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1. INTRODUCTION

Most of the earlier work on earnings functions and returns to schooling esti-
mation has been done with male data. Much of the more recent work on the
analysis of male-female wage differentials has focused on labor-force participation
questions and the correct measurement of work experience and has bypassed the
family background-ability-schooling debate which had been conducted largely
on the basis of data on males. There are a number of stylized facts and conclu-
sions which have emerged from these literatures: In the schooling-ability-family
background area the conclusion seemed to be that, at least as far as measured 1Q
and measured family background variables were concerned, their absence did not
bias greatly the estimated schooling coefficients in male earnings functions (see
Griliches, [1977], and Hauser and Daymont, [1977]). The same conclusien also
could be reached as far as unmeasured family background is concerned, but here
the results were much more sensitive to potential errors in the data which are
magnified when within siblings contrasts are used for estimation (see Behrman,
et al. [1980], Griliches, [1979]). As far as male-female comparisons were
concerned, the estimated schooling coefficients in wage equations appeared to be
somewhat higher for females than for males while the estimated age coefficients
were lower for women than for men. These differences were greatly reduced but
not entirely eliminated when work experience was allowed for. More attention
to the quality of the work experience and expectations about labor force attachment
reduced the estimated average male-female differentials somewhat further, without
eliminating most of the original differential (see Becker, [1983]; Mincer and
Polachek, [1974]; Sandell and Schapiro, [1976]; and Shackett, [19817]). To the
extent that the question of “ability bias’’ was investigated using female data, the
conclusions did not differ greatly from those reached using male data.

These debates neither posed cleariy nor resolved the question of whether “family
background,’ “ability,”’ or “1Q’" are the same thing for males and females, in the
sense that they iead to similar consequences for success in schooling and in the
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market place. Some of the observed differences in market outcomes could arise
from a different distribution of abijlities across the sexes, different rewards in the
labor market to these abilities, and different investment responses by family and
individuals.

It is not clear whether such questions can be pursued successfully with the
availabie data. Ideally we would like to have meore detail (a series of different
test scores) and a longer horizon (life cycle data) than is usuvally available in the
standard economic surveys. Nevertheless, we would like to open up this question
and explore which aspects of it might be answerable with currently available data.
We were motivated to pursue this topic by the apparent puzzle thrown up, In
passing, in Joyce Shackett's thesis (Harvard, [1981]). She found that holding
schooling and measured IQ constant, there is still an unaccounted for correlation
in wages between brothers and between sisters, indicating the presence of an
unmeasured family related component of “ability™ or marketable human capital.
But when she examined brother-sister pairs in a similar fashion, their wage resid-
uals were essentially uncorrelated, suggesting the possibility that “abilities’’ are
either distributed differentially among males and females or priced differently
in the market.

To check such conjectures and to interpret them in a broader context, we have
updated Shackett's data and extended the framework developed earlier by
Chamberiain and Griliches [1975, 1977] to the analysis of mixed-sex pairs.
Qur analysis is based on the NLS Young Men and Young Women tapes which
contain information on roughly 1500 sibling pairs {male, female, and mixed) over
the 1966-1980 period, including IQ test scores for about two-thirds of the individ-
uals. Unfortunately, the data are rarely complete for both members of a sibling
pair. Ouly about one-third of the pairs (about 150 to 200 pairs each) have
complete data on all the variabies of interest.  This has led us to adopt and deveiop
new methods of estimating such models, combining data from several
“unbalanced™ moment matrices, i.e., matrices with rows and columns missing
(corresponding to the variables for which data are miissing in the particular .
observational subset).

We cannat really test directly the hypothesis that “abilities’” are distributed
differentiy across males and females or that they are priced differently, without
having information on a number of different test scores for both men and women.
What we can do is, first, to check whether the observed empirical fact persists
in a more complete unobserved factors model which allows both TQ and schooling
to be measured with error; second, to investigate whether this cross-sex difference
appears only in wages or can be traced back to the earlier IQ-schooling relation-
ship; and finally, we can ask whether the data imply the presence of more than one
ability factor in the sense that the male and female versions of the ability factor
are not perfectly correlated.

The basic approach of this paper is to specify a relatively simple model with
two common factors for the observed data (test scores, schooling, and two wages:
early and late), one factor reflecting unobserved “ability” and the other measuring
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common endowments across siblings which are orthogonal to ahility, e.g., wealth.
This model is estimated on data for brather-brother, sister-sister, and brother-
sister pairs, ailowing both the factor loadings and the factors themselves to differ
across the sexes. Using this framework, it is possible to test whether the factor
structure 1s alike for males and females, in the sense that the estimated factor
loadings are similar for the two sexes, and whether the male and female factors
are the same, that is, have a correlation of unity.

In implementing our model we have chosen to sweep out all of the other
exogenous variables contained in thesee quations, both te simplify the computations
and because our samples of men and women have not been drawn in a
completely identical fashion ; for example, the survey of men begins in 1966 and that
for women in 1968, Accordingly, we have removed age, race, region, city residence
and the constant freely from all of the dependent variables and separately for males
and females. Thus, the main male-female difference in the ievel of wages is aiready
taken out in the first pass at the data and is not explained by the model. The
focus of this paper is on the differences in the structure and influence of the
unmeasured family components across the two sexes.

The plan of the paper is as follaws: First, we outline briefly a simple model
of 1Q, schooling, and wages in the context of sibling data and explain what we are
after. Second, we describe our data and outline the specific estimation problems
caused by the relatively high frequency of missing data for one or both of the
siblings. Third, we present the results of estimating the cemplete model and then
discuss the results of testing the equality of the factor structure across siblings.
Finally, we venture some conclusions relating to the more general topic of male-
female differences in earnings.

2. THE MODEL
Consider the standard earnings equation
(1) IW=a+ S+ I +3X +u

where LW is the logarithm of wage rates or earnings per some time unit, S is the
level of schooling, I is a score on an “intelligence' test, X represents a set of other
variables which we shall not consider explicitly here, such as age, race, and region;
e, f, v, and J is a set of parameters to be estimated, and u represents all other
unmeasured determinants of wages, including unmeasured but relatively permanent
differences in human capital levels across individuals and transitory fluctuations
and measurement errors in wages and other variables. The usual discussion in
this area (e.g., Griliches, [1977]) proceeds to focus on the estimation of f, the
“rate of return to schooling,”” in the presence of a number of potentially
complicating circumstances: the lack of a good “ability’’ variable andfor the use
of a particular error-prone test score as a proxy for it; and the possibility both of
errors of measurement in achieved schooling levels and of endogeneity, in the
sense that schoeling may be chosen in anticipation and with the knowledge of
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some of the components of u (which is unobservable to the analyst). As stated,
B is unidentified in this model in the absence of additional instrumental variables
such as measured background variables which would affect § and I without
themselves entering the LW equation directly. In this context, sibiing data are
interesting because they provide another way of identifying £ by using the sibling
values of § and [ as instruments. Earlier work of this type focused primarily on
male siblings {see Griliches, [1979] for a review) and this is one of the first papers
to look also at sister and brother-sister pairs (see also Scarr and MacAvay, [1982]).
In work that focuses on male-female wage differentials, the question is often
whether the estimated differences in ¢ and f can be explained by incorrect measure-
ment of the components of X (such as different meanings of work experience for
the two sexes) or by different components of u — the omitted factors (see Mincer
and Poliachek, [1974]; and Becker, [1983]). While sibling data cannot be used
to identify and Interpret what these unobservable components “really’” are, they
can be used to ask whether the family components are, to any extent, sex specific.
Consider the following simpiified factor model for IQ, schooling, and wage:

2 I=yA+u
S=9,A+yW+u,
LW =85S + y,4 + 1ty = {By,+y)A + BgW + Buy + uy

where the story differs from the earlier one [eqa. 1] in having “swept out’ in an
unconstrained fashion the other X variables to simplify both exposition and com-
putation. The modei contains an unobservable ability factor A4, for which [
{an IQ-type score) is an error prone proxy. ‘‘Ability’” affects achieved schooling
ievels and may also enter the wage equations directly, above and beyend its indirect
effect via schooling. In addition there is a *“wealth’’ or “family tastes for
schooling™ factor W, which affects only schooling directly. The follawing
notational definitions and no-correlation assumptions are made:

(3) EA* = a? Ew? = w? Eu? = a4}
EAW = EAu; = EWu; =0
Euju, =0 for j#1
Eusu, = 74,4,

The statements above reflect the following assumptions: The 4 and W factors
are orthogonal, i.e., Wis the “wealth” component that is above and beyond that
part of wealth or tastes that is already correlated with the ability factor. {That 4
and W are orthogonal is a convenient normalization. Some such rotational
assumption is required for the separate identification of the factor coefficients.)
These factors are assumed to be independent of all the equation specific disturb-
ances. The error-in the test score u; is a pure measurement error untransmitted
to other equations and uncorrelated with the other disturbances. Because §
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may be measured with error in (2), or may be chosen endogenously, u, is allowed
to be freely correlated with u,.

As written, and in the absence of additional instrumental variables or restric-
tions, this model is heavily underidentified. This can be most easily seen by
counting the number of unknown parameters — nine, relative to the number of
the observed variances and covariances, which is enly six.

It is the availability of sibling data which allows us to identify the parameters
of such a model. Denoting pair members by a and b or m and f subscripts, and
treating them symmetrically (i.e., we assume that siblings have the same variances
and coefficients, at least as long as they are of the same sex), we make the following
additional assumptions;

(4) A:f'l'g: Efz‘:ls Egzzt: W1=W21 w? =]
Eugtgy = Eugguy, = Euyjuy, = Etg iy, =0
Etggttyy = Bty isy = Euggity, =0

EWu, =0 for j=1,...3 and £k

a, b
_ a2
Euy s, = 03,

which imply the following: A is a factor with a family variance components
structure with f representing the family component and g the individual one. We
normalize so that the variance of f is one and the variance of g is . W, on the
other hand, is a pure family factor with no individual components and is
normalized to have a variance of one. All of the cross-sibling correlations in [
and § are assumed to be captured by the two family compenents f and W, and
hence u, is not correlated with the other sibling’s u,, though it is allowed to be
freely correlated with its own. The residuals in the wage equations are allowed,
however, a free family structare.

Note that, under the candition that we do not distinguish between siblings, we
are adding six covariances but only two parameters and the model is now identified.
Figure 1 makes clear where identification comes from. Factor loadings, the
schooling coefficient § and the cross-sib wage covariance are all identified within
the cross-sib matrix with the own-sib covariances then identifying the individual
residual variances and covariances.? The niodel is recursive with the cross-sib
1Q covariance identifying y,, the schooling covariances identifying ¥, and #, and
then the wage covariances identifying y,, § and a,,,.

The above is a variant of the standard way of identifying the schooling coefficient
in a wage equation, using a proxy for ahility and instrumenting both schooling and
the proxy with family background variables. An advantage of setting up the

2 If we were to allow u, and u, to be freely correlated, the model would be exactly identified.
The restriction that Eu, ., =F# pti35=0, ie. that this covariance is fully captured by the
variance component g, is in the spirit of 1Q being an error ridden measurement of ability, but
is not essential for identification.
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model in terms of covariance matrices rather than a standard [V setup is that then
it can be easily generalized to allow for another index for the sex of the sibling.
We assume that the model specified abave applies to each sex separately but that
there may be a sex specific component to each factor. This implies that the
factors will be less than perfectly correlated, and introduces two additional
parameters, p, and gy representing the correlation between the male and female
version of each facior. We also allow for free correlations across the brothers’
and sisters’ wages. The bottom panel of Figure 1 shows the cross-sex cross-sib
covariance matrix implied by this model. Note that the factor loadings are
also assumed to be different for the two sexes.

To test the hypotheses mentioned in the introduction, we ask, essentially, how
well a factor structure identified within the brother and sister pairs separately can
rationalize the cross-sex cross-sib caovariance matrix. With the model as specified,
it is not too difficult to fit the same-sex covariance matrices since we are fitting 12
covariances with 11 parameters but the test on the cross-sex matrix is more
stringent. We add nine covariances but only three parameters (o, gy and 6;,,.,).
The sequence of tests we will use is the following: First, the test of equality across
the sexes of the wage covariances Is a test of whether there are still significant
differences in the family effect after controlling for ability. Second, we test
whether ability is priced differently for men and women by testing the equality of
the factor loadings. Finally the test that g, and py are unity is a test that the
factors have no sex specific structure.

Before we turn to a more detailed description of our data and estimation
pracedures, several additional points should be mentioned: the use of age instead
of experience in our list of predetermined varizhles and the interpretative
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differences this implies, the use of two wage variables, and the non-use of measured
family background variables. Most of the work in this area (e.g., Griliches [19773
and Mincer [1974]) uses accumulated work experience as a variable in the wage
equation and defines the schooling coefficient as estimating the effect of schooling
“holding work experience constant.””  Experience is usually entered in a non-linear
fashion and is a function of age, schooling, and other factors which determine the
post-schoal labor force participation and employment experience of an individual.
From our point of view this interpretation of experience is endogenous to the
achievement model. Given the potential nenlinearity of its effect, it would be
rather difficult to extend our models to incorporate it explicitly. We can think
then of our medel as one in which this variahle has been solved out, leaving one of
its determinants, age, among the predetermined X variables. But since the usual
schooling coefficient estimates are based on equations of the form bS +d{Age— S
—48), our results are to be interpreted as estimating (b—d)S+dAGE. Thus, to
.compare our estimated schooling coefficients § to earlier estimates in the literature
requires the addition of the estimated age coefficient to them.

This paper differs from our earlier efforts (Chamberlain-Griliches [1975,
£9771) by including two wage variables in the model, early and late. We do not
focus, however, on the wage or earnings growth profiles explicitly (on that, see
Chamberlain [1978], for example) Moreover, since we do not include work
experience in the wage equations directly, we do not constrain either the schooling
coefficients ar the ability coefficients to be the same in the two wage equations.
Implicitly, this allows for an age-schooling interaction in the wage equation,
which we could not allow for explicitly.

It also differs from some of the other papers in this area by not including
measured family variables such as father's occupation and mother’s education in
the equations to be estimated. Using sibling data they are subsumed instead in
the unobservable family factors f and W. One might be tempted to use them also
in a more elaborate MIMIC type model, but the model to be used by us is already
straining our computational resources and the ability of the data to discriminate
between its various slightly different versians.

3. DATA AND VARIABLES

Our data come from the National Longitudinal Survey of Young Men [1966—
1980] and Young Women [1968-1980]. (See Center for Human Resource
Research [1979] for a detailed description.) These surveys started with about
5000 respondents each, and were down te ahout 4000 interviewees each by the
end of the last decade (the attrition is for such reasons as death, inability to locate,
and refusal to answer). When these surveys were originally designed (inchuding
the Older Men and Mature Women panels), they were chosen in a stratified
random fashion from a larger underlying household sampling frame. This has
led to the presence of a number of same household members within and across
different panels. In particular, it is possible to identify approximately 703
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households with at least two brothers, 668 households with at least twao sisters, and
1075 with at least one brother-sister pair. The cohorts covered were ariginally
14 to 24 years old in 1966 for males, and 14 to 24 years old in 1968 for females.
The latest surveys available to us at the time this analysis was initiated followed
them through 1980 with the age of respondents ranging from 28 through 38 for
males and fram 26 through 36 for females.

We have tried to use the data for all the individuals who finished schooling before
or during the survey periods and for whom we could canstruct the requisite data.
We use data from three points in these surveys: (1) First interview data {1966
for men, 1968 for women) for age, race, and IQ test scores collected from the
respondents’” high schools® (missing for about one-third of the sample); (2)
schooling level achieved at completion of school (in years) and wage received on
an “early job" (after leaving school, not before age 18 and around age 22 if data
are available, later if the school leaving age was higher) and other associated
variables at that juncture {age, region, city size, and marital status); and (3)
a “later’” wage (around age 28, but at least three years later than the early wage)
with the same set of associated variables as of that date. The rules we followed in
selecting our observations and constructing our variables are described in greater
detail in Appendix L.

Table 1 shows the sample sizes which resulted when we made various cuts on
good data and gives some idea of the relatively small fraction of our ohservations
which contains data on siblings. Among the original 10,000 or so respondents,
it was possible to identify about 1600 pairs or roughly 3000+ individuals who had
a sibling in one of these surveys. By the time we ask that both siblings should
have completed school, had observations on both an early and later wage and
data on IQ scores, we are down ta less than ane third of the original number,
about 520 pairs or 1040 individuals (see the first line of the bottom panel of
Table 1). The major attrition occurs due to missing IQ scores and missing late
wage (due to attrition from the sample, late school leaving, or non labor force
participation). Overall attrition is slightly higher for males than females. .

From the point of view of our medel, we are missing data for two quite different
reasons : first, because of the usual problems with sample attrition and nonrespanse,
many observations have missing values for one or more variables. Second,
each male or female in the sample may or may not have both a brother and a
sister from which we can obtain a full set of covariances. It turns out that both
these problems can be solved in the same way, enabling us to use the maximal
amount of the available data, rather than restricting the estimation ta the
subsample which is complete. We describe the methodology for obtaining such
estimates in the next section of the paper, and focus here on more general data
selection problems and sample description.

Table I shows that we are relatively short on complete data and on data for

* These “IQ test scores™ are in fact from a variety of intelligence tests collected by the high
schools and rescaled to standard IQ units by the NLS.
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TABLE |

DATA AVAILARILITY

Young Young Brother Sister Sibs
Men Women  Sample  Sample  Sample

Original sample 5223 5159 1499 1464 3042
With good schooling 4901 5027 1402 1410 2906
And goad IQ 3131 3149 885 874 1737
And an early wage 4291 4060 1253 11482 2498
And both wages 3o 2876 909 814 1728
And both wages and IQ 2098 2016 594 562 1134

DATA ARRANGEMENT FOR. ESTIMATION

Pairs Individuals
Brother Stater Sibs Men Women

Complete data 164 151 204 1616 1604
Missing 1Q 127 101 119 892 792
Missing wages for a male 103 59 132

Missing wages for a female 107 87 278
Missing wages for both 38 40 48

Residual 147 158 257 112 167
Total 579 557 774 2852 3398

Noate: Cell counts are the number of sibling pairs, or number of individuals in the
case of the last two columns. Individuals occur only once, but families
occasionally oceur mare than once {one percent in sibling samples, three
percent in total sample). The shight discrepancies in observations counts
between the top and bottom panels are due to the fact that the bottom panel
observations were also required to have good data on the KWW test score.

same-sexed pairs. Our data selection strategy was designed around this.  First,
for families with only one or two individuals in the original sample, (most of our
data) the assignment to a particular matrix was unambiguous. For families with
three or more siblings, however, we were forced to make selections to avoid using
individuals more than once. We ordered sibs by data availability and then as-
signed all the complete data pairs we could to the brother-brother and sistersister
complete data pairs. The remainder of the complete data pairs were assigned to
the cross-sex mateix. All the remaining siblings were either assigned to a pair
with some data missing, or if no data remained on their sibling, they were placed
with the residuals and treated as individuals, The consequence of this procedure
was to leave us with a nearly balanced design in terms of the number of brother,
sister, and brother-sister pairs in the data. Families are sometimes represented
more than once, but for the vast majority this means that a nonmatched indi-
vidual rarely has sibs in the sib-pair matrices.*

* Less than one percent of families occur twice among the sib data and less than three percent
of unmatched individuals actnally have a sth in the sib data.



36 BOUND, GRILICHES AND HALL

This process yielded 24 different moment matrices with the observations and
data patterns given in the battom panel of Table 1. Each person from the ariginal
sample who has a good observation on completed schooling has been placed in
one of these matrices. In section 4 we describe how we combined the information
in these different matrices when estimating the model.

Table 2 gives the means of the variables in our data. There are no surprises
in the male-female differences: the average male wage is higher, and seems to grow
somewhat faster (with a caveat due to the changing sample) and the male variances
are higher for our key endogenous variables. Because the original surveys over-
sampled blacks, our samples have a significantly larger non-white proportion

TABLE 2
SUMMARY STATISTICS
Young Men Younp Women
Variahle Nurmber Mean Standard  Number Mean Standard
Previation Deviation
LW2 3110 6.18 .49 2876 5.78 (.44
EWI1 4291 570 .54 4059 5.46 0.44
SC 4783 12.8 2.75 4728 12.6 241
IQ E1%] 101.4 15.9 3149 102.3 15,2
WHITE 4783 0.72 0.45 4728 0.71 0.45
AGE®4/68 4783 18.2 32 4728 18.8 3.1
REGAa6/68 4733 0.41 .49 4728 0.32 .47
AGEl 4291 22.6 2.9 4059 23.0 2.8
SMSAL 4291 0.71 0.45 44359 0.78 (.42
REGI 4291 0.39 0.49 4059 0,32 0.47
YEARI 4291 70.6 36 4059 72.2 3.0
MARI 4291 0.43 .50 4059 0.57 0.50
AGE2 3110 271 1.5 2879 27.0 2.0
SMSA2 3110 0.70 .46 2874 0.73 0.44
REG2 3110 0.39 0.49 2875 0.33 0.47
YEAR2 3110 75.1 3?2 2874 75.8 23
MAR2 3110 .67 .47 2876 0.69 0.47
Variable definitions:
LWI1  — an early measure of [og hourly earnings.
LW2  — alate measure of log hourly earnings.
SC — vears of schooling completed.
1Q — IQ test score.
WHITE — dummy variable, 1 if respondent is white.
AGE  — Age in years (at the time of early or late wage).
SMSA  — dummy variable, [ if respondent lives in SMSA.
REG  — dummy variable, | if respondent lives in the South.
YEAR - calendar year corresponding to early or late wage.
MAR — dummy variable, 1 if respondent married, spouse present.

(This variable was not swept out in reduced form regressions).

Warning: The means for variables indexed with 1’s and 2's were taken over those
with early or late wages respectively. The changes in these variables
shauld not therefore be interpreted as changes in the underlying pepulation.
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(.29) and more respondents in the South (.36) than is true of the general U, S.
population. Given that non-whites tend to have larger families, this is even more
so for our sibling data. Except for including race and region as conditioning
variables we have made no further adjustments for this discrepancy from national
representativeness.

The table also shows that the average age of our respondents is 23 at the early
wage data and 27 at the later one. This is still quite early in their labor force
careers and just before or approaching Mincer’s {1974] “overtaking’™ point.
Thus, our results have to be interpreted remembering the relative youth of these
respondents.

In the next section, we describe the method of estimation which we used; it
essentially involves fitting our model to several matrices of variances and covari-
ances of the data simultaneously. Because of this, each additional variable we
include tends to be rather expensive in terms of computational costs. This has
led us to preprocess the variables of interest by regressing each of them on a set of

TABLE 3
REDUCED FORM EQUATIONS

Young Men Young Women
LW, LW, SC ) LW, LW, sC 1Q
Constant 5270 4401 14524 100.361 5.325 4,135 13,513 95320
Age 036 054 019 .046
(005) (003 (004) {.002)
White 177 121 979 15537 050 084 438  15.539
(019) (015) (088) (679) (OI7Y (014} (Q78) (&22)
SMSA 167 166 192 157
(016)  (014) 016y (013)
REG —.102 —.190 —.109 —.108
029 (.026) (.027)  (.025)
Age66/68 -0%0 —.549 —.045 —.2238
o012y (091) (012)  (090)
Rega6 {68 —.082 022 536 —4.007 | —.011 —003 —.225 2.637
(029) (026) (.078)  .SS8| (.028) (025} (.074)  (.560)
Year Dummies X X X X
Sampie X X X X x X X X
Dummies
N K)RLH 4291 4783 3131 2874 4059 4728 3149
a? 160 .149 6.094 203.326 147 133 5.105 185456
Rz 343 482 194 196 232 00 121 200
Note: For variable definitions see Table | in the text. All equations were estimated

with 24 “sample” dummies, one for each pattern of data availability indicated
in Table 1. For a further explanation of these see the text of Appendix 1.
Constanis were evaluated at 71 and 78 for early and late wage respectively
and for the complete non-sib data.
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exogenous variables and using the residuals from these regressions to form the
cavariance matrices from which we estimate the parameters of interest. From
MaCurdy [1981] we know that the estimates of the parameters of the covariance
matrix (including the structural coefficient f) which are obtained conditional an
these regression estimates are consistent and asymptotically normally distributed
with a covariance matrix which does not depend on the fact that we preprocessed
the variables in this way.

The details of these first stage regressions are given in Table 3. The variables
swept out in this way were the appropriately dated race, age, and region of
residence variables (at the initial survey date for schooling and IQ, at the date of
the observation for the wages) and dummies corresponding to the data sample
{that is, the covariance matrix} into which an observation falls. These dummijes
adjust for missing data which may be randomly missing conditional on the unob-
servables but still not randemiy missing anconditionally.” All coefficients have
the expected signs and magnitudes and require no more comment.

4. ECONOMETRIC METHODOLOGY

The mode! we are estimating can be thought of as consisting of eight equations
{(four “dependent"” variables — I, §, LW1 and LW2, for each of the two siblings).
A version of this model with only one wage variable is depicted in Figure 1.
If one assumes that conditional on the exogenous X’s (which have been swept out
freely by the preprocessing) the observed variables are distributed according to a
multivariate normal distribution, then the observed moment matrix is a sufficient
statistic. Figure 1 gives the expected values for the componeats of this matrix
canditional on the correctness of our assumed model.

Many econometric models can be written in the form (6}, where Q(8) is the
true population covatriance matrix associated with the assumed multivariate normal
distribution, and & is a vector of parameters of interest. Denote the observed
covariance matrix by S. Then maximizing the likelihood function of the data
with respect to the model parameters comes down to maximizing

(5) In L(QIS, 8) = k — (n/2)[1n |AO)] + trQB)1S]

with respect to 6. If 8 is exactly identified, the estimates are unique and can be
solved directly from the definition of € and the assumption that S is a consistent
estimator of it.  If Q(6) is overidentified, then the maximum likelihood procedure
“fits™ the model (8} to the data S so as to maximize the likeltlhood. This can
be done either using the LISREL program (Joreskog and Sorbom [1981]) or the
MOMENTS program (B. H. Hall [1979]}. If the observed variables are multi-

* Data which is not missing randomly may alsa change the variances and distributions of
the ohserved data. This can be accomodated in estimation by (1) allowing the estimated
variances of the unobservables to vary with the samples and (2) by computing robust standard
errors for the model. Neither of these have heen done in this paper but we plan to do so in
the future,
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vatiate normal this estimator is the full information maximum likelihood estimator
for this model. Even if the data are not multivariate normal but follow some
other distribution satisfying mild regularity conditions with E{(S|8)= (X&), this is
a pseudo- or quasi-maximum likelihood estimator yielding a consistent estimator
aof 8.% In this case, however, the asymptotic variance of the estimator is somewhat
more complicated to compute and the standard programs do not produce the
correct answer,

This is fine for a random sample from the underlying population with ail the
variables present. But what is to be done if for one-third of the sample one is
missing measurements on one of the variables (say I) or with observations which
have no sibling data at all? In such situations one can think of the observed matrix
S for one or more of the relevant sub-samples as missing one {or more) rows
and columns.

There is no conceptual difficulty in generalizing the sample matrix approach
to a multiple sample situation where the resulting Q(#,) may depend on somewhat
different parameters. As long as the different matrices can be taken as arising
independently, their respective contributions to the likelihood function can be
added up, and as long as the ;’s have parameters in common, there is a return
from estimating them jointly. This can be done either atilizing the multiple
samples feature of LISRELV (see Allison [1981]), or by extending the
MOMENTS program {Hall [1979]) to the cornected-multipie matrices case.
The estimation procedure combines these different matrices and their associated
pieces of the likelihood function, and then iterates across them until 2 maximum
is found. A more detailed description of the mechanics of this approach is given
in Appendix 2.

The main assumption required for the consistency of this approach in the
context of missing data is our ability to treat the various sub-samples as inde-
pendent pieces of the likelihood function. That is, we have to assume no signifi-
cant sample selection or self-selection problem, treating our data as if the missing
pieces are missing at random. This does not mean that the expected value of
missing data is the same in all the matrices, only that (in the newer terminology of
Rubin [1976] and Little {1982]) the data generation process is ignerable in the
sense that the desired parameters can be estimated consistently from the complete
data subsets and that “missing data’® methods use the rest of the available data
only to improve the efficiency of such estimates.”

S Necessary conditions are given in MaCurdy [1941]. Basically the first and second partiails
of the model must be uniformly continuous and possess finite first and second moments.

? The standard attack, in this context, on the missing data problem, would be to compute a
correlation matrix based on pairwise complete data and then base estimates on that, Aslong as
data are missing at random this method should be consistent, buk it suifers from two drawbacks,
The standard errors computed ignoring the differential data availability will be nonsense.
Furthermaore the maximum-likelihood technique shades naturally into estimation that at least
partially models the sample generating mechanism and is thus robust to a certain amount of
non-rafndomoess.
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To be mare precise, the distribution of the missing data must be, conditional
on the distribution of the available data, independent of the fact that it is missing.
This condition justifies integrating the fuil likelihoad over the distribution of the
missing data to get a marginal distribution for the partiaily observed data. The
marginal distribution, sharing parameters of the original, can add information to
our estimates even when not all would be identified in the partially observed data
alone.

While these conditicus are unlikely to hold exactly in practice, we do expect
them to held approximately. The presence or absence of siblings is likely to be
random with respect to the parameters of interest to us.  Attrition and labor force
participation (especially for young women) is likely to be non-random with respect
to the unobserved wage components, but earlizr work on samyple selectivity bias
in both of these areas (Griliches, Hausman, Hall [1978]; Smith, [1980]) has not
uncovered a consisient and large biasing effeci. While we do know that ¥Q is
not missing randomly in an overal! sense, conditionally on our X’s and the
unobserved factors it too may be missing at random.

We shall proceed assuming that it is indeed legitimate for us to pool these
various matrices. bt would be possible to investigate the issue further, but we
shall not do that here. Under the maintained assumption, our parameter
estimates should change little as we include more daia. We have estimated the
model using various amounts of the incomplete data and have found few qualitative
differences.

5. RESULTS

Before we proceed to examine the full model results it is useful to look briefly
at simple least squares estimates on these data and to examine the residual corre-
lation matrices for eur main variabies, by sex and across siblings, to get an impres-
sion of the type of resulis one may expect to get with these kinds of data
and models. As mentioned earlier, all of the estimation in this section has been
done with variables from which the mean effects of time, age, urban and southern
residence, race, sex, and data presence have been removed using unconstrained
reduced form regressions.

Tabie 4 gives the ordinary least squares and instrumental variable estimates
of a standard earnings equation for the brothers and sisters separately.  In order
to highlight the differences in our estimates which are due to the estimation method
and those which are due to the use of IV techniques, we show three different sets
of estimates. The first two columns are OLS estimates based on ail those obser-
vations which had complete data on schooling, IQ, and two wages. The next two
columns show OLS estimates obtained by pooling across several matrices con-
taining all our data, including those observations which are missing 1Q and/or
ane ar more wages. The point estimates do not change that much, and the
standard errors go down by about twenty or thirty percent, which (s somewhat iess
than the forty or fifty percent which would be predicted by the increase in the
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TABLE 4
INDIVIDUAL EARNINGS EQUATIONS
Men
OLS QLS with Instrumental
Missing Data Variahles

LW, LW, LW, LW, LW, LW,

SC 007 023 17 Q30 054 043
(.004) (.004) 003} (003} (011} (011}

IO 0013 0026 00046 0019 — 0066 —.0013
(.0007) (.0007) (.0006) (0G08) (.0016) (.0016)

a? 143 151 149 133 A57 154
Number 2148 2148 4784 4784 4784 4784

Women
OLS OLS with Instrumental
Missing Data Variables

LW, LW, LW, LW, LW, LW,

SC 050 .050 052 .051 .51 073
{.004) .005) (.002) (.003) 013y (014}

1Q 0027 0043 0024 0042 0021 0050
.0006) .0007) (.0008) (.0006) (.0017) (.0019)

g? 16 134 114 128 119 132

Number 2110 2110 52Ré 5244 5286 5286

Mate:  Allequations were estimated on the residuals from equations which included
age, urban and southern residence, race, and vear dummies (in the case of wages).
The number of observations shown is the total number used for estimation in
that column.

number of abservations alone. The last two columns are instrumental variables
estimates obtained with the combined data sample, using the sibling's IQ and
schooling as instruments. Since most of our sample do not have siblings, these
estimates are effectively based on a much smaller number than the number of
abservations shown in the table,

The OLS estimates of the schooling coefficients are relatively low, but when
they are combined with the age coefficient from the reduced form regression, we
abtain more conventional estimates, .061 and .059 for males and .096 and .069
for females, similar to these already in the literature (see Shackett [198[] and
Sandell and Shapiro [1974] among others). [Insirumenting both schoaling and
IQ raises the schooling coefficient by as much as four or five percent in rate of
return units but at the price of much larger standard ervors on both coefficients,
due both ta the reduction in effective sample size and the usual increase fram IV.

Table 5 gives the carrelation matrices for our main variables (net of the
previously swept out exogenous variables) for our combined data siblings sample,
showing both the individual correlations and the cross-sib ones. These matrices
are pairwise combinations of the set of 24 matrices for which we obtain maximum
likelihood estimates in Table 6. Taking LW2 as the variable of primary interest,
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Table 5
CORRELATION MATRICES OF RESIDUALS FROM REDUCED FORM EQUATIONS:
PAIRWISE AVAILABLE DATA,

Individual
Young Men Young Wamen
{N=2098-4783) (N=2016-4729)
iQ 14.213 13.607
SC 491 2.452 4352 2,258
LWl 059 A12 L3183 241 .67 365
LW2 144 208 430 399 258 341 528 .a82
Brothers Sisters
(N=1276-611) (N=259.-581)
10 440 514
SC .330 479 359 A46
LWI .08 075 164 .221 187 .204
LW2 {499 17 149 Jd12 198 223 A71 36
Brother-Sister
(N=213-527)
Brothers
I0Q .480 338 — 006 137
5C 346 A4 .035 135

Sisters
ter LWl .63 189 051 .23

LW?2 .104 108 022 074

Note: All variables are residuals from regressions reported in Table 3 which
sweep out exogenous variables, such as race and age. Numbers on diagonals in
the uppermost panels are standard deviations. Correlations are computed over all
available pairs, or individuals.

the observed cross-sib wage correlations are quite low: .11, .34, and 0.07 for
brother, sister, and brother-sister pairs, respectively. While the general pattern
is similar to that observed earlier by Shackett, (.18, .22, and 0.00), we find less of
a contrast between same sex and opposite sex cross-sib correlations. The pattern
in the male and female matrices appears to be very similar, except for somewhat
higher correlations for the females and correspondingly higher variances for the
males. In fact, the covariance matrices appear more similar than the correlation
matrices. The other difference which can be seen in this table is a higher ratio of
individual to family variance for the men, a finding which is confirmed by our
estimates later on (compare the diagonals of the two cross-sib matrices).

Table 6 gives the maximum likelihood estimates of our model on all of the
available data for each of the sexes, based on the combination of data from
24 matrices. These matrices were created by considering two dimensions of
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TABLE 6
JOINT MAXIMUM, LIKELIHOOD ESTIMATES OF THE FULL MODEL*
Young Men Young Women
Dep,
Var. sC A W gl sC A w at
1Q 9.86 66.0 9.72 7.7
(0.42) 9.3) ©0.39) .9
sC 1.28 1.16 2.29 1.22 0.94 2.38
0.08) 009  {0.18) Q07 (009 (0.1%)
LW1 040 —.016 Q.15 074 013 a1
(.019) {027y 004y (023)  (.030) .003)
LW2 027 .034 .15 050 066 ¢.13
(019 €027) (004)  ¢024) (032D (.004)
=48 (.10} r=.27 (.08}
Estimated Covariances
Individual Sibling Individual Sibling
sC LW LW2 LWl Lw2 S8C LWI LW2 Lwl Lw2
sC —
LWI1 —.11 — 021 —.11 — 014
) (.008) 07) (.007)
Lw2  —.023 059 — QI8 016 —.043 052 — 012 025
07 (003 (007) (009) (076) (.004) (006} (.008)
Estimated Covariances Across Sexes
Female
LWI LW2
LW1 A011 003
Mal €.008) (.008)
T 1wa .05 001
(.008) €.008)

Log Likelihood = —22,129.2

*These estimates are based on the constraint that p , =p, =1.0; the X*(2) for equality
of the male and female factors=0.8.

“missing”’: missing data and missing siblings. First we have individuals who have
(1) complete data on all variables, (2) are missing IQ scores, (3) are missing wages,
and (4) are missing both wages and IQ scores. Second, we have three types of
siblings (male, female, and opposite} with matching data missing patterns and an
extra matrix where only one wage of one sibling is missing. The intersection of
these two dimensions yields nine matrices for each sex and six for the male-female
pairs. The actual distribution of the data across these matrices was given in
Table 1. The final results in Table 6 are based an a combination of information
from 579 sibling pairs and 3262 additional individuals for males and 557 siblings
and 4732 individuals for females.

The model for which estimates are presented in Table 6 1s the model given by



94 BOUND, GRILICHES AND HALL

equations (2)4) and Figure |, with the addition of a second wage variable.
Since the coefficients an the wage variables are not constrained and there is a free
correlation between wages both within individuals and across siblings, this addi-
tional wage variable imposes no new constraints on the model, but merely provides
another, later indicatar of the individual’s lifetime income. In estimating this
model in its most general form, we allowed hoth for different {coirelated) female
and male factors and for different loadings on these factors across the sexes.
The estimated carrelations for the two factors were 0.97 (L07) and (.90 (.16) for the
ability and wealth factors respectively and the X2(2) statistic for a correlation of
unity across male and female factors was 0.8; accordingty, we have constrained the
factors, but not the factor loadings, to be the same in the resufts presented. The
estimates of the other parameters are not affected materially by this constraint.

The first part of the table gives the estimated coefficients, standard errors, and
residual variances while the second part lists the estimated covariances across
equations and across siblings. The final panel in this table shows also the esti-
mated wage covariances for the cross-sib pairs.

There are a number of remarks about these results: ([} The estimated factor
loadings for both unobservable factors, 4 and W, are quantitatively and statistically
very similar for males and females (X*(5)=86.6). The estimated taus (the ratio
of individual to family variance compaonents of the ability factor) do seem o be
different, implying 2 higher overall contribution of the ability facter to male
success, but also, simultaneously, a relative larger role of the family component
for women in this story. These differences, however, are only marginally signi-
ficant, with an estimated ¢ statistic of .5,

(2) The role of the “ahility™’ factor in the wage equation is marginal, hoth in
the sense that its coeflicients are not significantly different from zero and in the
sense that it contributes little to the explanation of the variance of wages. In
fact, the model in general adds little (about .01 out of .15) ta the explanation of
the variance of wages once we have swept ocut the exogenous variables,

(3) The schooling coeflicients are not estimated very precisely. If the relevant
age coefficients from Table 3 are added to them, the resulting estimates are (0.094,
0.063 and 0.122, 0.06% for LWI1, LW2, and males and females respectively. In
spite of the fact that the contribution of the “ability”’ factor in the wage equation
is not well defined, it appears to be multi-collinear with schooling, with the
schooling coefficients falling when the estimated factor coefficients are higher.
This basic result is the same as what we saw in the OLS-{V contrast in Table 4:
using the sibling’s [Q and schooling as instruments increases the estimaied
schoaling ceefficient but also greatly increases the standard errors on both IQ
and schooling since the parts of [Q and schooling which are correlated with the
sibling variables are move collinear in the wage equation.

(4) There is no significant pattern in the residual covariances reported in the
second part of Table 6 except for the own serial correlation between early and
late wages, which is estimated at about 0.4. Besides this, the only covariances
which appear to be significant are those across the wage residuals of the same-sex
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siblings. This is the same effect we noted in the data in Table 5; in these estimates
ahout half of the higher late wage covariance between sisters is explained by the
stranger family component of the ability factor (both on its own in wages and via
schoeling) while the remainder appears in the differing estimates of the residual
covariance (.025 versus .0168). The difference between the estimated cross-sex
wage cavariance and the same-sex covariances has not been explained by the
ability-schooling components of these variances — the estimated covariances are
as far apart as in the original correlation matrix. However, a test for the equality
of the wage covariances across all the siblings is not rejected due to their small
size and fairly large standard errors (X%(7)=6.8).

Our model is nested within aone that freely fits the various variances and cova-
riances {there are 56 in ali, one far each correlation reported in Table 5).3 Qur
model fits these 56 independent covariances with 40 parameters in all, with the
likelihood statistic on the 16 implied restrictions being an insignificant 10.1.

Tabie 7 presents the fractional difference between the covariances predicted by
our model and the one that freely fits the matrices. Not surprisingly, we fit the
brother and sister data better than we do the brother-sister pairs.  What is perhaps

Table 7
FRACTIONAL DIFFERENCE BETWEEN COVARIANCES PREDICTED BY COMMON FACTOR
AND FREE FITTING MODELS

Young Men Yaoung Women
(4] .00 —.0l
5C —.01 00 —.a1 00
LWl —.04 00 .00 03 04 —.01
LW2 00 00 00 00 .01 kil — .09 .08
Brothers Sisters
IO —.04 —.01
SC —.03 —.q2 —.4l —.02
LWI 4.10 — .08 —.0l —.22 -0  —08
Lw2 15 15 02 .03 04 09 —.07 03
Brother-Sister (Pajrs)
Female
IQ —.14 —.13 A6 A5
3C —.17 —.05 a6 A0
Male LWI .82 21 67 .89
EwW2 —.38 - .67 — .08 3

® Were we dealing with only one matrix, rather than many with various rows and eolumns
missing, the model that freely fits this matrix would just reproduce it.
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more interesting s the specific pattern of errors. We seem to do a reasonable
job of predicting the correlation between a brother’s and sister’s schooling and
IQ but do much less well predicting the correlation between these variahles
and wages. We overpredict the covariance between a brother’s 1Q or Schooling
and his sister’'s wages. We do the same for the covariance between a sister’s 1Q
or Schooling and her brother’s early wage, but the pattern reverses for the latter
wage. However, we should probably not make too much of these patterns.
None of the individual deviations reported in Table 7 are statistically significant
with the largest ones being less than 1.4 standard deviations away from zero.

All of the tests based on estimates in Table 6 depend on the particular identifying
restriction we chose (the second factor appearing only in the schooling equation
and not in Q). We can ask, however, how many commeon factors are needed to
rationalize the cross-sib correlations independently of this restriction or any
particular rotation. Depending on whether we include wages or restrict attention
to just IQ and schooling, two or three common family factors should be enough
to fully rationalize the same sex cross-sib correlations, but if there were sex-specific
components of “ability,”” “wealth,”* or wages, we would expect to need more than
these two or three to fit the brother-sister correlations. Again we find no indi-
cation of sex-specific effects. Using the complete data subset only, two factors
adequately explain the I[Q-schooling correlation (X2(3)=0.14) and three
adequately explain the 1Q, schooling, wage correlations {(X2(6)=0.88 or 2.28
depending on whether we use early or late wages). Since by allowing free corre-
lation of the wages across the siblings we have effectively allowed for a third
family factor in the estimating model, the factor analysis results confirm our
finding that the unobserved family factors may be treated as the same across male
and female siblings.

Each of these approaches leads us to essentially the same conclusion: At
least as far as the IQ-schoaling nexus is concerned, the unobservables that we can
estimate play similar roles in accounting for the observable data and appear to be
the same constructs for males and females. Families and schools treat brothers
and sisters symmetrically, as far as we can discern using the rather gross measures’
of IQ scores and years of schooling completed.

The labor market story is somewhat different, however. We know already
that the schooling, age, and race coefficients differ between males and females.
Beyond that it is hard to discern other differences in returns to the unobservable,
non-schooling and non-1Q related components of human capital. There isa slight
indication of such differences in the asymmetry of the cross-sex cross-sib corre-
lations. A sister's {Q} and schooling are more helpful in predicting her brother’s
wages than vice versa, implying that those components of female IQ and
schooling which are correlated with her brother’s success in the labor market
are less useful in predicting her own success. Nevertheless, these effects are
small and not very significant either by statistical or substantive criteria. A
difference of 0.1 in correlation can account for little of the overall variance in the
difference between male and female experiences in the labor market.
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6. CONCLUSION

The main finding of this paper is that the family effects in the 1Q-schooling-wage
relationship are essentially sex-blind. This result is particularily strong for the
1Q-schooling relationship, where the observed differences in the data can be
accounted for by a higher within family variance among men of the single unob-
served ability factor.  Although we are also able to accept equality of the
unobserved factors when fitting the wage equations, conclusions here are much less
robust since most of the systematic variation in wages is taken out when exogenous
factors are controlled for and our model is able to explain very little of the
remaining variance.

One of the other questions this paper was designed to answer was whether we
could gain precision in our estimates of sibling models by using missing data
techniques. In comparing estimates on the complete data to those based on the
combined sample of 24 matrices containing roughly four times as many observa-
tions, we found that the standard errors did go down in many cases by a factor
of two.? However, for some crucial parameters such as the wage covariances, they
did not go down at all. This, of course, should not be too surprising since the
wage covariances are free and information on other components of the model
should not really help in estimating them. Thelesson is that the technology helps
only when we have extra data with information on the parameters of interest.

On the substantive issue that motivated this work, whether ability is priced
differently in the marketplace for men and women, we have been able to say very
little. There are two sources of the problem: (1} Wage correlations across the
siblings are very important for answering this question and we have relatively
few wage pairs in these data.  (2) It is difficult for us to differentiate between the
sexes using test scores, since we have only one indicator of ahility, IQ, and in
designing that indicator attempts were made to minimize the appearance of sex
differences. An interesting extension of this work might be to apply this frame-
work to a sample with a variety of test scares, such as the recent High School and
BReyond surveys (NORC, [1980]) or the new NLS youth cohorts.!¢

Finally, we remind the reader again that the mean wage for the men aged 27 in
this dataset is forty percent higher than the mean wage for women of the same age
and that this difference is unaccounted for by anything reported in this paper.
The mean 1Q and schooling level for the same men and women are equal, and our
results indicate that they are getting the same returns from these factors. The

# The detailed results of such comparisons are available from the authors in the form of
“Appendix A™ to the original version of this paper.

‘% The National Longitudinal Surveys of Young Men and Women also confain scores on a
“Knowledge of the World of Work™ test which we originally planned to use in this study.
Unfartunately, the tests themselves were naot the samsz across the two sexes so that they could
not be used as an indicator variable which would provide additional identifying power. We
therefore decided not to use these scores in the final version of the madel.
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cause of the discrepancy must be looked for elsewhere,

Harvard University and NBER,
Harvard University and NBER, and
Stanford University and NBER.

APPENDIX 1: VARIABLES AND SAMPLE CONSTRUCTION

Variables

The exogenous variables used in the analysis (e.g., race and region} are standard
in the literature and require little comment. The variables of central interest are
the four we treat as endogenous, the 1Q) test score, years of schoaling completed
and both an “early’” and ““late” wage. The IQ test score was collected from the
respondents’ high schools and is either the score on a standard IQ test or sometimes
the score on another intelligence test rescaled by WNLS to take on IQ test units.
These test scores should be comparable across sexes but have the major drawback
that they are missing for a third of the sample. Respondents who did not go to
high school, whose high schools did not give intelligence tests or who themselves
did not give permission to the NLS for the release of the scores end up with missing
“IQ.”" There is ample evidence that the missing 1Qs tend to be from the lower
part of the distribution, but what is relevant for us is whether we can consider
1Q to be randomly missing conditional on the other data in the estimation.
Previous evidence reported by Griliches, Hall and Hausman (19787 on the young
men and our own unpublished evidence on the young women suggest that, at
least conditional on schooling and measured background variables, IQ is missing
approximately at random. Yet this evidence is all in the context of ordinary least
squares regression that treat schooling and IQ as exogenous and the question
remains for future work whether this finding is robust in our more complicated
modelling framework.

For schooling our intent was to get a measure of total years of schooling
completed. By 1980 this is not really the problem that it was in earlier use of the
NILS but we still lose some respondents who attrited before leaving school or who
re-entered school late in the sample period.  To consider schooling completed we
required respondents to be out of school at their last valid interview or to have
attained their educational goals. Less than five percent of either survey failed to
meet both of these tests. A small portion of each survey return to school in their
30s after extended periods of working. For the handful of cases we discarded
the last years of data and used wages and schooling completed before the age of 30.

By far the most complicated constructs were the “‘early™ and “late’ wages.
We decided to try to choose wages that occurred at comparable times during the
respondents’ life-cycles. We were thus constrained to pick targets and cutoffs
that would not automatically eliminate major segments of the original sample.
For the early wage we chose a wage as close as possible to requiring that the
respondent was at least 18 and had completed school. The [ate wage was chosen
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at an age as close as possible to at least two calendar years after the carly wage,
and in any case after the age of 23.

This way of constructing “early’ and “late’” wages implies that whenever the
late wage is present the early wage will also be. Table 1 indicates that early wages
were available for the most of the sample (about 80%) but that late wages were
much more problematic (60%; for men and 55% for women). We lose late wages
for a combination of reasons, e.g., sample attrition, exit from the labor force,
but most importantly, the youthfulness of parts of our sample. (Women who are
14 in 1968 have only one “chance’ at having “late’ wages.) The sampling process
generating “‘early’” and “late” wages is multi-faceted. Plausibly, the different
facets induce hiases moving in different directions, that to seme extent may cancel,
but at the same time confound attempts to get a good understanding of their
effects.

Pre-Processing

We do not estimate the model discussed in the text directly in the observed
endogenous varizbles but first “sweep out’’ from these the variables indicated in
Table 3. Perhaps the best way to understand what we are doing is to imagine
that the text model is expanded to include the exogenous variables explicitly.
We could then estimate their coefficients together with the factor structure. The
only reason that we, in fact, do not do this is the computational burden. What
we are doing can be thought of as a version of indirect least squares where what is
novel is that all of the identification comes from covariance restrictions and not
from exclusion restrictions on the exogenous variables.

The last point has a further implication, at least for estimation with complete
data. Since the covariance restrictions place no constraints on the reduced form
coefficients, the standard property of linear models, that 5 and ¥ are independent,
is maintained. As a consequence our estimates will be asymptotically equivalent
to those we would have obtained if we had estimated the full mode] jointly.

Reduced form coefficients for most of the variables are shown in Table 3 in the
text. Only a few require any comment. As mentioned in the text, we include
age rather than experience because the dependency of experience on schooling
would make it endogenous. The variables that require the most discussion are the
“sample’” dummies. We have allowed for separate intercepts in the reduced
forms for each of the 24 sample patterns indicated in Table 1. We do this to
adjust for missing data that may be randomly missing unconditionally. To see
why this maintained assumption leads us to include sample dummies consider the
simplest two equation, one factor model.

S = 141 + XIJGI + A+ Hy

I = s =+ X,'IPBZ + A -+ iy
with

VAR(A) = 05 E(A)=A Eul=a?
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Estimation of the reduced forms will put 4 into the constant terms and allow us
to estimate ;s directly and the ¢3’s and o7 from the covariance matrix.

Now suppose that for a portion of the data we aobserve on S and X but not [,
Let D be an indicator of this, with D=1 if I is present, and 0 otherwise. Suppose
also that E(A|D=1)#E(4|D=0)}. If the only non-randomness in the selection
process is that the mean of A varies conditional on D, it is ¢lear that we could get
consistent estimates restricting attention to the complete data sample alone. On
the other hand, if we estimate equation 1 on all available data we will get incon-
sistent estimates of £ as long as COV (X, D}s£0. More importantly, the covariance
of the reduced form residuals will not give us a consistent estimate of o} since we
will be using the “‘wrong’’ means for the first residual vector.

The problem is solved if we allow for separate sample intercepts in estimating
equation 1. Of course, sampling on A does more than shift means; it will also
change variances and distributions. Even if A were originally normal it is
unlikely to be so conditionally on selection. But these two featurescould be
accommeadated In estimation by (1) allowing the estimated variances of 4 to vary
with the samples and (2) by computing robust standard errors for the model.

APPENDIX 2. POOLING ESTIMATES ACROSS COVARIANCE
MATRICES OF DIFFERENT SIZE

In this appendix we describe in somewhat more detail the method we use for
pooling our estimates across covariance matrices which may be missing ane or
more rows due to missing data. Although developed independently using a
different computer program, our approach is the same as that of Allison [1981].
His paper describes a method for using LISRELV to obtain maximum likelihood
estimates of linear models when data are missing randomly, conditional on the
observed data. We apply the same technique using the program MOMENTS
(B. H. Hall [1979]); for the models we consider, this turns out to be somewhat
faster than using LISREL, although we have used that program to check some of
our results. '

Assume that we have T observations on a vector of normally distributed random
variables y, and T, observations on a vector y,. y; and y, are jointly independent
across observations. In our case y; and y, may include some of the same vari-
ables: for example, y, may consist of I, §, LW, and LW2 far each of the two
siblings, while y, may consist of the same variables, except for LW, for ene of the
siblings. That is, we have T, observations with complete data, and T,
observations where one of the late wages is missing. Qur model specifies that
¥, ~N@, 3,(8) and y, ~N(0, 3,(6)) where 3", is an eight by eight covariance
matrix and ¥, is a seven by seven submatrix of 3°,. The parameter vector 8
is in common across the matrices, although some elements of it may not appear
in the second matrix.

The basic likelihood function for data generated by such a process was given in
the body of the paper:
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I3 1S, 8) =k; — (T n|22A0) + tr Z6)718;) for j=1,2

Under the assumption that the data are missing at random, conditional on the
X’s and the unobserved factors, we can add the log likelihoods for the two datasets:

(X, X518, 85, 8) ~ — Z j {In [2Z/0) + tr ZA8)7'S5 .

This likelihood is additively separable in the data, although each term may depend
on all or a subset of the parameter vector §. Hence, to maximize the combined
likelihood with respect to &, we need only solve the sum of the first order condi-
tions for the individual pieces:

aé‘éf =-T5 * tr [(1 5,3, (0 S 52; 3, (0)" 1]=0V£,i:1,m,k-

Note that we have now generalized this equation from two such matrices to N,
Each matrix S; may be of different order; the only requirement they must satisfy
is the requirement of independence across samples conditional on the exogenous
variables. The appropriate weighting in the combined likelihood is supplied by
T, assuming that the underlying process is i.i.d.

To solve the first order conditions and maximize the likelihood function, we use
the method of scoring. Under the multivariate normal assumption, the infor-
mation matrix is given by

E a;ég@{d - ? 2: tr[aEJ(G) 2 (8)" 162.: (9)2 (A)~ Iil

This is obviously easy to compute once we are computing the gradient given above.
The methad of scoring is an iterative quasi-Newton method where the change in
the parameter vector 46 at each iteration i is given by

(ool (3L
Ag—[Eiaeass' e} ;T

At convergence, the asymptotic variance-covariance matrix of & is the inverse of
the information matrix.

The models we use for 3.(6) can all be written as
A(f)y = B(b)e

where y is an 1 by [ vector of observable variables and z is an m by 1 vector of
unobservables. The variance of ¢ depends on some of the parameters and is
given by Eee’=(Xf). ¢ consists of the components of the two factors 4 and Was
well as the equation-specific disturbances 1. If the matrix of structural coeffi-
cients A(f) is invertible, we can derive an expression for the covariance of the
observable variables:

Eyy' = X(6) = A@) ' B(O)QO)B(GY A(8) 1.
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This is the equation we use for estimation. Since the elements of A, B, and
are generally single elements of the parameter vector 8, the derivatives of 3.(&
with respect to the parameters are easy to compute.

Details on the implementation of this estimation scheme for structural models
with unobservables are given in Chapter 4 of the MOMENTS manual. To do
estimation with more than one matrix, we take advantage of the multiple matrix
feature of MOMENTS, which is described in Chapter [ of the manuval. When
loading more than one moment matrix, some of which may be missing data, we
need to fill in the rows and columns corresponding to the missing data with zeroes.
To deal with this the program has been modified so that zero rows and columns in
3 ; and §; cause the following to happen during computation: 1) the determinant
of the largest submatrix of 3 ; which is of full rank is computed when some rows
are zero, and 2) the inverse of the largest submatrix of 3 ; which is of full rank is
computed and the rows and columns of the inverse corresponding to the zeroes
on the diagonal of the original matrix are set to zero. When the product of
3 ;' and 5, is taken this will obviously lead to zeroes on the diagonals corre-
sponding to the missing data and therefore they will not contribute to the trace.
Inspection of the formula for the log likelihood should convince you that this
technique is equivalent to camputing the likelihood for a data matrix which
contains only the subset of S; which is observed.

The standard errors which we present in this paper are the maximum likelihood
estimates, which are consistent under the assumption that the disturbances are
independently and identically nermally distributed. As mentioned in the text,
however, MaCurdy [1981] has shown that the parameter estimates are consistent
even if the distribution is not normal.  Here we derive explicitly the correct esti-
mate of the variance-covariance matrix of the parameter estimates in that case,
although we have not computed these estimates, owing to the computational
burden.

A key result in MaCurdy’s paper is that the limited information estimator of a
set of variance parameters w which is obtained conditional on a set of regression
parameter estimates 7 is consistent for the true parameter values o, and is
asymptotically normally distributed with a covariance matrix which does not
depend on the fact that § are the estimated rather than the true values of y,. This
result halds for the general nonlinear multivariate regression model with indepen-
dently, identically, but not necessarily normally distributed disturbances. Our
model is a linear structural medel in which the structural parameters appear
explicitly in the covariance matrix, so that we can think of it as a linear multi-
variate regression model. The estimated parameter vector 9 corresponds to our
set of reduced form coefficients which are swept out of all the variables before
forming the moment matrices of residuals. The parameters o for which we want
standard errors are all of the parameters in the structural model, both the slopes
and the covariance parameters. The robust estimate of the variance-covariance
matrix of these parameters is given by MaCurdy as
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V(0) = 77 Hod(h, 0)G il DIHLG, 6).

In our notation, the contribution of the ith individual to the quasi-likelihood
function Qy is

g, = =+ I [ZO+ ZOS)

where we have suppressed the j subscript which specified which moment matrix
was under consideration. X.(f) depends only on the parameters of the covariance
matrix, w, and S; is the observed cross product matrix of the estimated residuals
for the ith individual. To estimate the standard errors of our estimated 8, we
need expressions for G(§) and H(8):

To derive these for our model, first rewrite ¢, as

4= — IO +& £O 8

where &; are the estimated residuals. Then

g . _ 1 {-132 _‘—1}
a6, =~z g, U SsaTy
From this we can compute a typical element of plim G(8) as

o= 3ol F [ 05

ez g eer gl

and a typical element of plim H(#) as

__1 i3y oY —2}
Her = ?“{aek a2

Here we have used the fact that ES;=3;. Note that if

] ¥ _

the normal case, then G(8)= — H(#) and we are back to the maximum likelihood
case described earlier.
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