,...,T 

(3) J0 (X'Xj'Vy 

The only moments needed are those over the entire sample for 

X'X, X'y, and y'y. 

We can relax the assumption of constant variance of the 

residuals across the groups: 

u ^ (0, e) 
2 

E = 
diag(ai IT). 

Then the appropriate estimator is the GLS estimator 

(4) 
bg 

= 
(X'z^X)"1 X'z^y 

which reduces to weighted least squares in this case because of 

the diagonal ity of I: 

[5) 
N -2 N 

-2, = 
Lm? 

o'? (X'X).]-' I aT'(X'y 
i=l i = l 

This estimator requires estimates of the variances a. and also 

the N individual moment matrices (X'X).. The variance estimates 
2 

a. can be obtained by using the pooled OLS estimates above and 

the GLS estimator calculated as a second stage, which requires 

another pass through the data. Under the assumption of the 

model, this estimator is BAN. Alternatively, the user can supply 

estimates of the N variances or variance matrices as weights to 

be used in the regression. 

2. Fixed Effects Model 

This model assumes that the slopes are the same for all 

groups, but that the intercepts differ. The model is 

(6) *n 
= 

xit^ 
+ 

ai 
+ 

uit> 
where u. is again I ID. 

The a.'s (individual constant terms) can be considered to be 

coefficients of dummy variables which are 1 for the ith group 

and zero otherwise. If the model is formulated in this manner 

and an NT by K+N data matrix X is constructed, the OLS estimator 

of 3 and a i s obtai ned: 

i-l r 1, 

(7) 
r 

j-X'X 

N 

rX'y 
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where X is the matrix of N group means for K variables and y i: 

the vector of N means of the dependent variables. The expres 

sions for b and a simplify to the following: 

(8) bw 
= (X'X -'TX'xr1 (X'y 

- 
TX'y) 

a = 
y 

- Xb . 

This is the well-known result that the slopes for the fixed 

effects model can be obtained from the "within-group" regres 

sion : 

bw 
= 

[(X-X 0 eT)(X-X ? 
eT)]"1[(X-X 

? ej)(y-y ? 
eT)] 

s a column \ 

estimator is given by 

(9) Var(bw) 
= 

?w(X'X 
- 

TX'X)'1 
where 

where 
eT 

is a column vector of T ones. The variance of this 

~2 1 
\ (NT-N-K) [(y'y-Ty'y) 

- 
b'(X'y 

- 
TX'y)]. 

3. Variance - 
components estimation 

The fixed effects model described above can also be viewed 

as an error components model where the a- are to be interpreted 

not as individual constants, but as random disturbances associ 

ated with the ith individual or group. This is the model 

described by, among others, Wallace and Hussain (6), Balestra 

and Nerlove (1), and Mundlak (4). The formulas I am using for 

estimation here are drawn from section 5 of the Wallace and 

Hussain paper, I have simplified the model to include only a 

random individual effect, but not a time effect. This is more 

typical of panel data models, where there are usually only a 

few years observed for any one individual. 

Following Wallace and Hussain, the model in equation (6) may 

be rewritten as 

(10) 

where 

'it 
= 

Xit* 
+ 

Ht' eit 
= 

ai 
+ 

wit 

e ^ (0,2) , I = 
a2 I . + 

a2(I ? J.) oo nt av n tJ 

and J. is a T by T matrix of ones. The appropriate estimator 

of this model is generalized least squares, which takes account 
2 

of the heteroskedasticity of e... Usually the variances a and 
2 

U a 
a are not known, however, and must be estimated from the data 

before being used to form an estimate of I. This estimate is 

then used in the usual way to obtain GLS estimates of the 

coefficients of the model in equation (9): 

(11 bvc 
= 

[X' F1 X]"1 X' r1 y. 
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This equation may be simplified by using the block structure of 

I when obtaining the inverse: 

-1 = ̂  il ^2 L1nt 

a'2 
a 

~2 + "T2 a + Ta 
?) a 

nn ? Jt ']. 

If we let 

(12) y 

then the variance of g may be written as 

?2/(?2 + 52/T) a a a) 

(13) 

Var(b 

vc 

vc' 

[X'X 
- T X'X]"1.[X'y 

- T X'y] 

S2[X'X T X'X] 
1 

These formulas are yery convenient computationally, since they 

involve only the overall moments of the data X'X and X'y and 
- - - - 3 

the moments of the N group means X'X and X'y. 

There are two alternative ways to estimate the variance com 

the limited information and full information 
2 2 

ponents a and a 
a 

methods described by Mazodier (3). The limited information 
"> 2 

method uses the within regression to obtain a (equation (9)' 

and the between regression to estimate 5 : 
a 

(14) S2 
- -1 

[y'y y'X (X'X)"1 X'y] 
- 

a2/T. ua (N-K-i; 

This method ignores the fact that the slope coefficients in both 

regressions should be the same according to the model. The full 

information method imposes this restriction by using the resi 

duals from pooled OLS to estimate the variances: 

.2 _ 1 
(15) 

(16) 
~2 a a 

(NT-N-K) [y'y-y'Xb0- T(y'y 
- 

2y'X bQ 
+ 

bQ 
X'X 

bQ)] 

fNTibry [y'y - 2*'x bo 
+ 

bo 
*'* 

bo] 
- 

^/T 

As Mazodier has shown, either of these two estimators for a 

2 
a 

and a imply the same properties for the slope estimates bw? ?) V C 

when used to compute y; in particular, b is unbiased and 

asymptotically equival ent to the "true" GLS estimator. They 

both also have potentially the same difficulty in actual compu 1 2 
tation: the estimate of a may turn out to be negative since 

it is obtained as the difference of two variances. This is par 

ticularly true when T is small. The only feasible solution to 
-2 

this problem would seem to be to set a to zero, which of course 

just gives us back pooled ordinary least squares estimates and 

raises some doubts about the original specification of the model. 

TSCS flags this problem and goes ahead to compute the OLS esti 

mates . 
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In estimating the variance components model, TSCS proceeds 

in general by obtaining both sets of variance estimates, limited 

information and full information, and presents them for compari 

son by the user. This creates an obvious programming problem: 

for pooled OLS and for variance components there must be an 

overall constant in the model, while for fixed effects (the 

within regression) such a constant is not identified in the 

presence of the complete set of N dummies. Other variables 

which do not change over time for an individual present the 

same kind of problem in the fixed effects model, but their 

slopes are identified in random effects. TSCS handles this by 

including all these variables in the within regression and using 

a generalized inversion subroutine when computing the regression. 

This subroutine zeroes the corresponding row and column of the 

variance matrix when it finds a zero element along the diagonal 

of the moment matrix when factoring it for inversion. The cor 

responding estimated coefficient and its standard error are then 

zero and the ^program adjusts the degrees of freedom for the re 

gression accordingly by examination of the standard errors. 

This avoids having to respecify the model and reform the moment 

matrices for the fixed effects estimation. 

We have presented the simple fixed effects and random effects 

models in some detail in order to demonstrate with a familiar 

problem how the design of TSCS works with time series-cross sec 

tion data. In the following section we describe the exact 

design of the program and then give another example of its use, 

this time on a less familiar estimation problem, which has 

probably not been programmed previously for time series-cross 

section data. 

III. DESIGN OF THE PROGRAM 

A schematic diagram of TSCS and its subroutines is shown 

in Figure 1. In the following we will briefly describe the 

normal program flow of TSCS. The first thing the program does 
is read in a description of the data file for the run: the 

variable names and their locations; thereafter the variables can 

be referred to by name rather than by location. The data file 

may include many more observations or variables than will 

actually be used; the only requirement on its structure is that 
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the observations for each individual or group be in sequence on 

the file, with no intervening observations from another group. 

There is one data file per run, but many different models may 

be estimated using the same file. 

The program then proceeds by reading the name of the proce 

dure desired, any options associated with it, and the list of 

variables to be used in the current model. Subroutine READ is 

then called to select these variables off the tape and write a 

temporary scratch file containing only the observations and 

variables needed. READ invokes an optional user-written sub 

routine which provides the user the ability to recode variables 

or reject observations. This can be extremely convenient when 

dealing with a large cross section file; however, it is a some 

what inefficient procedure for doing non-iterative regressions, 

since the scratch file would have to be rewritten every time the 

specification is changed. There is room for some flexibility 

of design here; for example, we might wish to define a scratch 

file containing observations on a larger set of variables for 

which we wish to form moment matrices and then execute a series 

of regressions using various submatrices of these moment 

matrices. This idea is made more concrete when we describe a 

proposed command language for TSCS in the following section of 

the paper. 

In addition to writing the scratch file of data the READ sub 

routine is responsible for generating the vector T., the number 

of observations per group, if the user has specified that his 

data are unbalanced. READ does this by looking for a variable 

named SERIAL, where all observations with equal SERIAL are 

assumed to be in the same group. If this variable is not pre 

sent, READ looks for the variable TIME which is assumed to 

increase within a group but decrease as soon as a new group 

begins. If neither variable is present, an error is flagged. 

After the scratch file containing the data has been written, 

TSCS invokes the desired* procedure. At present there are four 

such procedures: 

OLSICT Ordinary least squares with individual constant 

terms ("within" regression) 

VARCOMP Variance components estimation (this yields also 

the pooled OLS regression and the "within" and 

"between" regressions) 

PROBFE Probit estimation with fixed effects 

PROBRE Probit estimation with random effects. 

Each of these procedures in turn invokes MOMREG to form the 

total moment matrix and the moments of the group means; the 
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arguments to this subroutine are described in detail in Appen 

dix A. MOMREG is capable of passing through a time series 

cross section data set and forming both the overall moments and 

the moments of the group means for a set of specified variables. 

The moments are obtained in a form suitable for use in a regres 

sion subroutine, i.e., the matrix X'X, the vector X'y, and the 

scalar y'y. The subroutine assumes that the data are organized 

in a form which lets it determine group means for each group in 

turn: all years for each individual appear in sequence on the 

file. The sums of both the total moments and the group mean 

moments may be optionally weighted. The weights are either 

supplied to MOMREG by a calling routine or they are created by 

the subroutine which supplies the data vector. In addition to 

returning the total moment matrix T and the between matrix B , 

ifference, which may also be weighted: 

enient calculation of the fixed effects 

ar regression model, for example, 

ed to MOMREG in the following way: the 

MOMREG the name of a subroutine which will 

el and this subroutine is invoked by 

to supply the current vector X and the 

The subroutine may also supply a weight 

observation in the forming of the T 

observations MOMREG adds the cross pro 

s to the B matrix; a weight for these may 

d by the data subroutine when the current 

observation is the T.th observation. The arguments for this 

subroutine, whose generic name is OBSCLC, are also given in 

detail in Appendix A. OBSCLC obtains the i,tth data vector by 

calling an entry point READER in the subroutine READ which reads 

the temporary scratch file. 

The variety of weighting schemes available to MOMREG provide 

a convenient and flexible way in which to handle both GLS, dif 

ferent weights for different groups, and the unbalanced data 

problem, where the (X'X). are to be weighted by T.. A new model 

may be programmed merely by coding a subroutine of the form of 

OBSCLC to read the data and compute the i,tth observation. The 

next section of the paper shows how this is done for a particu 

lar problem, specifically the maximum likelihood estimation of 

a binary probit model with fixed and random effects. 

After the procedure being executed has obtained the total 

moments and moments of group means from MOMREG, several utility 

MOMREG returns their d 

(17) Wx 
= 

WlTx 

- 

This provides for conv 

or random effects line 

The data are suppli 

calling program gives 

supply the current mod 

MOMREG NT = 
I T. times 

dependent variable y. 

to be applied to each 

matrix. After each T. 

duct of the group mean 

also have been supplie 
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routines are available to do the desired estimation and print 

the results. These subroutines are described in Appendix A. 

The most important of these is REGCLC, which does a regression 

calculation, given a matrix Q of order K by K and a vector g of 

order K *by 1 : 

(18) Q-V 

REGCLC is also supplied with the sums of squares of the dependent 

variable and the names of the matrix rows or columns for label 

ling of output. If the CONSTANT is present in the list, REGCLC 

can also present the usual regression statistics, such as the 
2 

R , the standard error of the regression, and the mean and 

standard deviation of the dependent variable. In any case it 

calculates the sum of squared residuals as y 
- 

gQ_1g. 

When doing estimation with fixed or random effects, the user 

may be interested in the estimates of the constant terms, as well 

as the slope estimates. For this reason the subroutines ALFCLC, 

which calculates the vector of constants 
a^ 

, and APRINT, which 

displays them, are provided by TSCS. The equations used by 

ALFCLC have the following general form: 

:i9) ri^i X.b). 

Y- is the weight to be applied to the ith group mean; for fixed 

effects it is equal to unity and for random effects it is given 

by equation (12). The calculation of the intercepts a in general 

requires passing through the scratch data file and should be 

done only when the user so specifies. In that sense, it is 

analogous to the calculation and printing of residuals in a 

conventional regression program. It may also be desirable to 

present a frequency distribution of the a.'s after they have 

been calculated instead of, or in addition, to printing them. 

We have presented here only a rough outline of the execution 

of TSCS; the actual subroutines may be linked in a variety of 

ways depending on the sequence of estimations desired by the 

user. In a later section of this paper we suggest some ways to 

specify the desired operations in a convenient manner. 
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IV. ESTIMATION OF THE BINARY PROBIT MODEL 

As an example of how TSCS may be used to program estima 

tion methods other than linear regression, I will describe the 

design of a procedure which does maximum likelihood probit 

analysis of covariance. Chamberlain (2) has proposed several 

iterative methods for estimating the parameters of the following 

model : 

(20) >1t 

"it 

XitB 
+ 

ai 
+ 

uu 

n(o, r 

i = l ,. . .,N; t=l....,T 

The dependent variable y is not observed, but a dummy variable 

related to y is: 

rl 
D 

it 
0 

if yit >- o 

if 
yit 

< o. 

This is the conventional binary probit model with one change, 

the substitution of the individual constants a. for one overall 

constant. This change has the effect of greatly increasing the 

number of coefficients to be estimated (N + K rather than K+l). 

The usual way to estimate this model is to apply the Newton 

Raphson method to the problem of maximizing the log likelihood 

functi on 

;21) In L = 
I In F(X..3 + a.) + I 1n(1 

- 
F(X . .? + a.)] 

Dit=0 

where F is the cumulative of the normal distribution, with 

respect to the parameters & and a. 

In this particular case, the Newton-Raphson method has the 

obvious disadvantage of requiring calculation, storage, and in 

version of a Hessian of In Lwhich is of order N+K by N+K, rather 

than K+l by K+l. The methods for maximization of In L proposed 

by Chamberlain avoid this difficulty by separating the iteration 

or the parameters into two steps, one an update of the $'s, and 

the second a group by group update of each a.. This method of 

breaking up the iteration is similar to that described in the 

previous section for estimating the linear fixed effects model 

and can fit easily into the proposed framework of TSCS. 

The 3 iteration proposed by Chamberlain takes the following 

form : 

(22) 
r + 1 *r * 

\] "U 

NT (X'X 
- 

TX'X) 
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?x\ 
- 

?V <*V Tx1/) 

i|i for the (r+1) iteration is the gradient of the log likelihood 

with respect to the "predicted" y from the rth iteration, 

pit xit?r 
+ 
V 

(23) 
f(p; 

it 
it' f(PV 

F(P^) 
Dit 

it' 

1-F(P 
(1 

DU). 
itv 

It can easily be seen that the expression for the update to the 

3 vector is just a regression calculation for a "within" regres 

sion of i|>. it *i 
on 

Xit 
X.. Therefore, this method may be 

implemented in TSCS by coding a new subroutine for MOMREG which 

returns the X.'s of the model and, instead of the 
y-?t's, 

the 

current value of \?>. . as a function of the X's and the current 

a' s and 3's. 

The method is iterated by a procedure which loops over the 

desired number of iterations until convergence of the 3's is 

achieved. The order of the iteration is as follows: 

(1) MOMREG is called to form the X'X, X'*, X'X, and X ' ji mo 

ments and their differences by invoking the new subroutine, whi ch 

we shall call PAC (Probit Analysis of Covarianee). Note that 

for this method, the X'X moments need only be formed once, and 

the appropriate flag should be set in the call to MOMREG to 

accomplish this. 

(2) The regression calculation routine, REGCLC, is called 

to compute the update vector for 3 using equation (22). 

(3) The a vector is updated with the new change in 3, d?r 

using the following equation: 

,r+l 

(24) 
r+1 

a. + 
ipi 

- 
Xi 

d3 

This is accomplished by the subroutine ALFCLC, the same subrou 

tine used to calculate the individual constant terms in the 

linear fixed and random evffects models; i?>. replaces y. and d? 

replaces 3 in the calling sequence. 

(4) Following the calculation of the a's, the ? vector is 

updated by d and convergence is tested for in the usual manner: 

.?r+1 
. r 

d?j /ej| 
< e j = 1.K 

where e is a tolerance prespecified by the user. 

This iteration technique can be used for any iterative pro 

cedure where the iteration is capable of being partitioned into 

separate updates for 3 and a. This would include, for example, 
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an arbitrary nonlinear model with additive individual constant 

terms. 

An alternative to the previous algorithm for estimating the 

binary probit model with fixed effects is the following scoring 

algorithm, also due to Chamberlain. Let e.. be the "residual" 

of the observed dummy and the prediction evaluated at the cur 

rent 3r and a : 

Dit 
- 

FC?t* 
(25) e.t 

= 
-^-?!l_. 

We define 0.. = V ( ̂  ) = E ( 3ip/ 3 P ) also evaluated at the current 

parameter values: 

f(prt) f(p-t) (26) 8 - U U 
1t 

F(pft) (l-F(P?t))" 
Then the scoring algorithm for this model gives the following 

iteration on 3: 

(27) d?r = 
Wy W|T 

Wr WX 

'X Xe 

lt eitXitXJt ] 
9iXiXi 

WXp 
= 

I e X e' - I e X i' xe it itxiteit ixiei* 

X. and ?. are the group means of X.. and e.., weighted by e-t 

and b. = 
l e1t. 

This algorithm may be installed in TSCS by changing the pre 

vious variables slightly and using the weighting features of 

MOMREG. We form the moments of 
?itX.. 

and e . .e. . , weighted by 

1/e.. and the moments of 2 e-^X.. and J en-4.e.. weighting these It T t "^ it 
by 1/1 e.t. 

A new subroutine of the OBSCLC form, PACNR, is 

written to calculate these terms. The procedure PROBFE can then 

iterate in.the same way as described previously except that the 

update for the a vector now becomes the following: 

(28) a.j 
= 

ai 
+ e.. 

- 
Xi d? 

where X- and ?. are again weighted means. 

These two algorithms for probit with fixed effects have been 

tested on an actual problem with the number of individuals 

N=1413, T=5, and the number of variables K=2. Both performed 

fairly well, the second algorithm converging more rapidly than 

the first. The number of iterations, central processor time, 

and cost of both on an IBM 370/168 is shown in the table below: 
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Algori thm 
Iterations to 

convergence CPU seconds Cost 

EM 

Scoring 

16 

5 

60 

25 

$18.56 
8.13 

The fact that the EM algorithm took many small steps in the same 

direction as it neared convergence suggests that its performance 

might be improved by the use of an algorithm to determine the 

optimal step in $ or a or both. The scoring algorithm, which is 

a close approximation of the Newton-Raphson method, seems to 

work quite well with a stepsize equal to unity. The other advan 

tage of this method is that the inverse of 
Wx 

evaluated at 3 and 

a corresponding to the maximum of the likelihood function is the 

estimate of the variance-covariance matrix of 3. 

V. ESTIMATION OF A VARIABLE COEFFICIENTS MODEL 

In this section of the paper we relax the assumption that 

the slopes (3) are constant over all individuals and allow them 

to have a dependence on the levels of a particular individual's 

X's. This leads to the design of a new subroutine for the cumu 

lation of moments, which is similar to MOMREG, but which we shall 

call MOMVAR. Following Mundlak (5), we write the data matrix X 

as a partitioned matrix 
[Zi 

, 
x!J*] 

where the last r components of 

X correspond to coefficients which are the same for all indivi 

duals and the first p (the Z. matrix) correspond to the variable 

coefficients. There are a total of K=r+p variables in the model. 

The model for the ith individual can be written: 

(29) [1, X[) 
+ 

Ziai 
+ 

U1 

or y. 
= 

X.? + 
Z^. 

+ 
ui 

. 

The a's are given by an auxiliary regression, which describes 

their dependence on the individual's mean X.; the 3P vector 

represents the overall mean of the variable coefficients and the 

a.'s are deviations from this mean for each individual: 

(30) ai 
= 

(Ip a x?)?? 
+ 

wi 

There are p such equations for a. These equations may be com 

bined with equation (28) above to yield Mundlak's estimating 
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equation (6.4): 

(31) yi 
= 

X^ 
+ 

Z^Ip 
0 X:)ir + 

Ziwi 
+ u. 

or 
yi 

= 
?.y 

+ 
ei. 

Note that the vector of group means X'- in Mundlak's paper ex 

cludes the constant; it is convenient when programming this 

method to rev/rite X- as 

(32) 
Xi 

= 
X.Bi 

where 
Bi 

= 

and the first p variables in X- have variable coefficients while 

the last r are constant over all individuals. The vector 
Xj 

contains all K of the variable means; hence X- is of order T by 

pK+r. 

The error term in the above equation is given by e. = Z.w. +u. 

where 

w. ^ N(0, a ) 

and 

ui 
* N(0, a? IT). 

The variance-covarianee matrix associated with e- is therefore 

(33) I, 
- 

o] iT 
+ 

Zi 0p 
z:. 

Obviously, this matrix violates the assumption of homoskedas 

ticity across the groups which is needed to make ordinary least 

squares the efficient estimator, so the desired estimator is 

GLS. In order to use GLS, however, estimates must be obtained 

for the variances a-, and for n , the variance-covarianee matrix 

of the residuals form the auxiliary regressions. Mundlak sug 

gests that the estimates of a- and a be obtained from the OLS 

estimates of equation (31) above. For convenience when N is 

large (too large to hold all the data in computer memory) these 

estimates may also be obtained in terms of the sums of moment 

matrices to be formed while passing through the data file with 

TSCS. The moments needed are rather complex notationally; we 

will denote the r by p submatrix of the ith cross product matrix 

as (X'X ). in the following. All of the matrices and vectors 

involving group means are of order K, the total number of 

variables in the model: 

:d ?x; 
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(34) X'X = 

I (X'X L 8 (X'X). 
i = l p 1 

.MrXrxp>i^i 

J1(X'Xpxr)i8'?; 

X'X 

x'y 
,1, I"'?p'i 

8 xi 

x'y. 

Given these equations, we may calculate the OLS estimate of 

the pK+r y's in TSCS by passing through the data file with a new 

subroutine, MOMVAR, which forms the ith moment matrices X'X and 

X'X by calling OBSCLC for the data vector as in MOMREG and then 

forms the appropriate X'X and X'y matrices by taking Kronecker 

products of these matrices and cumulating them. If all the co 

efficients are variable the order of matrices needed is still 
2 2 

only K by K , and the program is not required to store anything 
5 

of length N by T or even N. 

VI. COMMAND LANGUAGE FOR TSCS 

Having described the operation of TSCS in the previous 

sections of this paper, it remains to specify a convenient 

language in which the user can describe the procedures he desires 

to use. The language will be a free format procedure-oriented 

one like that of the Time Series Processor (7) and many other 

estimation packages withotfhich economists are familiar. At the 

present time, each command will be interpreted as it is read 

and executed immediately; this precludes a user's conditional 

control of the flow of his program, a restriction which could 

be eased in the future. All variables on the input file will be 

referenced by alphameric names (up to 8 characters long on IBM 

computers) and there are certain reserved variable names which 

serve special functions. These are the following: 

CONSTANT The intercept for the regressions, created by TSCS. 

SERIAL The name of a variable which has a unique value 

for each of the N groups. 
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TIME The name of the variable which is an index within 

each group of the individual observations. 

The use of these variables was described in section III; other 

uses m i g h t be im a g i n e d. 

TSCS has many possible options which modify its operations; 
some are specific to a particular procedure (local options) and 

some ar global in nature. The global options are set by an 

OPTIONS statement, which may appear any place in the input 

stream, but takes effect only when it appears. There may be 

more than one of these statements. The global options presently 

defined are the following: 

PRINT (NOPRINT) Controls the amount of printout desired. 

DEBUG (NODBUG) Provides additional voluminous printout for 

the use of a programmer. 

IFBAL Specifies whether the data are balanced or 

not. 

NSMALL Specifies the number of groups for which 

complete printout of the data as read in 

and calculated is desired (normally 
= 

0) . 

N The number of groups which are currently to 

be processed in any procedure. 

The local options are described below in the descriptions of 

individual procedures. 

The first procedure which must be executed in order to define 

the file to TSCS is 

INPUT (options) variable list ; 

The variable list is a list of the variable names in the order 

that they are on the input file or a collection of LISTnames, 

where a LISTname is a name that has been given to a collection 

of variable names by a LIST statement: 

LIST 1istname = variablel , variable2, variable3,.; 

INPUT merely defines the input file for the future use of 

MAKEFILE, but does not cause the data file to be opened or read. 

MAKEFILE causes READ to read the input data file, invoke 

USER if desired, and write the temporary scratch file for use 

by the regression routines. The form of the instruction is 

MAKEFILE (USER,other options) variable list ; 

The list of variables is typically a subset of the complete list 

defined in the INPUT statement; however, it may include more 

variables than will be needed in one estimation in order to 

save on tape reading later. The MAKEFILE statement provides a 

compromise between the full flexibility of making a new scratch 

194 



file created for each regression at a high cost and the restric 

tiveness of allowing only one specification per TSCS run. 

Once the scratch file has been written by READ, the user may 

call any of the estimation procedures described earlier in this 

paper. For example, 

OLSICT (various print options) depvar indepvarl indepvar2... ; 

VARCOMP (various print options) depvar indepvarl indepvar2.. . ; 

invoke the fixed effects and random effects estimation proce 

dures. Following the first execution of OLSICT, the program 

will have available several moment matrices which I shall label 

TXX, TXY, BXX, BXY, WXX, and WXY for total, between, and within 

moments respectively. Given these matrices it is possible to 

calculate other regressions of interest, or to present statistics 

such as the means and variances of variables (assuming that the 

CONSTANT was included). TSCS should have a set of commands for 

this purpose, including a PRINT and PUNCH command which can 

select submatrices from these matrices. In order to make use 

of such commands, the user must be aware of what is in the 

matrices TXX, BXX, and WXX following the execution of the 

OLSICT or VARCOMP commands, since the within matrix, for example, 

changes between the two procedures. 

The approach used in the iterative estimation procedures, 

such as PROBFE, will be different for efficiency reasons: here 

an implicit MAKEFILE command will be executed by the statement 

PROBFE (METHOD? ,LIMIT= ,EPS= ,other options) 

depdummyvar indepvarl indepvar2 . ; 

The options specify the method of iteration desired, the itera 

tion limit, and the convergence criterion respectively. Only 

those variables specifically needed by this estimation will be 

written to the scratch file, to save time during the iterations. 

The above represents a bare-bones description of TSCS opera 

tions and others can obviously be added (and will be needed). 

For example, the ability to specify starting values for the 

iterative procedures is desirable, as is the ability to PUNCH 

or otherwise process the parameter estimates. It is hoped that 

TSCS will provide a framework in which new estimation procedures 

using time series-cross section data can be easily installed 

without having to be programmed from scratch. 
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APPENDIX A: DESCRIPTIONS OF THE BASIC SUBROUTINES 

1. MOMREG 

The arguments to this subroutine are shown in Table A-l. 

MOMREG loops over the number of individuals, N, and, inside that 

loop, over the time periods T; at each (i, t) observation the 

subroutine OBSCLC is called which returns the vector of current 

X's and Y in DATA. Optionally, this subroutine may also return 

weights (WEIGHT and WTBAR) for the current matrices which will 
be used as specified by the option IWT. The moments XX, XY, and 

YY are cumulated inside the inner loop, along with the data 

sums for this individual which are temporarily stored in XBAR 
and YBAR. At the termination of each T loop, the matrices XXBAR, 

XYBAR, and YYBAR are updated from the current values of XBAR and 

YBAR using the current value of WTBAR: 

XXBAR(J,K) = 
XXBAR(J,K)+XBAR(J)*XBAR(K)*WTBAR. 

Observe that WTBAR is used whether or not the weighting option 

is specified, for the following reason: Even if the within 

moments are not to be weighted for heteroskedasticity, if the 

data are unbalanced they still must be weighted by the number 

of observations for the ith individual, T.. For simplicity of 

computation, MOMREG uses the sums of X.. over t, rather than 

the corresponding means, and the appropriate equation is then 

N T* T 
XXBAR - ? 

-L ( J x. )( I XI). 
i=l 'i t=l 1L 

t=l ir 

The correct value of WTBAR in the unbalanced case is 1/T.. 

An important feature of MOMREG is that although the IWT option 

specifies which weights will be input or saved, the subroutine 

OBSCLC is always permitted to modify these weights; the X weight 
may be modified at each i,tth observation, while the X weight 
should only be returned for the 

t=T1-th 
observations. If we call 

the X weight W and the X weight W, the following table gives the 

weights which will be received by OBSCLC for the different values 
of IWT: 
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IWT W W 

0 1.0 1.0 

1 WEIGHT(I) 1.0 

2 1.0* 1.0 

3 1.0 WEIGHT(I) 
4 1.0 1.0* 

5 WEIGHT 1.0 

6 1.0 WEIGHT 

*For these two alternatives, the weights returned by 

OBSCLC will be stored in WEIGHT(I). 

Table A-l : Table of arguments to the subroutine MOMREG 

Variable Input or 
name output Peseri ption 

K input Number of right-hand-side (X) variables 

N input Number of individuals (groups) 
T input Number of time periods per group 
XX output The K by K moment matrix of the X's 

(N.T observations) 

XY output The K by 1 moments of X with Y 

YY output The sum of squares of Y 

XXBAR output The K by K moment matrix of the group 
means (N observations) 

XYBAR output The K by 1 moments of X with Y 

YYBAR output The sum of squares of Y 

XBAR output A K by 1 vector of overall group means 

YBAR output The overall mean of Y 

XXT output The K by K weighted difference of XX 
and XXBAR 

XYT output The K by 1 weighted difference of XY 
and XYBAR 

YYT output The weighted difference of YY and YYBAR 

DATA working space A single precision vector, at least 
K+l in length, which will be used for 

temporary storage of the data when 

reading it in 

WEIGHT input or output Either an N long vector of weights for 
the moments or a dummy variable, de 

pending on the value of IWT below 

IWT input An option variable: 

0 No weights are input or to be 
saved. Weights will still be 
used, however, if they are 

supplied by OBSCLC 

1 WEIGHT contains weights for the 
N groups, to be used on the XX 
matrix 

2 Same as 1, but weights are cal 
culated in OBSCLC and are to be 
stored in WEIGHT 
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3 WEIGHT contains weights for.tbe 
N groups to be used on the X'X 
matrix 

4 Same as 3, but the weights are to 
be stored in WEIGHT 

5 There is a scalar in WEIGHT to be 
used on all X'X. 

6 There is a scalar in WEIGHT to be 
used on all X'X 

OBSCLC input An external subroutine name of the 
routine which calculates DATA, and, 

optionally, WEIGHT and WTBAR for the 
i,tth observation 

2. OBSCLC 

The arguments for this subroutine are given below: 

K input Number of independent (RHS) variables 

I input The index of the current individual 

T input The current time index for this indi 
vidual 

NOBS input The total number of time observations 

for this individual; when T=N0BS the 
X weight should be returned 

X output A K+l length vector which is returned 
by OBSCLC; the first K elements are 
the X's and the last element is the Y 

WEIGHT input and output The value of the weight for the i,tth 
observation 

WTBAR input and output The value of the weight for the ith 
group mean 

OBSCLC calls a subroutine READER to fetch the current X and Y 

from a scratch file (this file has been previously written by 

TSCS to contain only the variables used by the model), does any 

desired calculations on these variables, and returns them in the 

vector X. Obviously, these calculations should be restricted to 

those involving parameters which change during the course of 

iteration for the sake of efficiency; any recoding or selection 

of the raw data is done when the scratch file is originally 

specified to TSCS. As an example of how this subroutine works, 

an OBSCLC used for fixed and random effects models written in 

Fortran IV is presented below: 
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SUBROUTINE OBSCLC(K,I,T.NOBS.X,WEIGHT,WTBAR) 
IMPLICIT REAL*o(A-H,0-Z) 

THIS VERSION OF CBSCLC IS FOR THE FIXEO EFFECTS (OLS WITH 
INDIVIOUAL CONSTANT TERMS) ANO RANDOM EFFECTS (VARIANCE COMPONENTS) 

MODELS FOR BALANCED AND UNBALANCED OATA. 
BRONWYN H HALL JULY 1977 

REAL XU) 
INTEGER T 

IFU.GT.l.OR.T.GT.l) GO TO 1 
M=K*1 
WEIGHT=1.0DO 

1 CONTINUE 

READ IN THE X'S AND Y. 

CALL REA0ER(I,M,X,45) 
5 CONTINUE 

IF THIS IS THE LAST OBSERVATION IN THE GROUP ADJUST THE XXBAR 
WEIGHTS BY THE NUMBER OF OBSERVATIONS IN THE GROUP. 
FOR FIXED EFFECTS, WTDAR WILL BE 1.0 
FOR RANDOM EFFECTS, WTBAR WILL BE GAMMA(I). 

IF(T.EQ.NOBS) WTBAR=WTBAR/T 
RETURN 
END 

3. ALFCLC 

This subroutine calculates the intercepts for each group by 

passing through the data file to obtain 
y^ 

and 
Xi 

and evaluating 

the expression ai 
= 

x^{y^ 

- 

X.jb) 
where 

Ai 
is a weight for the 

ith group. The arguments to the subroutine are the following: 

K 

N 

T 

ALPHA 

LAMBDA 

XBAR 

BETA 

IFWTI 

input 

input 

i nput 

input/output 

input 

working space 

input 

i nput 

OBSCLC input 

Number of slope coefficients (length 
of BETA) 

Number of groups or individuals 

Number of time periods per group 

N long vector of individual constant 
terms 

Weight or N long vector of weights for 
the calculation 

K long vector for the storage of group 
means (sums) 

K long vector of slope coefficients 

vLogical variable which tells whether 
the weight supplied in LAMBDA is a 
vector or constant over all individuals 

The external subroutine name of the 
routine which calculates X.. and 

y.?. 

4. APRINT 

APRINT prints the N group intercepts a and the group means 

of the dependent variable y. It also calculates the mean and 

standard deviation of the a vector and prints them. The argu 

ments to the subroutine are the following: 
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N input The number of groups to be printed 
ALPHA input The N long vector of constant terms 

YBAR input The N long vector of group means 

IFPRNT input Logical variable which tells whether a and y 
are to be printed; the mean and standard 
deviation of a are always printed 

5. REGCLC 

This subroutine does the regression of y on X, using only the 

moments of X and y. It can be used to do any regression-type 

calculation of the form Q" g, although not all of the statistics 

it calculates may be meaningful in that case. The inversion of 

Q, which is assumed to be a symmetric matrix stored in its lower 

triangle, is done by a subroutine which computes the generalized 

inverse when Q is singular (or near singular); when this has 

happened, it is signalled by the presence of one or more standard 

errors equal to zero in the table of regression coefficients. 

The zero standard errors correspond to the rows and columns of Q 

which have been dropped in doing the inversion. The arguments 

to REGCLC are shown below: 

K input Number of right-hand-side variables 

(order of XX) 
NOBS input Total number of observations used in 

forming moments 

XX (Q) input/output On input, the K by K moments of the 
right-hand-side variables K 

On output, the K by K estimate of the 
vari anee-covari anee of b 

XY (g) input K by 1 vector of moments of X with the 
dependent variable y 

YY input Sum of squares of the dependent variable 

B output K long estimate of slope coefficients 
= 

(XX)-'XY 

SSR output Sum of squared residuals from the 
regression 

= YY - (XY) 'B 

SIGMA output Standard error of the regression 
= /SSR/(N0BS-K) 

XNAME input K long vector of 8 character labels for 
the right-hand-side variables 

IFPRNT input Logical variable which tells whether 
results are to be printed 
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FOOTNOTES 

Throughout this paper the unit of observation is assumed to 

be the individual observed over time, although the program could 

obviously be used for firms, industries, regions, etc. Also, 
time need not be the other dimension; the program could handle 

grouped data, for example, data on family members. 

o 
It is fairly straightforward to generalize these formulae 

to problems with unbalanced data (t=l,...,T-? observations per 

individual), but it complicates the notation, so I have sho.wn 
the equations for balanced data here, although the program 
handles unbalanced data as well. The basic difference in the 

equations is that the cross products of the group means must be 

weighted by T-? when they are summed; this is a simple extension 

of the moment matrix weighting subroutine. 

3 
When the data are unbalanced, things are not quite so simple; 

in that case the moments are weighted, rather than unweighted 
sums of the individual moment matrices. In TSCS, however, this 
is fairly easy to accomplish using the subroutine MOMREG. The 

exact equations are the following: 

bvc 
= [X'X - 

I ViiX'X)^"1 [X'y - 
I T.y^X'y)^ 

where 

4 
The estimation methods for this case are drawn from Mundlak 

(5). 
5 

In the case of unbalanced data, it would be convenient to 

keep in core the vector T., which tells how many observations 
there are in a group of data. 

OBSCLC is the generic name of the subroutine; TSCS supplies 
several different versions of this subroutine as an argument to 

MOMREG. The versions now available are OBSCLC for the usual 
linear fixed effects and random effects models, PAC for the 

P/obit Analysis of Covariance by the EM method, PACNR for probit 
by scoring or the Newton-Raphson method, and PACRE for probit 
with random effects. 

The subroutine is YINVG from the Time Series Processor, and 
is described in the TSP Version 2.8 User's Manual (7). 
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