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Abstract

We analyse how patent thickets affect entry into patenting. A model of entry into
patenting that allows for variation in technological opportunity, technological com-
plexity and the extent of patent thickets is developed and analysed. Using UK data
we then show that patent thickets are associated with a reduction of first time
patenting in a technology controlling for the level of technological complexity and
opportunity. Technologies characterized by more technological complexity and op-
portunity attract more entry into patenting. Our evidence indicates that patent thick-
ets raise entry costs, which leads to less entry into technologies regardless of a
firm’s size.

JEL classifications: K11, L20, O31, O34

1. Introduction

The past two decades have seen an enormous increase in patent filings worldwide (Fink

et al., 2016). There are signs that the high level of patenting may be reducing innovation in

certain technologies (FTC, 2003; Jaffe and Lerner, 2004; Bessen and Meurer, 2008; FTC,

2011; Schankerman and Schuett, 2016). Companies drawing on these technologies face ele-

vated legal costs of commercializing innovative products when patents that contain over-

lapping claims form so-called ‘patent thickets’ (Shapiro, 2001). Patent thickets arise where

products draw on technology protected by hundreds or even thousands of patents and these

patents have fuzzy boundaries. The precision with which patent claims are formulated

varies across technologies. Paradoxically claim language is quite loose in some high
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technology fields in which the volume of applications has been high.1 In addition, resource

constraints at patent offices have contributed to a flow of poorly delineated patents (Lei

and Wright, 2017). Patents in thickets belong to many competing firms. This complicates

licensing negotiations, raises the incidence of litigation, and creates incentives to add more,

often weak patents to the patent system (Allison et al., 2015). The increased transaction

costs associated with patent thickets reduce profits from commercialization of innovation,

and ultimately may reduce incentives to innovate.

Empirical research on patent thickets has been largely concerned with showing that they

exist and measuring their density (Ziedonis, 2004; von Graevenitz et al., 2011). There is

less evidence on the effects patent thickets have on firms’ objectives. Cockburn and

MacGarvie (2011) demonstrate that patenting levels affect product market entry in the soft-

ware industry. This result echoes earlier findings by Lerner (1995) who showed that first-

time patenting in a given technology is affected by the presence of other companies’ patents

in a small sample of US biotech companies. Both papers use patent counts in narrow

technological fields to measure thickets. In this article we use a network measure of patent

overlap by technology area as a proxy for thickets. The measure is correlated with increased

patenting (von Graevenitz et al., 2013), increased acquisition of patents by Non-Practicing

Entities (NPEs) (Fischer and Henkel, 2012) and a lower likelihood of patent opposition

proceedings (Harhoff et al., 2016).

Bessen and Meurer (2013) argue that patent thickets will lead to increased litigation due

to hold-up. They use the term to describe a situation where an alleged infringer faces the

threat of an injunction or high licensing costs after she has sunk investment.2 Patent thickets

have remained a concern of antitrust agencies and regulators in the USA for over a decade

(FTC, 2003; U.S. Department of Justice and Federal Trade Commission, 2007; FTC,

2011). Reforms that address some of the factors contributing to the growth of patent thick-

ets have recently been introduced in the USA (America Invents Act of 2011) and by the

European Patent Office (EPO).

Another perspective is provided by authors who argue that patent thickets are a feature

of rapidly developing technologies in which technological opportunities abound (Teece,

2018). Here thickets are a reflection of fast technological progress that is paired with

increased technological complexity (Lewis and Mott, 2013). Increased transaction costs

associated with patent thickets and the benefits of technological complexity and opportun-

ity often coincide. There may be a trade-off between technological opportunity and growth

on the one hand and increased transaction costs due to the emergence of patent thickets on

1 Allison et al. (2015) document that for the population of patents for which litigation was initiated in

2008 and 2009 in the USA, none or very few failed due to indefiniteness in Mechanical Engineering,

Biotechnology or Chemistry, whereas this was true for nearly a third of cases in Electronics and a

quarter in Software. Bessen and Meurer (2008) argue that language used to specify patent bounda-

ries in Chemistry and Biology is more scientific than that used for software patents. Allison and

Ouellette (2015) study all cases since 1982 in the USA decided on basis of claim indefiniteness.

They find that patents from the Computer/Electronics industry failed on the basis of enablement

more frequently than other industries. Enablement is the requirement that a patent must ‘teach one

skilled in the art to make and use’ an invention (Burk and Lemley, 2008).

2 ‘High licensing costs’ refers to costs that are higher than those that would have been negotiated

ex ante in the presence of possible ‘invent around’ before the alleged infringer sank her invest-

ment. This possibility can arise because of either prohibitive search costs or fuzzy patent bounda-

ries or both (Mulligan and Lee, 2012).
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the other—if the transaction costs of patenting in complex technologies are not avoidable.

The challenge in assessing technologies with high levels of patenting is to develop a frame-

work that captures the main factors that incentivize patenting and the costs and benefits

thereof.

This article focuses on entry into patenting across a wide range of industries. This is a

focal outcome that has been analysed in specific industries (Lerner, 1995; Cockburn and

MacGarvie, 2011). We make two contributions to this literature: first, we introduce a

model to show how patent thickets, technological opportunity and complexity interact to

determine levels of entry and second, we test predictions derived from the model using

firm-level data on entry into patenting by firms in the UK.

We model how entry decisions are affected by technological opportunity and legal un-

certainty over patent boundaries building on previous work by von Graevenitz et al.

(2013). The model focuses on the interaction between firms through two channels: (i) legal

costs associated with patent enforcement, and (ii) incumbency advantages in R&D fixed

costs. In contrast to von Graevenitz et al. (2013), we distinguish between technological

complexity per se, which is a feature of some technologies, and patent thicket density,

which arises from poor drafting of patents in a complex technology. Poor drafting increases

transaction costs for firms. Specifically, transaction costs may rise due to actual hold-up, or

through higher costs of licensing and greater complexity of clearing products when patent

breadth is uncertain. We refer to all three as hold-up potential. Our model shows that pa-

tent thickets reduce entry into patenting.3 The model also shows that higher complexity

and opportunity are associated with increased entry into patenting, because competition

for each innovation is reduced and the probability that entrants can establish themselves in

a technology is increased. Where incumbency implies lower costs of R&D, incumbents pa-

tent more than entrants.

These predictions are tested empirically using data from the UK. We quantify of the im-

portance of technological opportunity, complexity, and patent thickets on entry into pat-

enting. To do this, separate measures of technological opportunity, technological

complexity, and hold-up potential due to thickets are constructed and validated. Separating

technological complexity and hold-up potential in patent thickets empirically is an import-

ant improvement over the analysis in von Graevenitz et al. (2013), who conflated complex-

ity and hold-up potential arising from existing patent portfolios. We introduce a new

measure of technological complexity that relies on US patent data to mitigate endogeneity

concerns and we sharpen the definition of the network measure of patent overlap as a

proxy for hold-up potential.4

The analysis of entry in this article confirms that greater technological opportunity and

complexity increase entry and that hold-up potential reduces entry substantially. We show

that these findings are robust to various assumptions underlying our empirical approach.

While we cannot quantify the overall net welfare effect, our results indicate that patent

3 The model generates the same comparative statics for patent application levels as von Graevenitz

et al. (2013).

4 To further validate our approach, we verify the effect of distinguishing between technological com-

plexity and hold-up in the data used by von Graevenitz et al. (2013)for their analysis. The results,

which are reported in Online Appendix D, are consistent with our interpretation of the patents

thickets measure as a measure of hold-up potential, and of the citation network density as a meas-

ure of complexity.
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thickets raise entry costs for large and small firms alike. This is true regardless of any posi-

tive effects that arise from greater technological opportunity and complexity. To the extent

that more original and radical, rather than incremental ideas come from new entrants ra-

ther than incumbents (Tushman and Anderson, 1986; Henderson, 1993), reduced entry is

likely to have negative long-run consequences on innovation and product market competi-

tion. In combination with earlier results by von Graevenitz et al. (2013), who point to a

positive correlation between patenting levels and the presence of thickets, our results sug-

gest that any increases in transaction costs due to thickets can potentially have important

dynamic effects on innovation.

The remainder of this article is organized as follows. Section 2 presents a model of entry

into patenting in a technology area and derives several testable predictions. Section 3

describes the data, and the empirical measurement of the key concepts in the model.

Section 4 discusses our results and Section 5 provides concluding remarks.

2. Theoretical model

This section summarizes results of a model of entry into patenting.5 We show how firms’

decisions to enter into patenting depend on: (i) complexity of a technology, (ii) technologic-

al opportunity, and (iii) the potential for hold-up in patent thickets. The model has two

stages: entry and patenting. The patenting stage generalizes analysis in von Graevenitz et al.

(2013).6 Here we focus on novel predictions derived from free entry that are then tested in

Section 4. We solve the model by backward induction. Main results on entry into patenting

are that greater technological opportunity and complexity increase entry, while the threat

of increased legal costs in patent thickets reduces entry.

In the model a technology consists of a set of opportunities, each of which consists of a

number of patentable ‘facets’. Opportunities within a technology share the same number of

facets, while complexity of the technology is determined by the count of facets per oppor-

tunity. More opportunity within a technology attracts entrants as more avenues arise to

earn a profit through application of the technology. Greater complexity of a technology

also attracts entrants, because entrants are more likely to gain a share of profits flowing

from opportunities. Where multiple firms hold patents on the same opportunity, licensing

negotiations or litigation ensue as firms divide the profits flowing from the opportunity.

We assume that holding a larger share of patents on an opportunity is beneficial for firms

in terms of licensing or litigation, but less so when thickets arise from poorly delineated pat-

ents that provide increased options to litigate. This captures the costs imposed by thickets

on patentees.

2.1 Notation and assumptions

The key variables of the model are the complexity of a technology k, measured by Fk

ðFk 2 Rþ0 Þ, the degree of technological opportunity, measured by Ok ðOk 2 Rþ0 Þ, and hold-

up potential hk. The value of all ~Fk patents granted in an opportunity is Vk. In the simplest

discrete setting this is the value of the one patent (facet) that covers each technological op-

portunity. In complex technologies this is the value of owning rights to use all patents

5 Details are relegated to Appendices A and B.

6 We generalize their model to allow analysis of entry. Their main findings on patenting levels still

hold. For sake of brevity we relegate analysis on levels of patenting to the Online Appendix.
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(facets) granted for a technological opportunity. Firms (indexed by i) choose the number of

opportunities oi to invest in and the number of facets fi per opportunity to seek to patent.

In equilibrium only ~Fk ¼ ð1� ð1� f̂ k=FkÞNoþ1Þ facets are patented,7 where f̂ k is the

equilibrium number of facets chosen by applicants and NO is the number of firms that

applied for patents on a specific opportunity.8 As ~Fk may be smaller than Fk the total value

of patenting in a technology is Vkð~FkÞ � VkðFkÞ.
To simplify the modeling of simultaneous patenting of facets on multiple opportunities

we assume that firms choose how many opportunities oi and facets fi to invest in. Which

subset of facets per opportunity each firm invests in is random. The allocation of a facet

among the firms seeking to patent it is also random. Then probability pi that a facet is allo-

cated to firm i is:9

piðf 6i ; Fk;NOðOk; o 6i ;NÞÞ ¼
XNO

j¼0

1

jþ 1

NO

j

� � YNO�j

l¼0

1� fl

Fk

� � YNO

m¼NO�j

fm

Fk
: (1)

where f 6i ; o 6i are vectors containing the choices of the number of facets and the number of

opportunities to invest in, made by all rival firms j. The expected number of patents a firm

owns when it applies for fi facets is ci � pifi.

Profits of firm i patenting technology k, pik, increase in the share of patents the firm

owns per opportunity sik, where sik � pifi=~Fk. Profits are concave in this share through

DðsikÞ, capturing the decreasing marginal benefit of patent portfolio size in complex

technologies.

In sum, the assumptions we make on the value function and portfolio size benefits are:

VFð Þ: Vkð0Þ ¼ 0;
@Vk

@ ~Fk

> 0; (2)

PBð Þ: Dð0Þ ¼ 0;
dDðsikÞ

dsik
> 0 and

d2DðsikÞ
d2sik

< 0 : (3)

The model contains three types of patenting costs:

• R&D costs per opportunity, a function of total R&D activity per opportunity:

Coð
PNo

j ojÞ;
• maintaining each granted patent in force: Ca;

• coordinating R&D on different technological opportunities Cc(oi), where @Cc

@oi
> 0.

These assumptions imply that R&D costs are fixed costs.10 We allow for the en-

dogenous determination of the level of R&D fixed costs, which rise as more opportuni-

ties are researched simultaneously by rival firms. This reflects competition for inputs

into R&D, e.g. scientists and engineers that are in fixed supply in the short run

(Goolsbee, 1998).

Where multiple firms own facets on an opportunity, their legal costs L(ci, sik, hk) depend

on the absolute number of patented facets ci, on the share of patents per opportunity that a

7 See Online Appendix A.3 for more details.

8 The properties of N0 are summarized in Online Appendix A.2.

9 See Online Appendix A.1.

10 It also implies that there is no technological uncertainty. Introducing technological uncertainty

into the model does not change the main comparative statics results.
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firm holds sik, and on the extent to which they face hold-up hk. The first two channels cap-

ture the costs of defending a patent portfolio as the number of patents increases, while leav-

ing scope for effects on bargaining costs that derive from the share of patents owned: The

hold-up parameter captures contexts in which several firms’ core technologies become ex-

tremely closely intertwined. Then each firm has to simultaneously negotiate with many

others to commercialize its products, which significantly raises transaction costs.

LCð Þ: Lðci; sik; hkÞ; where
@L

@ci

> 0;
@2L

@c2
i

� 0;
@L

@sik
� 0;

@2L

@s2
ik

� 0;

@L

@hk
> 0;

@2L

@ci@hk
> 0;

@2L

@sik@hk
> 0 :

(4)

All remaining cross partial derivatives of the legal costs function are zero.

In what follows, we use the following definitions:

xik �
oi

Ok
; /ik �

fi

Fk
; lk �

~Fk

Vkð~FkÞ
@Vkð~FkÞ
@ ~Fk

; nik �
sik

DðsikÞ
@DðsikÞ
@sik

; gik �
fi

~Fk

@ ~Fk

@fi
:

(5)

Here xik is the share of opportunities each firm chooses to pursue, /ik is the share of facets

each firm seeks to patent per opportunity, lk is the elasticity of the value function with re-

spect to the level of complexity, nik is the elasticity of the benefits function D with respect to

the share of patents each firm is granted and gik is the elasticity of the number of covered

facets with respect to the number of patent applications of each firm.

2.2 Patenting and entry

Firm i’s profits in technology k, pikðoi; fi; Fk;Ok;Nk; hkÞ, are a function of the number of

opportunities oi which the firm invests in, the number of facets per opportunity fi the firm

seeks to patent, the total number of patentable facets per opportunity Fk, the number of

technological opportunities a technology offers Ok, the number of firms entering the tech-

nology Nk, and the degree of hold-up in that technology hk.

In this section we analyse the following two-stage game G*:

Step 1: Firms enter until pikðoi; fi; Fk;Ok;Nk; hkÞ ¼ 0;11

Step 2: Firms simultaneously choose the number of opportunities, oi, to invest in and the num-

ber of facets per opportunity fi to patent in order to maximize profits pik.

We solve the game by backward induction and derive local comparative statics results

for the symmetric extremal equilibria of the second stage game. For the subsequent analysis

it is important to note that all equilibria of this second stage game are symmetric. In case

that the second stage game has multiple equilibria we focus on the properties of the

extremal equilibria when providing comparative statics results (Milgrom and Roberts,

1994; Amir and Lambson, 2000; Vives, 2005).

At stage two of the game each firm maximizes the following objective function:

11 Nk is the superset of all firms applying for patents within all opportunities of technology k. We

treat Nk and the NO as a continuous variables to simplify analysis of the model.
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pikðoi; fiÞ ¼ oi Vkð~FkÞDðsikÞ � Lðci; sik; hkÞ � Coð
XNo

j

ojÞ � fipiCa

0
@

1
A� CcðoiÞ : (6)

This expression shows that per opportunity k, the firm derives profits from its share sik of

patented facets, while facing legal costs L to appropriate those profits, as well as costs of R&D

C0, costs of maintaining its patent portfolio Ca, and coordination costs across opportunities Cc.

This objective function generalizes that analysed by von Graevenitz et al. (2013). They

assume that the value of patenting increases linearly in the share of patents the firm owns

per opportunity (DðsikÞ ¼ sik) and do not allow for a direct effect of hold-up (hk) on legal

costs. Under free entry the model in von Graevenitz et al. (2013) does not have a solution,

while the model developed here does. Generalizing the objective function also has direct

implications for an empirical test of the theory: separate measures of complexity and hold-

up are required. The measures we employ in our empirical analysis are discussed in Section

3.

2.3 Simultaneous entry with multiple facets

In Online Appendix B we show that the results derived by von Graevenitz et al. (2013) for

patenting hold in our generalized model. This section summarizes new results on entry.

2.3.1 Comparative statics of entry In Online Appendix B.4 we show that there is a free

entry equilibrium. In this equilibrium the following propositions hold:

Proposition 1 Under free entry greater complexity of a technology increases entry.

Complexity has countervailing effects: first, it increases profits, because it is less likely that

duplicative R&D arises making each opportunity more valuable; this clearly increases

incentives to enter. Next, given the level of patent applications f̂ k, complexity reduces the

probability that each facet is patented, which reduces profits and entry incentives. Finally,

complexity reduces competition for each facet, which increases the probability of patenting

and increases innovation incentives. It is shown that the positive effects outweigh the nega-

tive effects.

First, consider how equilibrium profits are affected by the complexity of the technology

Fk, the degree of technological opportunity Ok, and the potential for hold-up hk:12

@p̂kðôk; f̂ kÞ
@Fk

¼ ôk
ŝk

Fk
ê ~Fk ;Fk

� êpk ;Fk
ĝk

� �
Vk

~̂Fk

� �
� ŝkð Þ

ŝk
l̂k � n̂k

� �
þ @L

@ŝk

� 	zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{K
0
BB@

1
CCA
> 0 (7)

@p̂kðôk; f̂ kÞ
@Ok

¼ ôk
@N̂O

@Ok

ŝk

N̂O

ê ~Fk ;NO
� êpk ;NO

ĝk

� �
K� @Co

@N̂Oô

N̂Oô

ŝk

 !
> 0 (8)

@p̂kðôk; f̂ kÞ
@hk

¼ �ôk
@L

@hk
< 0 (9)

12 Equilibrium values of the firms’ choices are denoted by a hat (̂) and we drop firm specific sub-

scripts, e.g. /̂k . We define K � Vkð ~̂F kÞ�ðŝ k Þ
ŝ k
ðl̂k � n̂kÞ þ @L

@ŝ k

h i
to simplify expressions.
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Proposition 3 follows from the Implicit Function theorem once we know the sign of the

derivative of profits with respect to Fk. Under free entry firms’ profits decrease with entry:

@Nk

@Fk
¼ �

@p̂k

@Fk

@p̂k

@Nk

(10)

and the sign of the effect of complexity Fk on entry depends on the sign of the effect of com-

plexity on profits.

Equation (7) shows that the effect of complexity on profits depends on the difference be-

tween the elasticities ê ~Fk ;Fk
and êpk ;Fk

ĝk, which are derived in Appendices A.1 and A.3.

Specifically, êpk ;Fk
is shown to be:

êpk ;Fk
¼ N̂

2

O

/̂k � 1
2 1þ 1

N̂O

� �
1� /̂k

(11)

This elasticity is negative for /̂k < 1
2, which is also a precondition for supermodularity

of game G*. We find that both terms in brackets in eq. (7) are positive, when game G* is

supermodular. This implies that greater complexity raises profits and this induces entry.13

Proposition 2 Under free entry greater technological opportunity increases entry.

For any given number of entrants an increase in technological opportunity reduces competi-

tion between firms for patents. This increases firms’ expected profits and increases entry.

Continuing from the proof of Proposition 1 above, by the Implicit Function theorem the

sign of the derivative of profits with respect to technological opportunity determines the ef-

fect of technological opportunity on entry:

@Nk

@Ok
¼ �

@p̂k

@Ok

@p̂k

@Nk

(12)

An increase in technological opportunity increases profits and entry. In Online

Appendix B.4 we show that the term in brackets in eq. (8) is negative under free entry and

that @NO

@Ok
< 0. Profits increase as technological opportunity increases, as entry per oppor-

tunity falls.

Proposition 3 Under free entry the potential for hold-up reduces entry.

An increase in the potential for hold-up raises firms’ expected legal costs. This reduces

expected profits and lowers potential for entry. To derive this prediction, note that by the

Implicit Function theorem the sign of the derivative of profits with respect to the level of

hold-up in a technology area determines the effect of hold-up on entry:

13 When /̂k � 1
2 game G* is no longer supermodular. This situation corresponds to the case where

one firm has more than half the patents in a particular technology opportunity within a technology

area. Thus our results may not hold when a specific opportunity is highly concentrated. In general

this will not be the case, especially at our level of empirical analysis, but it would be interesting to

explore this possibility in future work.
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@Nk

@hk
¼ �

@p̂k

@hk

@p̂k

@Nk

(13)

Hence, eq. (9) shows that the effect of hold-up on entry derives from the increased legal

costs that the possibility of hold-up imposes on affected firms.

2.4 Entry and incumbency

In our model firms’ decisions on entry are simultaneous, which is motivated by a focus on

first-order effects as in the literature on excess entry (Mankiw and Whinston, 1986;

Suzumura and Kiyono, 1987). Our purpose is to make predictions across a wide range of

patenting industries, which we can do without recourse to data on product market out-

comes. While this means that we cannot analyse dynamic evolution of patent thickets or se-

quential entry, we can allow for asymmetries between firms.

In Online Appendix B.6 we extend the model to asymmetric equilibria, in which some

firms (incumbents), face lower costs (CO �W, where W > 0) of entering opportunities. This

way we model observable heterogeneity in the experience of doing R&D in a technology

area. The main results derived above are robust to this variant of the model. In addition, we

show that more experienced incumbents enter more opportunities, crowding out new

entrants.

2.5 Predictions of the model

Here we summarize the predictions of the model that we test empirically:14

Prediction 1 The probability of entry increases in technological opportunity.

Greater technological opportunity reduces competition for facets per opportunity, which

raises expected profits and thereby attracts entry.

Prediction 2 The probability of entry increases in complexity of a technology.

Greater complexity has countervailing effects: it reduces competition per facet as well as

duplicative R&D, attracting entry. It also increases the likelihood that some of a technology

remains unpatented, reducing its overall value and entry. Our model shows that overall

complexity increases entry.

Prediction 3 The probability of entry falls in the potential for hold-up.

Hold-up potential increases expected costs of entry, thereby reducing it.

Prediction 4 More experienced incumbents are more likely to enter technological opportu-

nities new to them.

We show that incumbency advantage raises the number of opportunities that incumbents

enter. This implies that they also enter new opportunities, which they have not previously

been active in. This expansion of activity by incumbents crowds out entry by new firms.

14 Note that von Graevenitz et al. (2013) test predictions from a more restrictive version of the model

on the level of patent applications using data from the EPO. We replicate their analysis in Online

Appendix D using additional variables suggested by the generalized model we present here.
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3. Data and empirical model

Our empirical model is a hazard rate model of firm entry into patenting in a technology

area as a function of the technological opportunity, technological complexity, and hold-up

potential that characterize a technology area. Additional firm level covariates include the

age, size, and prior patenting history, and the concentration of their four-digit industry.

The models we estimate are stratified at both the firm and industry level. That is, the unit

of observation for each entry hazard is a firm-technology area, but the hazard shapes and

levels are allowed to vary either by firm or by the industry containing the firm. This ap-

proach recognizes that patenting propensities vary across firms and industries for reasons

that may not be technological (e.g. strategic reasons, or reasons arising from the historical

development of the sector).

We use firm-level data for the entire population of UK firms registered with Companies

House and data on patenting at the EPO and at the UK Intellectual Property Office

(UKIPO). The firm data come from the data held at Companies House provided by Bureau

van Dijk in their Financial Analysis Made Easy (FAME) database. The patent data were

linked to firm register data by matching applicant names in patent documents and firm

names in firm registers (see Online Appendix C for details).

Economic studies of entry are frequently hampered by the problem of identifying the

correct set of potential entrants (Bresnahan and Reiss, 1991; Berry, 1992). In our case this

problem is slightly mitigated by the fact that one set of potential entrants into patenting in

a specific technology area consists of those firms that currently patent in other technology

areas. We complement this group of firms with a set of comparable firms from the popula-

tion of UK firms that had not patented previously.

To construct the sample we deleted all firms from the data for which we have no size

measure because of missing data on assets. We select previously non-patenting firms from

the population of all UK firms in two steps: (i) we delete all firms in industrial sectors with

little patenting (amounting to less than 2% of all patenting), and (ii) we choose a sample of

non-patenting firms that matches our sample of patenting firms by industry, size class, and

age class. This approach results in an endogenous (choice-based) sample at the firm level.

The focus of our work is on industry and technology area level effects rather than firm-level

effects. Therefore we do not expect this sampling approach to introduce systematic biases

into the estimates we report. We provide a number of robustness checks, including aggre-

gate instrumental variable regressions.

All estimates are based on data weighted by the probability that a firm is in our sam-

ple.15 The sample that results from our selection criteria is a set of firms with non-missing

assets in manufacturing, oil and gas extraction and quarrying, construction, utilities, trade,

and selected business services including financial services that includes all (approximately

11,000) firms applying for a patent at the EPO or UKIPO during the 2001–2009 period

and another 11,000 firms that did not apply for a patent.

The definition of technology areas that we use is based on the 2008 version of the ISI-

OST-INPI technology classification, denoted TF34 classes (Schmoch, 2008). The list is

shown in Table C.1 in the Online Appendix, along with the number of EPO and UKIPO

15 To check this, we estimated the model with and without weights based on our sampling method-

ology and find little difference in the results.
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patents that were matched to UK firms with priority dates between 2002 and 2009. A com-

parison of the frequency distribution of patenting across technology areas from the two pa-

tent offices shows that firms are more likely to apply for patents in Chemicals at the EPO,

while Electrical and Mechanical Engineering predominate in the UK patent data (see the

bottom panel in Table C.1).

We treat entry into each technology area as a separate decision made by firms. More

than half of firms we observe patent in more than one area and 10% patent in more than

four. From the 22,000 firms observed, each of which can potentially enter into each one of

the 34 technology areas, we obtain about 550,000 observations at risk.

We cluster the standard errors by firm, so our models are effectively firm random effects

models for entry into 34 technology areas. Allowing firm choices to vary by technology

area is sensible under the assumption that firms’ patenting strategies are contingent upon

technology and industry level factors and are not homogeneous across technology areas.16

There are some technology-industry combinations that do not occur, e.g. audio-visual

technology and the paper industry, telecommunications technology and the pharmaceutical

industry. In order to reduce the size of the sample, we drop all technology-industry combi-

nations for which Lybbert and Zolas (2014) find no patenting in their data and for which

there was no patenting by any UK firm from the relevant industry in the corresponding

technology category. This removes about 30% of observations from the data. We provide a

robustness check for this procedure in Table E.2 in the Online Appendix.

3.1 Variables

3.1.1 Dependent variable—entry The dependent variable is a dichotomous variable taking

the value one if a firm has entered a technology area k at time t and otherwise the value

zero. Entry into a technology area is measured by the first time a firm applies for a patent

that is classified in that technology area, dated by the priority year of the patent.

3.1.2 Technological opportunity Our first prediction from the theoretical model is that

there will be more entry in technology areas with greater technological opportunity.

Opportunity to generate inventions can arise from the recombination of conventional

knowledge, or it can arise from a mixture of conventional and atypical knowledge (Uzzi

et al., 2013). We use two measures of opportunity, the first to capture opportunity arising

from conventional knowledge and the second, to capture opportunity arising from the

introduction of atypical knowledge:

1. Opportunity for recombination of conventional knowledge is measured through the

logarithm of the aggregate EPO patent applications in the technology sector in a given

year.

2. Opportunity from the introduction of atypical knowledge is measured through the past

5-year growth rate in the non-patent (scientific publication) references cited in patents in

a technology class at the EPO.17

Given the difficulty of measuring technological opportunity we note that the growth

rate in non-patent references is a better predictor of entry than the level of non-patent refer-

ences, which has been used previously to measure technological opportunity. Presumably

16 We confirmed the validity of this assumption through interviews with leading UK patent attorneys.

17 See von Graevenitz et al. (2013) for a more extensive discussion of this variable in the literature.
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the growth rate is a better predictor because it captures new or expanded technological op-

portunity coming from recent scientific work.

The first measure of opportunity is quite broad and may be correlated with other influ-

ences on entry. Our model of patenting predicts that aggregate patenting and entry are

functions of technological opportunity, complexity and patent thickets. We control for the

effect of complexity, patent thickets and science derived opportunity, so that the coefficient

on aggregate patenting will reflect primarily variation in the remaining, conventional

knowledge dimension of opportunity.

3.1.3 Technological complexity The second prediction of the theoretical model is that

technological complexity increases entry, other things equal. Technology is complex when

there are many ways to combine inventions in a particular field to obtain novel applications

of these inventions. The opposite, a discrete technology is characterized by a series of fairly

isolated inventions that do not connect to each other. To construct a measure of complex-

ity, we use the concept of network density applied to all citations among patents that issued

in the particular technology area during the decade prior to the date of potential entry. We

use citations at the US patent office, because these are richer (averaging seven cites per pa-

tent during this period versus three for the EPO) and to minimize correlation with the thick-

ets measure, which is based on EPO data.18

The network density measure is computed as follows: in any year t, there are Nkt patents

that have been applied for in technology area k between years t-10 and t. Each of these pat-

ents can cite any of the patents that were applied for earlier, which implies that the max-

imum number of citations within the technology area is given by Nkt(Nkt-1)/2. We count

the actual number of citations made and normalize them by this quantity, scaling the meas-

ure by one million for visibility, given its small size.

In any given cohort of new patents this measure captures how intensively innovations

introduced by the new patents are linked to preceding innovations. The measure contains

no information about whether these links indicate overlap in the innovations claimed by

patent holders or not. This additional information is contained in the EPO classification of

citations and is exploited in the patent thicket measure we discuss next.

3.1.4 Patent thickets The third prediction of the model is that greater potential for hold-

up reduces entry. We measure the potential for hold-up in patent thickets using the total tri-

ples count per technology area, as previously used by Harhoff et al. (2016). The triples

count is the number of fully connected triads on the set of firms’ critical patent references.

At time t a unidirectional link between two firms A and B corresponds to one or more crit-

ical references to firm A’s patents in the set of patents applied for by firm B in the years t, t-

1 and t-2. These critical references, so-called X- and Y-references, are obtained from exam-

iner search reports issued by the EPO and represent prior art that calls into question novelty

and/or the inventive step of the patent application under examination. Triples are then

formed by groups of three firms where each firm has at least one patent that is cited as crit-

ical prior research for at least one patent held by each of the other two firms. That is, in a

triple, each firm holds patents that potentially block the other firms’ patents creating

18 It is important to emphasize that citations listed on US patents are largely proposed by the appli-

cant, whilst the citations listed on EPO and UKIPO patents are inserted by the examiner. This

explains why the two measures are not highly correlated.
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mutually blocking triads. This indicator captures instances in which European patent exam-

iners have identified poorly drafted claims that indicate each firm in the triple is claiming

technology already claimed by the other firms in the triple. In the instances in which the

examiners identify overly expansive claims, these can be re-drafted. But examiners are un-

likely to spot overlapping claims in all patent applications in a technology area due to con-

straints on their time and ability to search for prior art. Moreover, the re-drafting of claims

flagged by examiners, which often involves adding specific language to narrow the scope of

claims, is unlikely to eliminate all potential overlap between the relevant patents. Therefore

a higher triples count in a technology area indicates the existence of overlapping technolo-

gies and the patents that cover them, and hence an increase in hold-up potential in this tech-

nology area.19

The citation data used to construct this measure is extracted from PATSTAT (October

2011 edition).20 We normalize the count of triples by aggregate EP patenting in the same

technology class and year, so that the triples variable represents the intensity with which

firms potentially hold blocking patents on each other relative to aggregate patenting activ-

ity in the technology.21

By adding a measure of technological complexity to our model we can interpret the tri-

ples count more narrowly than von Graevenitz et al. (2013), who used it as a proxy for

complexity and hold-up potential together.22 In contrast, our model separates the effect of

previously existing patent thickets on entry from that of technological complexity. The tri-

ples measure is more likely to be elevated in complex technologies, but complexity alone

does not lead to an elevated hold-up potential. Hence we use separate measures of complex-

ity and hold-up potential.

3.1.5 Covariates It is well known that firm size and industry are important predictors of

whether a firm patents at all (see Bound et al., 1984, for US data). Hall et al. (2013) show

this for UK patenting during the period studied here. Therefore, in all of our regressions we

control for firm size, industrial sector, and year of observation. We include the logarithm of

the firm’s reported assets and a set of year dummies in all the regressions.23 To control for

industrial sector, we stratify by industry, which effectively means that each industry has its

own hazard function, which is shifted up or down by the other regressors.

19 Note that Fischer and Henkel (2012) find that NPEs are more likely to acquire patents in fields with

higher triple count, providing additional support for the notion that the measure captures patent

overlap and hold-up potential.

20 Triples data was kindly provided by Harhoff et al. (2016).

21 As a robustness check, we have also explored the use of duples, i.e. the count of mutual blocking

relationships, to measure hold-up potential. Combining both measures in one regression leads to

thorny problems of interpretation. Taken alone the measure has similar effects as the triples

measure in this context.

22 In Online Appendix D, we show that this confounded the separate effects of complexity and hold-

up. Including the measures of complexity and hold-up potential proposed here in their empirical

model, we find that the effects on patenting incentives predicted by our theoretical model for

complexity (positive) and hold-up potential (negative) apply in their data.

23 The choice of assets as a size measure reflects the fact that it is the only size variable available

for the majority of the firms in the FAME data set.
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We also expect the likelihood that a firm will enter a particular technology area to de-

pend on its prior patenting experience, as well as its age. Long-established firms are less

likely to be exploring new technology areas in which to compete. Thus we include the loga-

rithm of firm age and the logarithm of the stock of prior patents applied for in any technol-

ogy by the firm, lagged one year to avoid any endogeneity concerns.24 The variables on

firm size and patent stock also allow us to test Prediction 4 about the effect of incumbency

advantage on entry.

Finally, to check that our technology entry results are not driven by concentration in the

firm’s industrial sector, we compute the Herfindahl-Hirschman index (HHI) for each four-

digit sector using all the firms (about 3 million) on the Companies House FAME files and in-

clude that variable in our regressions. Because broad industrial sectors are being controlled

for via stratification, the HHI variable only measures variations within those sectors.

3.2 Descriptive statistics

Our estimation sample contains about 22,000 firms and 550,000 firm-TF34 sector combi-

nations. During the 2002–2009 period there are about 14,000 entries into patenting for the

first time in a technology area by these firms. Table C.2 in the Online Appendix shows the

distribution of the number of entries per firm: 3,110 enter one class, and the rest enter more

than one. Table C.3 shows the population of UK firms obtained from FAME in our indus-

tries, together with the shares in each industry that have applied for a UK or European pa-

tent during the 2001–2009 period. These shares range from over 10% in Pharmaceuticals

and R&D Services to less than 0.2% in Construction, Transportation, and Financial

Services. Table C.4 shows the number of entrants and their share among all patentees by

technology area. It shows that there is a substantial amount of entry but it also varies sig-

nificantly across technologies. Finally, Table C.5 shows our different measures for techno-

logical opportunity, complexity, and patent thickets by TF34 technology class and Table

C.6 shows descriptive statistics for the key technology class and firm level variables.

3.3 Empirical model

We use hazard models to estimate the probability of entry into a technology area. The mod-

els express the probability that a firm enters into patenting in a certain area conditional on

not having entered yet as a function of the firm’s characteristics and the time since the firm

was ‘at risk’, which is the time since the founding of the firm. In some cases, our data do

not go back as far as the founding date of the firm, and in these cases the data are left-

censored. When we do not observe the entry of the firm into a particular technology sector

by the last year (2009), the data is referred to as right-censored.

We estimate two classes of failure or survival models:25 (i) proportional hazard, where

the hazard of failure over time has the same shape for all firms, but the overall level is pro-

portional to an index that depends on firm characteristics; and (ii) accelerated failure time

(AFT), where the survival rate is accelerated or decelerated by the characteristics of the

firm. In the body of the article we present results using the well-known Cox proportional

hazards model stratified by industry. The effect of the stratification is that we allow firms

24 We compute the past stock of patents using a declining balance formula with a 15% depreciation

rate, in order to reduce the impact of very old patents.

25 In Online Appendix E, we discuss the choice of the survival models that we use for analysis, how

to interpret the results, and present some robustness checks.
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in each of the industries to have a different distribution of the time until entry into patent-

ing conditional on the regressors. That is, each industry has its own ‘failure’ time distribu-

tion, where failure is defined as entry into patenting in a technology area, but the level of

this distribution is also modified by the firm’s size, aggregate patenting in the technology,

network density, and the triples density. To check for omitted firm specific effects, we also

estimate hazard models stratified by firms, where each firm has its own failure time

distribution.

Online Appendix Table E.1 shows exploratory regressions made using various survival

models. The AFT estimates are not well identified and typically have larger coefficients

with larger standard errors than the other two, but of the same sign. Unlike the Weibull

model, these models allow for a baseline hazard that may first increase and then decrease,

which is difficult to identify in our relatively short time period.

Our data for estimation are for the 2002–2009 period, but many firms have been at risk

of patenting for many years prior to that. The oldest firm in our data set was founded in

1856 and the average founding year was 1992. Because the EPO was only founded in 1978,

we chose to use that year as the earliest date any of our firms is at risk of entering into pat-

enting. That is, we defined the initial year as the maximum of the founding year and 1978.

Table E.2 in the Online Appendix presents estimates of our model using 1900 instead of

1978 as the earliest at risk year and finds little difference in the estimates.26 We conclude

that the precise assumption of the initial period is innocuous. Our assumption amounts to

assuming that the shape of the hazard for firms founded between 1856 and 1978 but other-

wise identical is the same during the 2002–2009 period.

4. Results

4.1 Main results

Our estimates of the model for entry into patenting are shown in Table 1. All regressions

control for size, age, and industry. Both size and age are strongly positively associated with

entry into patenting in a new technological area. Our indicator of technological opportun-

ity and technology class size, the log of current patent applications in the technology class,

is also positively associated with entry into that class, as predicted by our model.

Column 2 of Table 1 contains the basic result from our data and estimation, which is

fully consistent with the predictions of our theoretical model: greater complexity as meas-

ured by citation network density increases the probability of entry into a technology area

(Prediction 2), as does technological opportunity (Prediction 1), measured both as prior

patenting in the class and as growth in the relevant science literature. Controlling for both

technological opportunity and complexity, firms are discouraged from entry into areas

with a greater density of triple relationships among existing firms (Prediction 3). We inter-

pret this latter result as an indicator of the discouraging effect of hold-up possibilities or the

legal costs associated with negotiation of rights or defense in the case of litigation.

We were concerned that our network density (complexity) and triples density (hold-up po-

tential) measures might be too closely related to convey separate information, but we found

26 The main difference is in the firm age coefficient. Because the models are nonlinear, this coeffi-

cient is identified even in the presence of year dummies and vintage/cohort (which is implied by

the survival model formulation). However it will be highly sensitive to the assumptions about vin-

tage due to the age-year-cohort identity.
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that the raw correlation between these two variables was -0.001. To check for the impact of

potential correlation conditional on year, industry, and the other variables, in column 1 of

Table 1 we included the measure of thickets without that for network density and found that

although the coefficient was very slightly lower in absolute value, the result still hold.27

Table 1. Hazard of entry into patenting in a TF34 class

Variable Cox Proportional Hazard Model

(1) (2) (3) (4) (5)

Log (network density) 0.112*** 0.118*** 0.116*** 0.117***

(0.022) (0.021) (0.021) (0.021)

Log (triples density in class) �0.147*** �0.150*** �0.111*** �0.112*** �0.117***

(0.010) (0.009) (0.008) (0.009) (0.009)

Log (patents in class) 0.558*** 0.598*** 0.573*** 0.573*** 0.605***

(0.027) (0.026) (0.024) (0.024) (0.025)

Five-year growth of

non-patent refs in class

0.122*** 0.096*** �0.126*** �0.125*** �0.094***

(0.033) (0.034) (0.031) (0.031) (0.031)

Log assets 0.288*** 0.287*** 0.200*** 0.200*** 0.676***

(0.011) (0.011) (0.013) (0.013) (0.084)

Log firm age in years 1.203*** 1.205*** 1.178*** 1.169*** 1.203***

(0.093) (0.093) (0.103) (0.103) (0.103)

Log (pats applied for by

firm previously)

1.074*** 1.071*** 1.071***

(0.038) (0.039) (0.038)

Herfindahl for firm’s

Four-digit industry

0.442**

(0.217)

Log (network density)

� Log assets

0.000

(0.006)

Log (triples density)

� Log assets

0.008***

(0.003)

Log (patents in class)

� Log assets

�0.056***

(0.008)

Log (average NPL refs)

� Log assets

�0.067***

(0.010)

Log likelihood �84.40 �84.38 �77.24 �76.34 �77.20

Degrees of freedom 13 14 15 16 19

Chi-squared 2,450.7 2,583.5 3,520.8 3,408.5 3,452.9

551,981 firm-TF34 observations with 14,709 entries (22,316 firms).

Source: Authors’ calculations.

Notes: The sample is matched on size class, sector, and age class. Estimates are weighted by sampling probabil-

ity. Time period is 2002–2009 and minimum entry year is 1978. Sample is UK firms with non-missing assets,

all patenting firms and a matched sample of non-patenting firms. A complete set of year dummies is included in

the hazard function. Method of estimation is Cox proportional hazard. Coefficients for the hazard of entry

into a patenting class are shown. Estimates are stratified by industry—that is, each two-digit industry has its

own baseline hazard. Standard errors are clustered on firm. ***(**) denote significance at the 1% (5%) level.

The degrees of freedom are those for the chi-squared test versus a model with hazard rate only.

27 In results not shown, we also included the network density variable separately, with similar

effect.
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As we show in Online Appendix E, the estimated coefficients in the table are estimates

of the elasticity of the yearly hazard rate with respect to the variable, and do not depend on

the industry specific proportional hazard. A one standard deviation increase in the log of

network density is associated with a 7% increase in the hazard of entry (0.112� 0.59),

while a one standard deviation in the log of triples density is associated with a 23% de-

crease in the hazard of entry (-0.150�1.56). Thus the differences across these technology

areas in the willingness of firms to enter them is substantial, bearing in mind that the aver-

age probability of entry is only about 1% in this sample.

There are fixed costs to patenting, and a firm may be more likely to enter into patenting

in a new area if it already patents in another area. To test this idea, in the third column of

Table 1, we add the logarithm of past patenting by the firm. In line with Prediction 4, firms

with a greater prior patenting history are indeed more likely to enter a new technology

area—doubling a firm’s past patents leads to an almost 100% higher hazard of entry.

Accounting for differences across firms in patenting propensity also changes the sign of the

non-patent references coefficient, which we are using as one of the proxies for technological

opportunity in the technology sector. Apparently firms with strong patenting histories are

not more likely to enter sectors with recent growth in scientific input.28 Controlling for

past patenting also weakens the triples coefficient somewhat, which is consistent with the

idea that patenting strength renders a firm less vulnerable to hold-up possibilities.

Industry concentration may also affect a firm’s willingness to enter new technology

areas. Recall that we already control for the level of entry by two-digit industry via strati-

fied hazard rate model estimation. In the next column, we add the Herfindahl for the firm’s

four-digit industry and find that within two-digit industry, variations in four-digit concen-

tration impact entry positively, but the effect is unrelated to any of the other variables, espe-

cially those describing the technological context. That is, entry into new technology areas is

more likely in concentrated industries, but the impact of complexity, potential hold-up, and

technological opportunity is the same regardless of the firm’s industry concentration.

In the last column we interact the log of assets with the log of patents, the log of net-

work density, the growth of non-patent literature, and the log of triples density to see

whether these effects vary by firm size. The results show that the technological opportunity

effect declines slightly with firm size. The triples density effect shows a small decrease with

size, suggesting that hold-up concerns affect larger firms somewhat less than smaller firms.

We show this graphically in Fig. 1, which overlays the coefficients as a function of firm size

on the actual size distribution of our firms. From the graph one can see that the impact of

aggregate patenting in a sector is higher and more variable than the impact of hold-up po-

tential, and that both fall to zero for the largest firms. Growth in non-patent literature is

positively associated with technology entry for small firms, but negatively for large firms,

suggesting the role played by the smaller firms in newer technologies based on science.

Large firms seem not to be as active in these areas.

28 The negative sign of the non-patent references coefficient appears to be driven by firms in the

pharmaceutical industry. When we exclude firms in the pharmaceutical industry and the relevant

technology categories organic fine chemistry, biotechnology, and pharmaceuticals, the coefficient

on the non-patent references is close to zero and statistically not different from zero (results not

reported here).
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4.2 Firm effects

In the previous regressions we controlled for firm size, age, industry and past patenting be-

havior. But obviously firms can differ in other unobservable ways and it would be desirable

to control for these left out variables. Because firms in our data can enter into any one of 34

technology areas, this turns out to be straightforward, as we have variability across technol-

ogy as well as years to provide identification. The cost is that we can no longer identify the

coefficients of the firm-level variables.

Table 2 displays the results of estimating proportional hazard models on our data strati-

fied by firm rather than industry, with standard errors also clustered by firm. The results

are similar but differ in places from those using industry stratification. Complexity of a sec-

tor has a much weaker impact but the impact of the thickets or hold-up variable is strength-

ened, implying that firms avoid those sectors with a high potential for hold-up.

With the exception of past non-patent literature growth, the interaction coefficients

(which are identified even though the simple log assets coefficient is not) all suggest weak-

ened impacts for larger firms. The impact of growth in the past non-patent literature used

by patents in the class is negative within firm and even more negative for larger firms.

Looking at the raw data in the appendices, it appears that organic fine chemistry, biotech-

nology, and pharmaceuticals have both the lowest first time entry rates and the highest

growth in the use of non-patent literature. In these technologies, it appears that other forces

beyond thickets discourage entry.

4.3 Robustness

One concern we may have with the relationship between entry and the triples variable is

simultaneity. That is, technology areas with lots of entry may also be prone to a higher tri-

ples density, just because of the entries. To address this possibility, we use the aggregate

form of our entry regression. For each year we regress the log of the number of first time

entries in each technology-industry sector combination on the characteristics of the

Fig. 1. Firm size and the effects of technological opportunity, complexity, and patent thickets
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technology class together with industry and year dummies. As instruments for the triples

density, we use the median examination lag in the technology for patents applied for five

and six years prior to the current year, which is long enough so that most of them will have

been granted, rejected, or withdrawn. The idea is that classes with long examination lags

may also be those where it is more difficult to assess patentability, leading to the hold-up

potential captured by the triples proxy variable. We find that the instrumental variables re-

gression easily passes the specification tests for under-, weak and over-identification, justi-

fying our choice of instruments.

Table 3 shows the results, both ordinary least squares and instrumental variables.29 We

include all the technology area variables, a count of the number of firms in the tech class-

industry sector-year cell, and the average HHI for the industry of those firms. Note that we

do not expect results to be identical when comparing the aggregate regressions to individual

Table 2. Hazard of entry into patenting in a TF34 class—firm effects

Variable Cox Proportional Hazard Model

(1) (2) (3) (4)

Log (network density) 0.000 0.036** 0.041**

(0.017) (0.017) (0.017)

Log (triples density in class) �0.206*** �0.207*** �0.212***

(0.008) (0.008) (0.008)

Log (patents in class) 0.361*** 0.735*** 0.752*** 0.782***

(0.018) (0.022) (0.023) (0.024)

Five-year growth of non-patent refs in class �0.574*** �0.636*** �0.644*** �0.634***

(0.026) (0.026) (0.026) (0.026)

Log (network density) � Log assets �0.022***

(0.006)

Log (triples density) � Log assets 0.011***

(0.002)

Log (patents in class) � Log assets �0.071***

(0.008)

Log (average NPL refs) � Log assets �0.025***

(0.009)

Log likelihood 43.45 43.87 43.87 43.92

Degrees of freedom 3 3 4 8

Chi-squared 964.9 1,468.3 1,478.5 1,565.2

551,981 firm-TF34 observations with 14,709 entries (22,316 firms).

Source: Authors’ calculations.

Notes: The sample is matched on size class, sector, and age class. Estimates are weighted by sampling probabil-

ity. Time period is 2002–2009 and minimum entry year is 1978. Sample is UK firms with non-missing assets,

all patenting firms and a matched sample of non-patenting firms. Method of estimation is Cox proportional

hazard. Coefficients for the hazard of entry into a patenting class are shown. Estimates are stratified by firm—

that is, each firm has its own baseline hazard. Standard errors are clustered on firm. ***(**) denote significance

at the 1% (5%) level. The degrees of freedom are those for the chi-squared test versus a model with hazard

rate only.

29 We also estimated this model by LIML and GMM, with almost no change in the resulting coeffi-

cients (not shown).
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firm-level hazard rate estimations, as the functional forms and aggregation level of the models

differ. However, the results are similar in sign to those in column 4 of Table 1, with the ex-

ception of the HHI coefficient, which is insignificant. For our purposes, interest centers on

the coefficient of triples density. The least squares estimate of the elasticity is negative and

implies a 15% reduction in entry per year when the triples density increases by one standard

deviation. Instrumenting this variable doubles its coefficient, which suggests that our hazard

rate estimates may be an underestimate of the true impact of potential hold-up on entry.

Table E.2 in the Online Appendix explores some variations of the sample used for esti-

mation in Table 1. Column 1 of Table E.2 is the same as column 3 of Table 1 for compari-

son. The first change (column 2) was to add back all the technology-industry combinations

where Lybbert and Zolas (2014) find no patenting in their data and where there was no

entry by any UK firm from the relevant industry into that technology category. These obser-

vations are about 20% of the sample. The impact of network density on entry is consider-

ably weaker, but the impacts of triples density and the technology class size are

considerably stronger. The growth in non-patent references in the class is again negative,

contrary to our prediction. This may be because the sector-class combinations added were

weighted towards chemicals and pharmaceuticals, where non-patent references are much

more important, and where we have already seen that entry is low.

Next we explored the differences across firm size, first removing all the firms with assets

greater than 12.5 million pounds and then keeping only the firms with more than one bil-

lion pounds in assets.30 The former restriction removed only 2% of the 20,000 firms, while

Table 3. Aggregate regressions for entry into patenting classes 2001–2009

Variable Log number of first time entries by a firm into class by sector

OLS IVa

Coef. Coef.

(1) s.e.b (2) s.e.b

Log (US network density) 0.034 0.030 0.054 0.031 *

Log (triples density) �0.099 0.011*** �0.214 0.033***

Log (patent apps in class) 0.318 0.033*** 0.484 0.058***

Past five year growth in NPL refs �0.303 0.032*** �0.297 0.035***

Log (number firms in class) 0.719 0.017*** 0.664 0.020***

Average four-digit HHI in sector �0.179 0.148 �0.198 0.146

R-squared 0.625 0.600

Standard error 0.581 0.598

Nine years_34 tech classes_25 sectors ¼ 7,650 observations

Notes:
aInstruments are lag 5 and 6 median exam duration for patents in the class. Tests for under-identification and

weak identification pass easily. Hansen J-stat for over-identification has a p-value of 0.826. Log of triples dens-

ity is treated as endogenous in the IV estimates.
bStandard errors are clustered on tech class-industrial sector (which allows free correlation over time).

***(*) denote significance at the 1% (10%) level.

Source: Authors’ calculations.

30 12.5 million pounds is a cutoff based on the definition of Small- and Medium-sized Enterprises

(SMEs) as firms with fewer than 250 employees. We do not have employment for all our firms, so
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the latter left only 273 firms. Column 3 of Table E.2 shows that the results for the SMEs do

not change a great deal, although they are somewhat stronger, and the growth in non-

patent literature is no longer significant. The coefficients for the giant firms appear differ-

ent, but they have very large standard errors. So our results do not appear to be dominated

by a particular size class of firms.

In column 5, we removed the telecommunications technology sector from the estima-

tion, because it is such a large triples outlier. Once again, there was little change to the esti-

mates. The last column of Table E.2 shows the results of defining the minimum entry year

as 1900. With the exception of firm age, the coefficients are nearly identical to those in col-

umn 1 of the table. Age is nearly collinear with firm entry dates so changes in that coeffi-

cient are to be expected when we redefine the entry year.

5. Conclusion

Patent thickets arise for a multitude of reasons; they are mainly driven by an increase in the

number of patent filings and concomitant reductions in patent quality (that is, the extent to

which the patent satisfies the requirements of patentability) as well as increased techno-

logical complexity and interdependence of technological components. The theoretical ana-

lysis of patent thickets (Shapiro, 2001) and the qualitative evidence provided by the FTC in

a number of reports (FTC, 2003, 2011) suggest that thickets can impose significant costs

on some firms. The subsequent literature has focused on the measurement of thickets (e.g.

Ziedonis, 2004; von Graevenitz et al., 2011) and has linked thickets to changes in firms’ in-

tellectual property strategies in a number of dimensions. There is still a lack of evidence on

the effect of patent thickets as well as their welfare implications at the aggregate level.

The empirical analysis of the effects of patent thickets must contend with two chal-

lenges: first, patent thickets have to be measured and secondly, effects of thickets must be

separated from effects of other factors that are correlated with the growth of thickets, in

particular technological complexity.

This article confronts both challenges. We show that our empirical measure for the

density of thickets captures effects of patent thickets predicted by theory. We separate the

impact of patent thickets on entry from effects of technological opportunity and complexity

and show that thickets reduce entry into patenting. Controlling for technological opportun-

ity and complexity is important because both are correlated with entry into patenting and

the presence of thickets. It is also worth emphasizing that our measure of thickets is purged

of effects that are driven by patenting trends in particular technologies. That is, our results

are not due to the level of invention and technological progress within a technology field.

Our results demonstrate that patent thickets significantly reduce entry into those tech-

nology areas in which growing complexity and growing opportunity increase the underly-

ing demand for patent protection. These are the technology areas, which are associated

most with productivity growth in the knowledge economy. However, the welfare conse-

quences of our finding are not so clear. Reduced entry into new technology areas could be

welfare-enhancing: Entry into a market may be excessive if entry creates negative external-

ities for active firms, for instance due to business stealing (Mankiw and Whinston, 1986;

Suzumura and Kiyono, 1987). This is likely to be true of patenting too. Furthermore, Arora

we assume that assets are approximately 50 thousand pounds per employee in order to compute

this measure. For small firms only, this yields an assets cutoff of 2.5 million pounds.
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et al. (2008) show that the patent premium does not cover the costs of patenting for the

average patent (except for pharmaceuticals). These and related facts might lead one to con-

clude that lower entry into patenting is likely to increase welfare and that thickets raise wel-

fare by reducing entry.

In contrast, reduced entry into patenting in new technology areas may also be welfare-

reducing, for at least two reasons. First, there is the obvious argument that the benefits

from more innovation may exceed any business stealing costs (as has been shown empirical-

ly in the past by others, e.g. Bloom et al., 2013), so that some desirable innovation may be

deterred by high entry costs. Even if this were not true, there is no reason to believe that

firms that do not enter into patenting due to thickets are those we wish to deter. Given the

incumbency advantage, it is likely that the failure to enter into patenting in these areas

reflects less innovation by those who bring the most original ideas, that is, by those who are

inventing ‘outside the box’.

The view that firms generally identify and preempt the emergence of patent thickets

through private contractual arrangements sounds optimistic in this light (Barnett, 2018).

While firms have the ability to privately contract around blocking patents, transaction costs

associated with contracts of this nature may be sufficiently important to deter some firms,

specifically smaller ones, from doing so. Our evidence also casts doubt on the suggestion

that in response to a thicket, firms will simply resort to unlicensed use of patented technol-

ogy (Teece, 2018). This is much more likely to be a response adopted by large corporations

with strong patent portfolios, as is apparent in the many patent cases brought by smart-

phone vendors after 2011 (Paik and Zhu, 2016). The key question for public policy in this

context is whether or not to employ more resources to change incentives for patentees to

submit clearly delineated patent claims and to strengthen the examination of patents such

that patent notice is strengthened. Menell (2019) discusses a range of approaches that could

be taken in this regard. Our analysis suggests that these measures might primarily benefit

smaller patent applicants.

Supplementary material

Supplementary material is available on the OUP website. These are the data and replication

files and the Online Appendix. Some of the data used in this article are available from

Bureau van Dijk’s FAME database.

Funding

This work was supported by the Intellectual Property Office of the United Kingdom.

Acknowledgements

We are grateful to the National Institute of Economic and Social Research (NIESR) for hospital-

ity while this article was being written. The views expressed here are those of the authors. They

are not necessarily those of the UK Intellectual Property Office (UKIPO) or NIESR. The revision

of this article has benefitted from comments by participants in seminars at the UKIPO, the

USPTO, the NBER Summer Institute, the University of California at Berkeley, Tilburg University,

ETH Zurich, the University of Wuppertal and the TIGER Conference in Toulouse. We would

like to thank the editor, Alan Beggs, and two anonymous referees for their helpful comments and

suggestions which have greatly improved the article. We also thank Jonathan Haskel, Scott Stern,

22 PATENT THICKETS AND TECHNOLOGY ENTRY

D
ow

nloaded from
 https://academ

ic.oup.com
/oep/advance-article/doi/10.1093/oep/gpaa034/5908270 by O

U
P site access user on 19 N

ovem
ber 2020

https://academic.oup.com/oep/article-lookup/doi/10.1093/oep/gpaa034#supplementary-data
https://academic.oup.com/oep/article-lookup/doi/10.1093/oep/gpaa034#supplementary-data


Dietmar Harhoff, Stefan Wagner and Megan MacGarvie for comments, and Iain Cockburn,

Dietmar Harhoff, and Stefan Wagner for very generous support with additional data.

References

Allison, J.R., Lemley, M.A., and Schwartz, D.L. (2015) Our divided patent system? University of

Chicago Law Review, 82, 1073–154.

Allison, J.R. and Ouellette, L.L. (2015) How courts adjudicate patent definiteness and disclosure,

Duke Law Journal, 65, 609–95.

Amir, R. and Lambson, V.E. (2000) On the effects of entry in Cournot markets. Review of

Economic Studies, 67, 235–54.

Arora, A., Ceccagnoli, M., and Cohen, W.M. (2008) R&D and the patent premium. International

Journal of Industrial Organization, 26, 1153–79.

Barnett, J. (2018) Has the academy led patent law astray? Berkeley Technology Law Journal, 32,

1313–80.

Berry, S.T. (1992) Estimation of a model of entry in the airline industry. Econometrica, 60,

889–917.

Bessen, J. and Meurer, M.J. (2008) Patent Failure, Princeton University Press, Princeton, NJ.

Bessen, J. and Meurer, M.J. (2013) The direct costs from NPE disputes. Cornell Law Review, 99,

387–424.

Bloom, N., Schankerman, M., and Van Reenen, J. (2013) Identifying technology spillovers and

product market rivalry. Econometrica, 81, 1347–93.

Bound, J., Cummins, C., Griliches, Z., Hall, B.H., and Jaffe, A. (1984) Who does R&D and who

patents? in Griliches, Z. (ed.) R&D, Patents and Productivity, University of Chicago Press,

Chicago, IL, 21–34.

Bresnahan, T.F. and Reiss, P.C. (1991) Entry and competition in concentrated markets. Journal of

Political Economy, 99, 977–1009.

Burk, D.L. and Lemley, M.A. (2008) Fence posts or sign posts—Rethinking patient claim con-

struction. University of Pennsylvania Law Review, 157, 1743–99.

Cockburn, I. and MacGarvie, M. (2011) Entry and patenting in the software industry.

Management Science, 57, 915–33.

Fink, C., Khan, M., and Zhou, H. (2016) Exploring the worldwide patent surge. Economics of

Innovation and New Technology, 25, 114–42.

Fischer, T. and Henkel, J. (2012) Patent trolls on markets for technology–an empirical analysis of

NPEs’ patent acquisitions. Research Policy, 41, 1519–33.

FTC (2003) To promote innovation—the proper balance of competition and patent law and pol-

icy, Report, Washington.

FTC (2011) The evolving IP marketplace: aligning patent notice and remedies with competition,

Report, Washington.

Goolsbee, A. (1998) Does government R&D policy mainly benefit scientists and engineers? The

American Economic Review, 88, 298–302.

von, GraevenitzG., Wagner, S.,[N/A]andHarhoff, D.(2011)How to Measure Patent Thickets—a

Novel Approach, Economics Letters, 111, 6–9.

von Graevenitz, G., Wagner, S., and Harhoff, D. (2013) Incidence and Growth of Patent Thickets:

The Impact of Technological Opportunities and Complexity, The Journal of Industrial

Economics,61, 521–63.

Hall, B.H., Helmers, C., Rogers, M., and Sena, V. (2013) The importance (or not) of patents to

UK firms, Oxford Economic Papers, 65, 603–29.

Harhoff, D., von Graevenitz, G., and Wagner, S. (2016) Conflict resolution, public goods and pa-

tent thickets, Management Science, 62, 704–21.

B.H. HALL, G. VON GRAEVENITZ, AND C. HELMERS 23

D
ow

nloaded from
 https://academ

ic.oup.com
/oep/advance-article/doi/10.1093/oep/gpaa034/5908270 by O

U
P site access user on 19 N

ovem
ber 2020



Henderson, R. (1993) Underinvestment and incompetence as responses to radical innovation:

Evidence from the photolithographic alignment equipment industry. The RAND Journal of

Economics, 24, 248–70.

Jaffe, A.B. and Lerner, J. (2004) Innovation and Its Discontents: How Our Broken Patent System

is Endangering Innovation and Progress, and What to Do about It, Princeton University Press,

Princeton, NJ.

Lei, Z. and Wright, B.D. (2017) Why weak patents? Testing the examiner ignorance hypothesis,

Journal of Public Economics, 148, 43–56.

Lerner, J. (1995) Patenting in the shadow of competitors, The Journal of Law and Economics, 38,

463–95.

Lewis, J.I.D. and Mott, R.M. (2013) The sky is not falling: Navigating the smartphone patent

thicket, WIPO Magazine.

Lybbert, T.J. and Zolas, N.J. (2014) Getting patents and economic data to speak to each other:

An “algorithmic links with probabilities” approach for joint analyses of patenting and econom-

ic activity. Research Policy, 43, 530–42.

Mankiw, N.G. and Whinston, M.D. (1986) Free entry and social inefficiency. The Rand Journal

of Economics, 17, 48–58.

Menell, P.S. (2019) Economic analysis of intellectual property notice and disclosure, in Depoorter,

B., Menell, P. and Schwartz, D. (eds) Research Handbook on the Economics of Intellectual

Property Law, vol. 1. Edward Elgar, Cheltenham, 424–71.

Milgrom, P. and Roberts, J. (1994) Comparing equilibria. American Economic Review, 84,

441–59.

Mulligan, C. and Lee, T.B. (2012) Scaling the patent system. NYU Annual Survey American Law,

68, 289–318.

Paik, Y. and Zhu, F. (2016) The impact of patent wars on firm strategy: Evidence from the global

smartphone industry. Organization Science, 27, 1397–416.

Schankerman, M. and Schuett, F. (2016) Screening for patent quality: Examination, fees and the

courts. CEPR, Discussion Paper 11688, London.

Schmoch, U. (2008) Concept of a technology classification for country comparisons, Final Report

to the World Intellectual Property Organization (WIPO), Fraunhofer Institute for Systems and

Innovation Research, Karlsruhe.

Shapiro, C. (2001) Navigating the patent thicket: cross licenses, patent pools, and standard setting,

in A. Jaffe, J. Lerner, and S. Stern (eds) Innovation Policy and the Economy, vol. 1, MIT Press,

Cambridge, MA, pp. 119–50.

Suzumura, K. and Kiyono, K. (1987) Entry barriers and economic welfare. The Review of

Economic Studies, 54, 157–67.

Teece, D. (2018) The “tragedy of the anticommons” fallacy: A law and economics analysis of pa-

tent thickets and FRAND licensing. Berkeley Technology Law Journal, 32, 1489–526.

Tushman, M. and Anderson, P. (1986) Technological discontinuities and organizational environ-

ments. Administrative Science Quarterly, 31, 439–65.

U.S. Department of Justice and Federal Trade Commission (2007) Antitrust enforcement and in-

tellectual property rights: promoting innovation and competition, Report, Washington.

Uzzi, B., Mukherjee, S., Stringer, M., and Jones, B. (2013) Atypical combinations and scientific

impact. Science, 342, 468–72.

Vives, X. (2005) Complementarities and games: new developments. Journal of Economic

Literature, 43, 437–79.

Ziedonis, R.H. (2004) Don’t fence me in: Fragmented markets for technology and the patent ac-

quisition strategies of firms. Management Science, 50, 804–20.

24 PATENT THICKETS AND TECHNOLOGY ENTRY

D
ow

nloaded from
 https://academ

ic.oup.com
/oep/advance-article/doi/10.1093/oep/gpaa034/5908270 by O

U
P site access user on 19 N

ovem
ber 2020


	l
	l
	l
	l
	l
	l
	l
	tblfn3
	tblfn1
	l
	tblfn6
	tblfn4
	tblfn7
	tblfn8
	tblfn9
	tblfn10
	tblfn11



